Parallel Functional Activity Profiling Reveals Valvulopathogens Are Potent 5-Hydroxytryptamine$_{2B}$ Receptor Agonists: Implications for Drug Safety Assessment

Xi-Ping Huang, Vincent Setola, Prem N. Yadav, John A. Allen, Sarah C. Rogan, Bonnie J. Hanson, Chetana Revankar, Matt Robers, Chris Doucette, and Bryan L. Roth

Departments of Pharmacology (X.P.H., P.N.Y., J.A.A., S.C.R., V.S., B.L.R.) and Psychiatry (B.L.R.), Program in Neuroscience (B.L.R.), Lineberger Comprehensive Cancer Center (B.L.R.), Carolina Integrated Chemical Biology and Drug Discovery Center (B.L.R.), Center for Neurodevelopmental Disorders (J.A.A., B.L.R.), and School of Pharmacy, Department of Medicinal Chemistry and Natural Products (B.L.R.), University of North Carolina Chapel Hill, School of Medicine, Chapel Hill, North Carolina; National Institute of Mental Health Psychoactive Drug Screening Program (X.P.H., V.S., B.L.R.); and Invitrogen Corp, Madison, Wisconsin (B.J.H., C.R., M.R., C.D.)

Received May 23, 2009; accepted June 29, 2009

ABSTRACT

Drug-induced valvular heart disease (VHD) is a serious side effect of a few medications, including some that are on the market. Pharmacological studies of VHD-associated medications (e.g., fenfluramine, pergolide, methysergide, and cabergoline) have revealed that they and/or their metabolites are potent 5-hydroxytryptamine$_{2B}$ (5-HT$_{2B}$) receptor agonists. We have shown that activation of 5-HT$_{2B}$ receptors on human heart valve interstitial cells in vitro induces a proliferative response reminiscent of the fibrosis that typifies VHD. To identify current valvulopathogens, we screened approximately 2200 compounds, 27 were 5-HT$_{2B}$ receptor agonists, including seven bona fide valvulopathogens. Six of the hits (guanfacine, quinidine, xylometazoline, oxymetazoline, fenoldopam, and ropinirole) are approved medications. Twenty-three of the hits were then “functionally profiled” (i.e., assayed in parallel for 5-HT$_{2B}$ receptor agonism using multiple readouts to test for functional selectivity). In these assays, the known valvulopathogens were efficacious at concentrations as low as 30 nM, whereas the other compounds were less so. Hierarchical clustering analysis of the pEC$_{50}$ data revealed that ropinirole (which is not associated with valvulopathy) was clearly segregated from known valvulopathogens. Taken together, our data demonstrate that patterns of 5-HT$_{2B}$ receptor functional selectivity might be useful for identifying compounds likely to induce valvular heart disease.

In 1997, the anorexigen fenfluramine was voluntarily withdrawn from the U.S. market because of its association with valvular heart disease (VHD) and pulmonary hypertension (Connolly et al., 1997). Valve tissue obtained from affected persons revealed plaques of proliferating myofibroblasts beneath the elastic surface of the valves (Steffee et al., 1999). As lesions develop, valve function becomes impaired and valvular insufficiency ensues. Indistinguishable histopathologic results

ABBREVIATIONS: VHD, valvular heart disease; MDMA, 3,4-methylenedioxymethamphetamine; 5-HT, 5-hydroxytryptamine (serotonin); ERK, extracellular signal-regulated kinase; FRET, fluorescence resonance energy transfer; SB 206553, 3,5-dihydro-5-methyl-4-(1,2-benzenediyl)1H-indole-3-carboxamide hydrochloride; NFAT, nuclear factor activated in T cells; bla, β-lactamase; BW 723C86, α-methyl-5-(2-thienylmethoxy)-1H-indole-3-ethanamine hydrochloride; YSi, yttrium silicate; InsP, inositol phosphates; XTT, tetrazolium hydroxide; DMEM, Dulbecco’s modified Eagle’s medium; FBS, fetal bovine serum; CHO, Chinese hamster ovary; GFP, green fluorescent protein; DMSO, dimethyl sulfoxide; CHAPS, 3-[N-(3-cholamidopropyl)dimethylammonio]propanesulfonate; HEK, human embryonic kidney; FLIPR, fluorometric imaging plate reader; RU 24969, 5-methoxy 3-(1,2,3,6-tetrahydro-4-pyridinyl)-1H-indole-3-carboxylic acid hydrochloride; SCH 23390, R-(++)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine; DOI, 4-iodo-2,5-dimethoxyphenethylisopropylamine; WAY 161503, 6,8-dichloro-2,3,4,4a-tetrahydro-1H-pyrazino[1,2-e]quinazolin-7-one; L 694247, N-(4-(1H-imidazol-1-yl)-1H-indol-5-yl)-1,4-oxazolidin-3-yl)methyl)-5-(2-thienyl)-9H-pyrimidin-2(1H)-one; SCH 23390, α-methyl-5-(2-thienylmethoxy)-1H-indole-3-ethanamine hydrochloride; SKF 83566, 7-bromo-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine; FDA, Food and Drug Administration; CP-132484-42, 1-[2-aminoethyl]-3-methyl-8,9-dihydropyrano[3,2-e]indole; CP-132479-11, 1-[2-aminoethyl]-8,9-dihydropyrano[3,2-e]indole; CP-118,952, N,N-dimethyl-2-(3,7,8,9-tetrahydropyrano[3,2-e]indol-1-yl)ethanamine; DM360, 2,5-dimethoxy-4-bromoamphetamine.
occur in patients with malignant carcinoid syndrome and in persons undergoing therapy with certain ergots and ergolines for migraines (e.g., methysergide, ergotamine) or Parkinson’s disease [e.g., pergolide, cabergoline (Connolly et al., 1997; Pritchett et al., 2002; Horvath et al., 2004; Roth, 2007)].

We and others have identified the 5-HT2B receptor as a likely molecular target for drug-induced VHD based on the preferentially potent agonism of norfenfluramine (fenfluramine’s active metabolite), methysergide, and methylergonovine (the active metabolite of ergotamine) at human cloned 5-HT2B receptors (Fitzgerald et al., 2000; Setola et al., 2003). Additional evidence implicating 5-HT2B receptors in drug-induced VHD came from the observations that 1) 5-HT2B receptors are enriched in heart valve tissue from various species (Fitzgerald et al., 2000; Setola et al., 2003; Elangbam et al., 2005; Regard et al., 2008); 2) activation of human valvular interstitial 5-HT2B receptors is mitogenic, resulting in ERK1/2 phosphorylation and [3H]deoxynymidine incorporation (Setola et al., 2003); 3) 5-HT2B receptor activation has been implicated in 5-HT-induced valvulopathy in experimental animals (Elangbam et al., 2008); and 4) other drugs with potent 5-HT2B agonist activity [pergolide, cabergoline, MDMA, 3,4-dimethoxyamphetamine (Setola et al., 2003)] induce valvular heart disease in humans (Droogmans et al., 2007; Schade et al., 2007; Zanettini et al., 2007), whereas chemically similar drugs lacking 5-HT2B agonism [e.g., lisuride and bromocriptine (Roth, 2007; Berger et al., 2009)] are not associated with an increased risk of VHD (Schade et al., 2007; Zanettini et al., 2007).

Given the strong associations between 5-HT2B agonism and drug-induced VHD, we sought first to identify medications (either approved or investigational) that might induce VHD. Second, we attempted to determine which signal transduction pathway might be correlated with a drug’s propensity to induce valvulopathy. To achieve the first goal, we screened a composite library of approximately 2200 approved or investigational medications and drug-like scaffolds for 5-HT2B receptor agonism using a high-throughput, calcium flux assay (see see Calcium Flux Assay) for subsequent drug screens.

Materials and Methods
Plasmid Construct and Cell Lines. Cells stably expressing human 5-HT2B receptors were generated using the FlpIn system (Invitrogen Corp., Carlsbad, CA). In brief, a cDNA for the human 5-HT2B receptor was amplified by polymerase chain reaction from pUSF-5-HT2B (Setola et al., 2005) using 5’ and 3’ BamHI linkers, and then subcloned into the BamHI site of pCDNA5.0/Frt to produce pFlpIn-5-HT2B. Next, subconfluent (60%) FlpIn HEK293 cells in 10-cm dishes were cotransfected with 3 μg of pFlpIn-5-HT2B and 3 μg of pOG5 (bearing the Frt recombinase; Invitrogen Corp.) using 30 μl of FuGENE 6 transfection reagent (Roche Applied Science, Indianapolis, IN). Twenty-four hours after transfection, cells were split 1:5 into growth/selection medium (DMEM, 10% FBS, 500 mg/liter G418, and 50 mg/liter hygromycin B; all from Invitrogen) and allowed to expand. After selection, multiple aliquots of cells at passage 0 were collected, frozen in Cell Recovery Medium (Invitrogen) overnight at −80 degrees C, and then stored in liquid nitrogen. Receptor expression was verified by 1) radioligand competition binding assays using [3H]-lysergic acid diethylamide (~1 nM final; PerkinElmer Life and Analytical Sciences, Waltham, MA) to label 5-HT2B receptors and varying concentrations of unlabeled ligand (spanning at least 5 orders of magnitude) to compete for radioligand binding (Setola et al., 2005) and 2) calcium flux assays (see Calcium Flux Assay) using varying concentrations of 5-HT and BW 723C86 to measure 5-HT2B receptor activation. Cells were passaged fewer than 10 times beyond passage 0 to ensure stable 5-HT2B receptor expression. The GeneBlazer cell line (CHO-NFAT-blurple stably expressing human 5-HT2B receptors was from Invitrogen (Madison, WI) and was maintained and prepared for assay exactly as described by the manufacturer.

Calcium Flux Assay. FlpIn HEK293 5-HT2B cells were seeded in 384-well plates at a density of 10,000 cells/well in DMEM containing 1% dialyzed FBS 24 h before the calcium flux assay. The next day, the cells were incubated (20°C) with 1% dialyzed FBS, 0.1 mM nonessential amino acids, and 25 mM HEPES, pH 7.4). On the day of the assay, dilutions of test compounds and reference compounds (prepared at 5 μM final concentration in PBS) were added to the cells, and plates were incubated (20°C) for 4 h at 37°C in an atmosphere of 5% CO2. Next, the NFAT-β-lactamase (bla) FRET substrate was added to the cells and followed by 2-h incubation at room temperature in the dark. Cleavage of the substrate by bla results in the loss of FRET activity. Samples were excited at 490 nm and fluorescence was read from the bottom of the plates on a FlexStation II plate reader (Molecular Dynamics) at 460 nm (donor fluorescence) and 530 nm (FRET fluorescence). The ratio of the two fluorescence
values (460 nm/530 nm) was calculated for each sample. These FRET ratios were analyzed as above for Ca2+ flux assays. The data were then normalized so that the shared baseline was set to 0%, and the Emax for 5-HT was measured on each plate) to set to 100%.

Assay Validation. Assignment in agonist-stimulated FRET in HEK293-5-HT2B cells were used making use of the scintillation proximity assay method (Bourdon et al., 2006; Jensen et al., 2008). In brief, 3 × 104 cells/well were plated into 96-well tissue culture plates in dialyzed culture medium. The cells were collected into isothiocyanate-starved for 1.5 h and then incubated for 18 h at 37°C with labeling medium [50 isothiocyanate-free basalm Eagle’s solution (Lonza Walkersville, Inc., Walkersville, MD) with 5% dialyzed FBS and 0.1% DMSO (myo[3H]-inositol (PerkinElmer Life and Analytical Sciences)]. Labeling medium was removed and agonists (dissolved in DMSO and diluted in assay buffer (1× Hanks’ balanced salt solution, 24 mM NaHCO3, 11 mM glucose, and 35 mM LiCl, pH 7.4)) were added to the cells for 1 h at 37°C. The assay was terminated by replacement of the incubation medium with 40 µl of 50 mM formic acid. After a 20-min incubation in formic acid to extract the cytosolic fraction from the cells, the formic acid was incubated with 0.2 mg of yttrium silicate beads (GE Healthcare, Chalfont St. Giles, Buckinghamshire, UK). Radioactivity was measured by scintillation counting using a Wallac MicroBeta TriLux plate reader (PerkinElmer Life and Analytical Sciences). InsP levels (in disintegrations per minute) were analyzed as above for Ca2+ flux assays. Finally, the data were normalized such that the shared baseline was set to 0% and the Emax for 5-HT (measured on each plate) was set to 100%.

Tetrazolium Salt-Based Cell Proliferation Assay. Cell proliferation was assessed using the XTT Cell Proliferation assay (Roche Applied Science) according to the manufacturer’s recommendations. Stable FIn HEK293-5-HT2B cells or the parental FIn HEK293 cells were seeded into poly-L-lysine-coated 96-well plates at density of 3 × 104 cells/well and grown for 16 h in DMEM containing 1% serum (37°C, 5% CO2). Cells were then exposed to various concentrations of test or reference compounds for 48 h. During the final 4 h of treatment, 50 µl of XTT tetrazolium salt reagent was added to each well, and incubation was continued at 37°C. Metabolic mitochondrial dehydrogenase activity of the cells converts the tetrazolium salt to a water-soluble formazan dye product, providing a colorimetric index proportional to cell number. The formazan dye absorbance peak at 490 nm was measured using a SpectraMax microplate reader (Molecular Dynamics). The absorbances obtained were normalized to the values of untreated cells and expressed as a percentage.

Statistics. Data were analyzed for statistical significance by two-way analysis of variance followed by a Bonferroni post test using Prism 4.0. A p value less than 0.05 was considered significant.

Cluster Analysis. For hierarchical clustering analysis, pEC50 data (expressed as pEC50 = -log EC50) were clustered using GeneCluster (http://www.broadinstitute.org/cancer/software/genecluster2/gc2.html) with “Assays” and “Drugs” representing the two axes. The similarity matrix used was produced via the correlation (uncentered)
TABLE 1

Agonist relative efficacies and potencies at 5-HT$_{2B}$ receptors measured using five assays of receptor activation.

<table>
<thead>
<tr>
<th>Drugs</th>
<th>Calcium Flux</th>
<th>NFAT-bla Activity</th>
<th>ERK2 Phosphorylation</th>
<th>Arrestin Translocation</th>
<th>InsP Accumulation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E_{max}</td>
<td>pEC$_{50}$</td>
<td>E_{max}</td>
<td>pEC$_{50}$</td>
<td>E_{max}</td>
</tr>
<tr>
<td>5-HT</td>
<td>100.0 ± 0.7</td>
<td>8.75 ± 0.03</td>
<td>100 ± 2</td>
<td>9.14 ± 0.05</td>
<td>100 ± 2</td>
</tr>
<tr>
<td>BW 723C86</td>
<td>92.9 ± 0.9</td>
<td>8.85 ± 0.03</td>
<td>96 ± 2</td>
<td>8.23 ± 0.05</td>
<td>65.3 ± 0.8</td>
</tr>
<tr>
<td>DOI</td>
<td>88.2 ± 6.3</td>
<td>8.84 ± 0.13</td>
<td>106.6 ± 0.9</td>
<td>7.86 ± 0.02</td>
<td>54 ± 1</td>
</tr>
<tr>
<td>Ergotamine</td>
<td>87.2 ± 5.7</td>
<td>5.46 ± 0.18</td>
<td>88 ± 1</td>
<td>8.42 ± 0.04</td>
<td>74 ± 0.9</td>
</tr>
<tr>
<td>TFMPF</td>
<td>40.3 ± 8.0</td>
<td>7.42 ± 0.11</td>
<td>24 ± 2</td>
<td>7.52 ± 0.02</td>
<td>41 ± 1</td>
</tr>
<tr>
<td>Quipazine</td>
<td>8.4 ± 0.2</td>
<td>8.05 ± 0.09</td>
<td>7.0 ± 0.5</td>
<td>7.3 ± 0.2</td>
<td>21 ± 1</td>
</tr>
<tr>
<td>RU 24969</td>
<td>60.1 ± 13.3</td>
<td>7.89 ± 0.08</td>
<td>43 ± 1</td>
<td>7.04 ± 0.06</td>
<td>87 ± 2</td>
</tr>
<tr>
<td>SCH 23390</td>
<td>47.1 ± 6.4</td>
<td>7.18 ± 0.10</td>
<td>46 ± 1</td>
<td>7.06 ± 0.06</td>
<td>75 ± 2</td>
</tr>
<tr>
<td>WAY 161503</td>
<td>72 ± 1</td>
<td>8.44 ± 0.05</td>
<td>98 ± 3</td>
<td>7.64 ± 0.08</td>
<td>68 ± 1</td>
</tr>
<tr>
<td>Cabergoline</td>
<td>98.5 ± 1.9</td>
<td>6.40 ± 0.10</td>
<td>108 ± 4</td>
<td>9.1 ± 0.1</td>
<td>60.1 ± 0.9</td>
</tr>
<tr>
<td>Dihydroergotamine</td>
<td>81.6 ± 7.9</td>
<td>5.30 ± 0.22</td>
<td>92 ± 1</td>
<td>8.32 ± 0.04</td>
<td>70.6 ± 0.8</td>
</tr>
<tr>
<td>Ergonovine</td>
<td>39.7 ± 4.0</td>
<td>7.15 ± 0.37</td>
<td>54.3 ± 0.6</td>
<td>9.03 ± 0.03</td>
<td>57 ± 1</td>
</tr>
<tr>
<td>Methylergonovine</td>
<td>49.5 ± 6.7</td>
<td>7.67 ± 0.07</td>
<td>56 ± 2</td>
<td>9.3 ± 0.1</td>
<td>52.5 ± 0.8</td>
</tr>
<tr>
<td>Norfenfluramine</td>
<td>107.4 ± 0.6</td>
<td>8.61 ± 0.02</td>
<td>101 ± 2</td>
<td>8.71 ± 0.04</td>
<td>75 ± 1</td>
</tr>
<tr>
<td>Pergolide</td>
<td>88.5 ± 6.4</td>
<td>7.13 ± 0.08</td>
<td>108 ± 3</td>
<td>7.72 ± 0.05</td>
<td>79 ± 1</td>
</tr>
<tr>
<td>Ropinirole</td>
<td>73 ± 1</td>
<td>5.59 ± 0.02</td>
<td>89 ± 6</td>
<td>5.0 ± 0.1</td>
<td>67 ± 3</td>
</tr>
<tr>
<td>Guanfacine</td>
<td>99 ± 1</td>
<td>6.91 ± 0.03</td>
<td>102 ± 2</td>
<td>6.26 ± 0.05</td>
<td>59 ± 1</td>
</tr>
<tr>
<td>Oxymetazoline</td>
<td>70.9 ± 0.4</td>
<td>7.34 ± 0.01</td>
<td>80 ± 1</td>
<td>6.44 ± 0.03</td>
<td>60.0 ± 0.9</td>
</tr>
<tr>
<td>Quinidine</td>
<td>55.9 ± 0.3</td>
<td>6.73 ± 0.01</td>
<td>63 ± 3</td>
<td>6.17 ± 0.09</td>
<td>51 ± 1</td>
</tr>
<tr>
<td>Xylometazoline</td>
<td>55.7 ± 0.3</td>
<td>6.62 ± 0.01</td>
<td>56 ± 1</td>
<td>6.00 ± 0.04</td>
<td>53 ± 1</td>
</tr>
<tr>
<td>Fenoldopam</td>
<td>92.5 ± 0.6</td>
<td>7.11 ± 0.01</td>
<td>87 ± 2</td>
<td>6.91 ± 0.06</td>
<td>91 ± 2</td>
</tr>
<tr>
<td>SR 5727A</td>
<td>37.4 ± 0.4</td>
<td>6.97 ± 0.02</td>
<td>28 ± 2</td>
<td>7.2 ± 0.2</td>
<td>91 ± 2</td>
</tr>
<tr>
<td>L 694247</td>
<td>102.2 ± 4.4</td>
<td>7.27 ± 0.06</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>DM 360</td>
<td>84.6 ± 7.5</td>
<td>8.38 ± 0.33</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>SKF 83566</td>
<td>48.6 ± 3.5</td>
<td>6.90 ± 0.03</td>
<td>56 ± 2</td>
<td>7.24 ± 0.09</td>
<td>142 ± 3</td>
</tr>
<tr>
<td>CP 132484-42</td>
<td>92.7 ± 4.0</td>
<td>7.70 ± 0.28</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>CP 118,952</td>
<td>71.8 ± 10.2</td>
<td>7.89 ± 0.28</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>CP 123,479-11</td>
<td>93.9 ± 4.8</td>
<td>8.71 ± 0.17</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
</tbody>
</table>

TFMP, 1:3-trifluoromethylphenyl) piperazine; ND, not determined.
method, and a complete linkage clustering was performed. The cluster was visualized with Java TreeView ver. 1.13 (http://jtreeview.sourceforge.net) with a contrast value set at 4.5.

Results

To identify potential valvulopathogenic 5-HT$_{2B}$ receptor agonists, we compiled a small molecule library of FDA-approved and investigational drugs and drug-like scaffolds. This composite library contained the Prestwick Chemical Library, the National Institutes of Health Clinical Collection, the National Institute of Mental Health-RTI International Screening set, and our own internal library (approximately 2200 compounds; see Supplementary Table 1, which contains all the drugs and the initial screening results). For the initial screen, we assayed compounds at 3 to 10 μM final concentration for agonist activity at recombinant human 5-HT$_{2B}$ receptors stably expressed in HEK293 FlpIn cells using a calcium flux-based FLIPR assay. In parallel, we also assessed compound activity in the parental HEK293 FlpIn cells to identify false positives. From the list of confirmed agonists (see Supplementary Table 2), several compounds were chosen for further study. The selected compounds were 1) known 5-HT$_{2B}$ agonists, 2) VHD-associated medications and/or metabolites thereof, and/or 3) investigational compounds and medications not previously known to activate 5-HT$_{2B}$ receptors (Table 1).

We next generated concentration-response isotherms for the selected, putative 5-HT$_{2B}$ agonists listed in Table 1 to obtain estimates of potency (pEC$_{50}$) and efficacy relative to 5-HT (E$_{max}$) (Fig. 1, Table 1). It is noteworthy that the cal-

![Fig. 1. Agonist concentration-dependent stimulation of calcium flux in FlpIn HEK293 5-HT$_{2B}$ receptor-expressing cells. Maximal intracellular calcium response to each concentration of agonist, measured by Calcium Plus dye fluorescence, is expressed as a percentage of the 5-HT E$_{max}$. Each panel shows isotherms for two of the drugs listed in Table 1 and for 5-HT. Similar experiments were performed for all drugs listed in Table 1, and the data were analyzed as described under Materials and Methods to obtain potency (pEC$_{50}$) and efficacy (E$_{max}$) estimates. Parental untransfected FlpIn HEK293 cells did not exhibit calcium flux responses to any of the tested drugs at any concentration (data not shown).](molpharm.aspetjournals.org)
cium response for each agonist was blocked by the 5-HT$_{2B/C}$ receptor-selective antagonist SB 206553 (Supplementary Fig. 1). Fourteen of the 27 hits were previously identified 5-HT$_{2B}$ receptor agonists [quipazine, 1-(3-trifluoromethylphenyl) piperazine, RU 24969, SCH 23390, BW723C86, DOI, WAY 161503, pergolide, norfenfluramine, ergotamine, dihydroergotamine, cabergoline, ergonovine, methylergonovine]. Of the 14 known 5-HT$_{2B}$ receptor agonists, 7 were medications (or metabolites thereof) associated with VHD (pergolide, norfenfluramine, ergotamine, dihydroergotamine, cabergoline, ergonovine, methylergonovine). The remaining 13 hits were not previously known to be 5-HT$_{2B}$ receptor agonists, although some were known to be functionally active at other 5-HT receptors (L 694247, SR 57227A, CP 132484-42, and CP 123,479-11). SKF 83566 was a known D1-like receptor-selective antagonist. Six of the newly discovered 5-HT$_{2B}$ receptor agonists (guanfacine, quinidine, fenoldopam, oxymetazoline, xylometazoline, and ropinirole) are currently approved medications.

On the basis of potency and efficacy estimates in the agonist-induced calcium flux assay, the VHD-associated hits (pergolide, norfenfluramine, ergotamine, dihydroergotamine, cabergoline, ergonovine, and methylergonovine) could not be clearly distinguished from ropinirole, which is thought to be “safe” in terms of VHD. The VHD-associated drugs cabergoline and dihydroergotamine had potencies similar to ropinirole (pEC$_{50}$ values of 6.40 ± 0.10, 5.30 ± 0.22, and 5.59 ± 0.02, respectively) and were as efficacious (E$_{\text{max}}$ values of 98.5 ± 1.9, 81.6 ± 7.9, and 73 ± 1%, respectively) (Table 1). Other VHD-associated compounds, such as pergolide and methylergonovine, were more potent (pEC$_{50}$ values of 7.13 ± 0.08 and 7.67 ± 0.07, respectively) but not more efficacious.

![Fig. 2](https://molpharm.aspetjournals.org/article-pdf/10.1124/mol.115.116342/7158396/7158396.pdf)

Fig. 2. Agonist concentration-dependent stimulation of a 5-HT$_{2B}$-mediated NFAT-β-lactamase reporter. The FRET ratio observed for each concentration of agonist is expressed as a percentage of the 5-HT E$_{\text{max}}$. Each panel shows isotherms for two of the drugs listed in Table 1 and for 5-HT. Similar experiments were performed for all drugs listed in Table 1, and the data were analyzed as described under Materials and Methods to obtain potency (pEC$_{50}$) and efficacy (E$_{\text{max}}$) estimates.
(\(E_{max}\) values of 88.5 ± 6.4 and 49.5 ± 6.7%, respectively) than ropinirole (Table 1). Thus, we postulated that other readouts of 5-HT\(_{2B}\) receptor activation might better distinguish the VHD-associated drugs from ropinirole, and thus permit us to assess the valvulopathic risk of the other FDA-approved hits (guanfacine, quinidine, fenoldopam, oxymetazoline, and xylometazoline).

We generated concentration-response isotherms using four additional assays of 5-HT\(_{2B}\) receptor activity as follows: 1) calcium-sensitive NFAT-mediated transcription of a \(\beta\)-lactamase reporter gene, 2) accumulation of InsPs in LiCl-treated cells, 3) recruitment of \(\beta\)-arrestin to agonist-occupied receptors, and 4) phosphorylation of the extracellular signal-regulated kinase ERK2. In control assays, we established that these agonist-induced responses were blocked by SB 206553, and/or absent in parental cell lines not expressing recombinant human 5-HT\(_{2B}\) receptors (data not shown). It is noteworthy that the time scale of the four additional assays—but not of the calcium flux assay—permits measurement or response under equilibrium conditions of agonist-receptor occupancy.

The \(\beta\)-lactamase (\(bla\)) assays revealed all VHD-associated drugs to have \(pEC_{50}\) values greater than 7.5; i.e., they had \(EC_{50}\) values less than 30 nM (Table 1; representative isotherms appear in Fig. 2). In contrast, ropinirole was markedly less potent than known valvulopathogens in \(bla\) assays, having a \(pEC_{50}\) value of 5.0 ± 0.1 (i.e., an \(EC_{50}\) value of 10 \(\mu\)M) (Table 1, Fig. 2). The medications guanfacine, oxymetazoline, quinidine, xylometazoline, and fenoldopam had intermediate \(bla\) \(pEC_{50}\) values ranging from 6.91 ± 0.06 to 6.00 ±

Fig. 3. Agonist concentration-dependent stimulation of ERK2 activation (phosphorylation) in U2OS 5-HT\(_{2B}\) ERK2-GFP cells. Time-resolved FRET between ERK2-GFP and a terbium-labeled anti-phospho-ERK2 antibody is measured after 1) a 5-min agonist challenge and 2) a 2-h lysis/antibody incubation step. The time-resolved FRET observed for each concentration of agonist is expressed as a percentage of the 5-HT \(E_{max}\). Each panel shows isotherms for two of the drugs listed in Table 1 and for 5-HT. Similar experiments were performed for all drugs listed in Table 1, and the data were analyzed as described under Materials and Methods to obtain potency (\(pEC_{50}\)) and efficacy (\(E_{max}\)) estimates.
0.04 (i.e., EC$_{50}$ values between 123 and 1000 nM) (Table 1, Fig. 2). Relative efficacy measurements in bla assays did not distinguish ropinirole (E_{max} value of 89 ± 6%) from the VHD-associated compounds dihydroergotamine and methyl-ergonovine (E_{max} values of 92 ± 1 and 56 ± 2%, respectively) (Table 1).

A similar distinction between the VHD-associated drugs and ropinirole was apparent in the phospho-ERK2 assays. The valvulopathogens all stimulated ERK2 phosphorylation with pEC$_{50}$ values greater than 7.5 (i.e., EC$_{50}$ values less than 30 nM) (Table 1; representative isotherms appear in Fig. 3), whereas ropinirole induced ERK2 phosphorylation with a pEC$_{50}$ value of 5.60 ± 0.05 (Table 1, Fig. 3). The FDA-approved drugs guanfacine, oxymetazoline, quinidine, xylometazoline, and fenoldopam had pEC$_{50}$ values for ERK2 phosphorylation ranging from 8.00 ± 0.04 to 6.23 ± 0.03 (i.e., EC$_{50}$ values between 10 and 589 nM) (Table 1, Fig. 3). The relative efficacy of ropinirole at stimulating ERK2 phosphorylation (E_{max} value of 67 ± 3%) was not markedly different from the values for the VHD-associated drugs dihydroergotamine and cabergoline (E_{max} values of 70.6 ± 0.8 and 60.1 ± 0.9%, respectively) (Table 1).

To validate the results of the ERK2 phosphorylation assays, we performed conventional immunoblot analyses. We focused our attention on the six currently prescribed medications (guanfacine, oxymetazoline, quinidine, xylometazoline, fenoldopam, and ropinirole) and included 5-HT and norfenfluramine as positive controls. At 1 μM after a 5-min challenge, all drugs stimulated significant ERK1/2 phosphorylation in serum-deprived HEK293 FpIn cells stably expressing recombinant human 5-HT$_{2B}$ receptors, as assessed by immunoblot analysis using an anti-phospho-ERK1/2 antibody (Fig. 4). It is noteworthy that drug-induced ERK1/2 activation was blocked by the 5-HT$_{2B/2C}$ receptor-selective antagonist SB 206553 (Fig. 4) and was absent in parental HEK293 FpIn cells (data not shown).

In β-arrestin recruitment assays, the known valvulopathogens were again more potent [pEC$_{50}$ values ranged from 8.96 ± 0.02 to 6.89 ± 0.05 (i.e., EC$_{50}$ values between 1.1 and 129 nM)] than ropinirole [pEC$_{50}$ value <5 (i.e., an EC$_{50}$ value

Fig. 4. Immunoblot analysis of agonist-mediated ERK1/2 phosphorylation in FlpIn HEK293 5-HT$_{2B}$ receptor-expressing cells. A, representative immunoblots probed with anti-phospho-ERK1/2 or anti-total-ERK1/2 antibodies as indicated. B, image densitometry of immunoblot scans in A to quantify phospho-ERK1/2 content in cell lysates. Immunoreactivity for phospho-ERK1/2 (i.e., mean pixel intensity per region of interest that contained the p42 and p44 bands, minus the background) was measured for each sample. Blots were then stripped and reprobed for total-ERK1/2 and analyzed as before. The phospho-ERK1/2 immunoreactivity for each sample was normalized to its total-ERK1/2 immunoreactivity. The normalized phospho-ERK1/2 immunoreactivity elicited by 5-HT (measured on each gel) was set to 100%. SB, SB-206,553 pretreatment.
The currently prescribed drugs guanfacine, oxymetazoline, quinidine, xylometazoline, and fenoldopam stimulated β-arrestin translocation with pEC₅₀ values ranging from 5.51 ± 0.04 to 5.18 ± 0.07 (i.e., EC₅₀ values between 3100 and 6600 nM) (Table 1, Fig. 5). In terms of relative efficacy, the Eₘₐₓ value of ropinirole in β-arrestin recruitment assays was difficult to estimate because of its low affinity; however, ropinirole was at least as efficacious as the valvulopathy norfenfluramine (Eₘₐₓ value of 52 ± 1%) (Table 1, Fig. 5). It is noteworthy that for the 23 drugs we characterized in all five functional assays, partial agonism (i.e., an Eₘₐₓ value less than 80%) was markedly rarer in β-arrestin translocation assays (4 of 23) than in the other assays (13 of 23 in calcium flux-based assays, 10 of 23 in bla assays, 18 of 23 in ERK2 phosphorylation assays, and 12 of 23 in InsP accumulation assays) (Table 1, Figs. 1, 2, 3, 5, and 6).

As was true in the previous assays, the bona fide VHD-associated drugs also exhibited greater potencies in InsP accumulation assays [pEC₅₀ values ranged from 8.64 ± 0.03 to 6.73 ± 0.05 (i.e., EC₅₀ values between 2.3 nM and 186 nM)] than did ropinirole [pEC₅₀ value was 4.46 ± 0.02 (i.e., an EC₅₀ value >10 μM)] (Table 1, Fig. 6). Ropinirole displayed an Eₘₐₓ of 163 ± 4% in InsP accumulation assays; as such, it is more efficacious by this measure than the valvulopathy pergolide (Eₘₐₓ value of 95 ± 1%) (Table 1, Fig. 6).

Valves resected from patients with VHD display proliferative interstitial foci, a hallmark feature of valvulopathy (Con-
nolly et al., 1997; Steffee et al., 1999). The proliferative plaques precede, and probably contribute to, valve dysfunction (Roth, 2007). We showed that valvulopathogens elicit 5-HT$_{2B}$ receptor-dependent proliferative responses in primary cultures of human heart valve interstitial cells, consistent with the putative actions of VHD-associated drugs in vivo (Setola et al., 2003). Along these lines, we predicted that the six currently prescribed medications we had identified as 5-HT$_{2B}$ receptor agonists, as well as the known valvulopathogens, would stimulate the proliferation of HEK293 FlpIn cells stably expressing recombinant human 5-HT$_{2B}$ receptors. In XTT-based proliferation assays, all compounds seemed to stimulate proliferation at 1 μM, an effect that was blocked by the 5-HT$_{2B/2C}$ receptor selective antagonist SB 206553 (Fig. 7). In terms of apparent potency, 5-HT and the VHD-associated drugs tested (pergolide, cabergoline, dihydroergotamine, and norfenfluramine) were all active at 30 nM in the proliferation assays (Fig. 7A). Furthermore, the apparent proliferative activity at 30 nM distinguished ropinirole from the known valvulopathogens (Fig. 7A). Of the other FDA-approved medications tested, only guanfacine and xylometazoline were active at 30 nM, thus resembling the valvulopathogens (Fig. 7B). It is noteworthy that none of the drugs seemed to stimulate proliferation in HEK293 FlpIn cells not expressing recombinant human 5-HT$_{2B}$ receptors (Supplemental Fig. 2), ruling out a nonspecific effect (e.g., on metabolism of the XTT colorimetric substrate).

We finally conducted hierarchical clustering analysis to determine whether any patterns of functional activity at the various read-outs of 5-HT$_{2B}$ agonism distinguish bona fide

![Graphs showing agonist concentration-dependent stimulation of InsP accumulation in FlpIn HEK293 5-HT$_{2B}$ receptor-expressing cells.](image)

Fig. 6. Agonist concentration-dependent stimulation of InsP accumulation in FlpIn HEK293 5-HT$_{2B}$ receptor-expressing cells. The InsP accumulation observed for each concentration of agonist is expressed as a percentage of the 5-HT E_{max}. Each panel shows isotherms for two drugs listed in Table 1 and for 5-HT. Similar experiments were performed for all drugs listed in Table 1, and the data were analyzed as described under Materials and Methods to obtain potency (pEC_{50}) and efficacy (E_{max}) estimates. Note: InsP accumulation stimulated by all tested drugs (at 1 μM) was completely blocked by pretreatment with 10 μM SB-206553 (data not shown).
from potential valvulopathogens. As shown in Fig. 8, ropinirole (a drug not associated with VHD) was clearly separated from known VHD-inducing drugs. In addition, ergoline and ergot-like drugs associated with VHD were all clustered on the same node. Finally, norfenfluramine was clustered on a node with 5-HT, indicating a similar pattern of functional selectivity for these two known valvulopathogens. These results indicate that ergot and ergoline medications induce a pattern of functional selectivity at 5-HT_{2B} receptors that is distinct from that induced by indoleamines and other small molecules.

Discussion

The major findings of this study are that known valvulopathic 5-HT_{2B} agonists are distinguished by relatively high potencies across a variety of signaling measures and that potent 5-HT_{2B} receptor agonism is a relatively rare occurrence among drugs and drug-like compounds. In addition, our results demonstrate that no single pattern of functional selectivity (Urban et al., 2007) distinguishes bona fide valvulopathic drugs from nonvalvulopathic drugs. On the other hand, a composite analysis of the signaling data indicates that ropinirole (a 5-HT_{2B} agonist not associated with VHD) has a distinctly different pattern of functional selectivity compared with known VHD-inducing medications.

To arrive at these conclusions, we screened a composite library containing three publicly available collections of FDA-approved and investigational medications and one internally compiled library (approximately 2200 compounds in all). After removing nonspecific “agonists” (false positives) from the initial hit list, 27 bona fide 5-HT_{2B} receptor agonists remained; thus, the validated hit rate was 1.2%. Among the hits identified in our blinded screen were 1) previously identified 5-HT_{2B} receptor agonists used in preclinical biomedical research (e.g., BW 723C86, DOI, WAY 161503) and 2) all seven VHD-associated medications/metabolites in the composite library (pergolide, norfenfluramine, ergotamine, dihydromergotamine, cabergolone, ergonovine, and methylergono- vine), all of which are reported 5-HT_{2B} receptor agonists (Fitzgerald et al., 2000; Rothman et al., 2000; Setola et al., 2003). These findings validate our screening strategy.

Another major finding is the identification of six currently prescribed medications (guanfacine, oxymetazoline, quinidine, xylometazoline, fenoldopam, and ropinirole) as 5-HT_{2B} receptor agonists. It is noteworthy that, in 2003, we discovered that MDMA, its metabolite 3,4-dimethoxyamphetamine, and pergolide were potent 5-HT_{2B} receptor agonists.

![Fig. 7. Agonist-mediated proliferation responses in FlpIn HEK293 5-HT_{2B} receptor-expressing cells. XTT-based proliferation assay of agonist-treated FlpIn HEK293 5-HT_{2B} cells. Cells were stimulated for 48 h with the indicated drug at 1 nM, 30 nM, or 1 μM. Four hours before the end of the drug treatment phase, XTT reagent was added. Then, the 490-nm absorbance (OD₄₉₀) of the XTT formazan metabolite was read. OD₄₉₀ was proportional to cell number (data not shown). *, p < 0.05 compared with vehicle (two-way analysis of variance followed by Bonferroni post test). A, VHD-associated drugs were all potent at 30 nM; ropinirole was distinct from the valvulopathogens in that it was inactive at 30 nM. B, of the five FDA-approved medications we identified, only guanfacine and xylometazoline were active at 30 nM.](https://molpharm.aspetjournals.org/content/early/2017/04/20/10717840.2017.1293902.full.pdf)

![Fig. 8. Hierarchical clustering analysis reveals a separation between ropinirole and valvulopathogens. Shown is an image generated by TreeView ver. 1.1.3 of pEC₅₀ data derived from Table 1 (see Materials and Methods for details). The x-axis represents “Assays,” whereas the y-axis represents “Drugs tested.” Data are colored for activity: <5, black; >9, yellow.](https://molpharm.aspetjournals.org/content/early/2017/04/20/10717840.2017.1293902.full.pdf)
and that these drugs stimulated heart valve cell proliferation in vitro (Setola et al., 2003). Thus, we predicted that MDMA and pergolide use might be associated with VHD—predictions that were validated in 2007 (Droogmans et al., 2007; Roth, 2007; Schade et al., 2007; Zanettini et al., 2007). Therefore, there is precedent for predicting VHD liability based solely on agonist activity at recombinant 5-HT_{2B} Receptors. In this regard, it is noteworthy that ropinirole, which is approved for treating Parkinson’s disease and restless legs syndrome, seems not to induce VHD. If one assumes that ropinirole is “safe” with respect to valvulopathy, then what additional factor(s) distinguish VHD-associated 5-HT_{2B} receptor agonists from 5-HT_{2B} receptor agonists?

The present results suggest that ropinirole is distinct from the seven known valvulopathic 5-HT_{2B} receptor agonists we studied in that it is much less potent, albeit not less efficacious, than the VHD-associated drugs in all but one of the 5-HT_{2B} receptor functional assays employed. In bla assays, ropinirole was 526-fold less potent than the least potent VHD-associated drug (pergolide); in ERK2 phosphorylation assays, ropinirole was 631-fold less potent than the least potent valvulopathogen (cabergoline); in β-arrestin recruitment assays, ropinirole was 77-fold less potent than the least potent VHD-inducing compound (norfenfluramine); finally, in InsP accumulation assays, ropinirole was 301-fold less potent than the least potent valvulopathic compound (pergolide) (Table 1). In cell proliferation assays, all VHD-associated drugs elicited a robust response (in terms of the maximum measured 5-HT response) at 30 nM; ropinirole was active only at 1 μM but not at 30 nM (Fig. 7A). In none of the assays was there a clear distinction between ropinirole’s relative efficacy and the relative efficacies of the VHD-associated drugs. It is not surprising that hierarchical clustering analysis revealed a clear separation of ropinirole from known VHD-inducing medications.

Safety and efficacy studies are under way examining the anorexigen lorcaserin, a 5-HT_{2C/2B} Receptor full agonist with a reported 100-fold selectivity for 5-HT_{2C} receptors over 5-HT_{2B} receptors in vitro (Thomsen et al., 2008). In terms of VHD risk, the results seem promising: after 12 weeks, daily lorcaserin use did not seem to have fenfluramine-like valvulopathic liability (Smith et al., 2009). One possible explanation for the apparent safety of lorcaserin is its biodistribution; in rodents, levels of lorcaserin in the brain exceed plasma levels by a factor of 13 (Thomsen et al., 2008). Assuming similar pharmacokinetics and biodistribution in humans, therapeutic doses of lorcaserin may not generate sufficiently high levels of plasma lorcaserin to activate heart valve interstitial cell 5-HT_{2B} receptors or other 5-HT_{2B} receptors relevant to VHD.

In light of our present results, and our previous work linking 5-HT_{2B} receptor agonists to VHD, we believe it would be prudent for guanfacine, oxymetazoline, quinidine, xilometazoline, and fenoldopam to be studied further in terms of their pharmacodynamics to determine whether they are safe with respect to VHD. Of particular concern are guanfacine (an antihypertensive agent) and quinidine (an antiarrhythmic agent), each of which is administered over sustained periods. Furthermore, given the recent FDA approval of guanfacine for the treatment of ADHD, increasing numbers of patients (and children) might be exposed to a potentially valvulopathic agent. Because duration of therapy with VHD-associated drugs is an important determinant of valvulopathic risk (Connolly et al., 1997; Roth, 2007; Schade et al., 2007), the short-term use of xylometazoline and oxymetazoline (nasal decongestants) and the one-time use of fenoldopam (antihypertensive agent used postoperatively and in-hospital during hypertensive crisis) may not be as risky.

In conclusion, we report that 5-HT_{2B} receptor agonism is rare among drugs and drug-like compounds. In addition, we provide evidence that 5-HT_{2B} receptor agonist potency in several functional assays might afford a means for separating compounds likely to induce VHD in humans from those that are not. Based on our data, we suggest that calcium flux-based screening is well suited to the initial identification of 5-HT_{2B} Receptor agonists but not to the discrimination of ones that might induce VHD from ones that are unlikely to do so. Hierarchical clustering analysis revealed a clear separation between ropinirole (which is not known to induce VHD) and other known valvuopathogens when a multiplicity of functional readouts was considered. Finally, our results suggest that parallel studies of the in vitro pharmacology and the pharmacokinetics of guanfacine and quinidine and their metabolites are warranted.

Acknowledgments

We are grateful to Dr. Wesley K. Kroeze for critical reading of the manuscript.

References

Setoja V, Dukat M, Glennon RA, and Roth BL (2005) Molecular determinants for the

Address correspondence to: Dr. Bryan L. Roth, University of North Carolina School of Medicine, Department of Pharmacology, 120 Mason Farm Rd, Chapel Hill, NC 27514. E-mail: bryan_roth@med.unc.edu