Reactive Oxygen Species-Dependent Activation of Bax and Poly(ADP-ribose) Polymerase-1 Is Required for Mitochondrial Cell Death Induced by Triterpenoid Pristimerin in Human Cervical Cancer Cells

Joo-Yun Byun, Min-Jung Kim, Da-Young Eum, Chang-Hwan Yoon, Woo-Duck Seo, Ki Hun Park, Jin-Won Hyun, Yun-Sil Lee, Jae-Seong Lee, Moon-Young Yoon, and Su-Jae Lee

Department of Chemistry, Hanyang University, Seoul, Korea (J.B., M.K., D.E., C.Y., J.L., M.Y., S.L.); Department of Functional Crop, NICS, RDA, Milyang, Korea (W.S.); Division of Applied Life Science, Gyeongsang National University, Jinju, Korea (K.P.); College of Medicine and Applied Radiological Science Research Institute, Cheju National University, Jeju-si, Korea (J.H.); and Division of Radiation Effect, Korea Institute of Radiological and Medical Sciences, Seoul, Korea (Y.L.)

Received March 16, 2009; accepted July 2, 2009

ABSTRACT

Naturally occurring triterpenoid compounds have long been used as anti-inflammatory, antimalarial, and insecticidal agents. It has become evident that some of the natural or synthetic triterpenoids have promising clinical potential as both a therapeutic and chemopreventive agent for cancer. However, the molecular basis for the antitumor activity of triterpenoids has yet to be defined. In this study, we show that pristimerin, a natural triterpenoid, induces mitochondrial cell death in human cervical cancer cells and that reactive oxygen species (ROS)-dependent activation of both Bax and poly(ADP-ribose) polymerase-1 (PARP-1) is critically required for the mitochondrial dysfunction. We also showed that c-Jun N-terminal kinase (JNK) is involved in ROS-dependent Bax activation. Treatment of pristimerin induced an increase in intracellular ROS, JNK activation, conformational change, and mitochondrial redistribution of Bax, mitochondrial membrane potential loss, and cell death. The PARP-1 was also found to be activated by pristimerin treatment. An antioxidant, N-acetyl-L-cysteine (NAC), inhibited pristimerin-induced JNK activation, Bax relocalization, and PARP-1 activation, as well as mitochondrial cell death. Moreover, inhibition of JNK clearly suppressed conformational change and mitochondrial translocation of Bax and subsequent mitochondrial cell death but did not affect PARP-1 activation. Inhibition of PARP-1 with 1,5-dihydroxyisoquinoline (DIQ) or with small interfering RNA of PARP-1 significantly attenuated pristimerin-induced mitochondrial membrane potential loss and cell death but did not affect JNK activation and Bax relocalization. These results indicate that the natural triterpenoid pristimerin induces mitochondrial cell death through ROS-dependent activation of both Bax and PARP-1 in human cervical cancer cells and that JNK is involved in ROS-dependent Bax activation.

Pristimerin, a naturally occurring quinonemethide triterpenoid compound, is a traditional medicine derived from the Celastraceae and Hippoecrateaceae families and has long been used as anti-inflammatory, antioxidant, antimalarial, and insecticidal agents (Brinker et al., 2007; Gao et al., 2007). It has been reported that pristimerin has promising clinical potential as both a therapeutic and chemopreventive agent for cancer (Salminen et al., 2008). Indeed, pristimerin induces apoptotic cell death in certain human cancer cells, including breast and lung cancer (Wu et al., 2005) and human acute myeloid leukemia (Nagase et al., 2003). Pristimerin...
erin has been shown to have several mechanisms of cell death induction, including proteasome inhibition (Yang et al., 2008), suppression of nuclear factor-κB activity and cyclin D1 expression (Tiedemann et al., 2009), and caspase activation (Wu et al., 2005; Yang et al., 2008). Although evidence has been accumulated that the mode of cell death by pristimerin is caspase-dependent apoptotic cell death, the involved mechanisms of action, especially cross-talk between signaling pathways and apoptotic cell death machinery, is largely unknown.

c-Jun N-terminal kinase (JNK) and p38 MAPK are weakly activated by growth stimuli but respond strongly to stress signals, including tumor necrosis factor-α, ionizing and UV irradiation, hyperosmotic stress, and chemotherapeutic drugs (Huang and Tunncliffe, 2004; Li et al., 2005; Kang and Lee, 2008; Kim et al., 2008). Activation of these kinases is strongly associated with apoptotic cell death. Moreover, JNK and/or p38 MAPK-mediated cell death is often accompanied by regulating the redistribution of Bax from the cytoplasm to the mitochondria (Choi et al., 2006) and by modulating the phosphorylation status of Bcl-2 in response to various stimuli (Gustafsson and Gottlieb, 2007; Kim et al., 2008). These results are consistent with the fact that JNK and/or p38 MAPK acts at an early step before dysfunction of mitochondria and caspase activation in several cell types (Choi et al., 2006; Gustafsson and Gottlieb, 2007; Seo et al., 2007; Kim et al., 2008).

In recent years, it has become apparent that reactive oxygen species (ROS) play an important role during apoptosis induction (Fleury et al., 2002). Many stimuli such as tumor necrosis factor-α, anticancer drugs, and chemopreventive agents stimulate cells to produce intracellular ROS (Simizu et al., 1998; Park et al., 2005; Kuwabara et al., 2008). Intracellular production of ROS can directly lead to activation of the mitochondrial permeability transition and to loss of mitochondrial membrane potential (Chan et al., 2003). Several studies also provide evidence of the role of ROS as the potential inducers of JNK or p38 MAPK activation during apoptotic cell death (Huang and Tunncliffe, 2004; Kang and Lee, 2008; Kim et al., 2008). In these studies, these kinases have been shown to activate caspases and may also target other factors that have been implicated in the regulation of cell death, including Bax, Bak, and Bcl-2 (Gustafsson and Gottlieb, 2007).

Poly(ADP-ribose) polymerase-1 (PARP-1) is the most abundant protein of the PARP family members, which is rapidly activated by DNA damage. Activation of PARP-1 seems to be a common feature in diverse apoptotic cell death, including Bax, Bak, and Bcl-2 (Gustafsson and Gottlieb, 2007).

Poly(ADP-ribose) polymerase-1 (PARP-1) is the most abundant protein of the PARP family members, which is rapidly activated by DNA damage. Activation of PARP-1 seems to be a common feature in diverse apoptotic cell death, including Bax, Bak, and Bcl-2 (Gustafsson and Gottlieb, 2007).

Materials and Methods

Materials. Antibodies specific for polyclonal anti-Bcl-2, -Bcl-xL, -AIF, -cytochrome c, -caspase-9, -p-ERK, -ERK1/2, -α-tubulin, and -HSP60 were purchased from Santa Cruz Biotechnology, Inc. (Santa Cruz, CA). β-Actin was from Sigma (St. Louis, MO). Antibodies specific for polyclonal anti-cleaved caspase-3, -p-JNK, -JNK, -p-p38, -p38, and -PARP were from Cell Signaling Technology (Danvers, MA). Monoclonal anti-Bax and -Bak antibodies were from BD Pharmingen (San Diego, CA). Polyclonal anti-PARP antibody was from Calbiochem (San Diego, CA). The specific PARP inhibitor 1,5-dihydroxyisquinoline (DIQ) and the broad-spectrum caspase inhibitor z-VAD-fmk were from Sigma.

Purification of Pristimerin. The stem root (5 kg) of \textit{Tripterygium regelii} was air-dried, chopped, and extracted three times with 95% MeOH (3 × 10 L) for 7 days at room temperature. The combined extract was concentrated, and the dark residue (453 g) was partitioned between water and chloroform (1:1 L). The organic layer was washed with brine, dried over anhydrous Na2SO4, and concentrated to a dark brown residue (310 g), which was chromatographed on a silica gel column. The resultant extract (310 g) was suspended in H2O (2 × 1 L) and then divided into two portions. One portion was further fractionated with CHCl3 (162 g), BuOH (125 g), and H2O (150 g) extracts, respectively. The CHCl3 and BuOH extracts were subjected to column chromatography using silica gel with hexane-acetone gradient and hexane-EToAc gradient. The CHCl3 extract (162 g) was subjected to column chromatography (glass column, 10 × 80 cm) over silica gel (1.5 kg; 70–230 mesh; Merck, Darmstadt, Germany), eluted with gradient mixtures of hexane (4 L) and hexane-acetone, of increasing polarity (30% → 100%), and finally with MeOH. Fifteen pooled fractions (Fr. 1 to Fr. 30) were obtained after combining fractions with similar TLC profiles from this initial column chromatography. The column was eluted with solvents of increasing polarity (CHCl3-acetone) to give 30 fractions. Fraction 5 (14.3 g) was chromatographed on a silica gel column with hexane-acetone to give 45 fractions (5.1–5.30). The fractions from 5.11 to 5.18 and 5.21 to 5.27 were evaporated to give pristimerin (980 mg) [Rf 0.53 (hexane/aceton = 4:1)]. The structures of pristimerin were characterized by spectroscopic analysis and comparison with values previously reported. 1H and 13C NMR at 500- and 125-MHz data were obtained on a Bruker AM 500 spectrometer (Bruker, Newark, DE) in CDCl3, respectively. General procedures, product characterization data, and NMR spectra are available via Supplementary Data.

Quantification of Cell Death. Cell death was investigated by both propidium iodide staining, which detects cell death by means of the dye entering the cells, and by Annexin-V labeling using a kit according to manufacturer’s directions (Sigma-Aldrich, St. Louis, MO). For the cell death assessment, the cells were plated in a 60-mm dish with cell density of 2 × 105 cells/dish and treated with pristimerin the next day. At the indicated time points, cells were harvested and washed in PBS. Annexin-V-positive early apoptotic cells or propidium iodide (PI)-positive cells were quantified using a FACScan flow cytometer fitted with CellQuestPro software (BD Biosciences, San Jose, CA).

Cell Viability Assay. The inhibitory effect of pristimerin on the cell viability was measured by the 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyl tetrazolium bromide colorimetric method. Cells were...
seeded at densities of 10,000 cells/well in 96-well tissue culture plates. On day 2, cells were treated with pristimerin for 72 h. After drug treatment, attached cells were incubated with 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyl tetrazolium bromide (0.5 mg/ml, 1 h) and subsequently solubilized in dimethyl sulfoxide. The absorbency at 550 nm was then measured using a microplate reader. The IC_{50} value is the concentration of agent that reduced the cell viability by 50% under the experimental conditions.

Cell Culture and Transfection of Small Interfering RNA. Human cervical carcinoma cells (HeLa, CaSki, and SiHa) and human breast cancer cells (SK-BR3, MCF7, and MDA-MB-231) were obtained from the American Type Culture Collection (Manassas, VA). HeLa and CaSki cells were grown in RPMI 1640 medium supplemented with 10% fetal bovine serum, and SiHa and MCF7 cells were grown in modified Eagle’s medium supplemented with 10% fetal bovine serum and nonessential amino acids. SK-BR3 and MCF7 cells were grown in Dulbecco’s modified Eagle’s medium with 10% fetal bovine serum. All of the cells were media supplemented with 100 U/ml penicillin and 100 μg/ml streptomycin, and all of the cells were incubated at 37°C in 5% CO₂. Cells were transfected with specific small interfering RNA duplexes purchased from Ambion (Austin, TX) using Lipofectamine reagent (Invitrogen, Carlsbad, CA) according to the manufacturer’s recommendations.

Measurement of Mitochondrial Membrane Potential and ROS Generation. In brief, cells were incubated in 40 mM 3,3-dihexyloxacarboxyanine iodide (DiOC₆(3)) and 10 μM 2,7-dichlorodihydrofluorescein diacetate (DCFH-DA; Invitrogen) at 37°C for 15 min and washed with cold PBS three times. Retained DiOC₆(3) and DCF were analyzed by a flow cytometer.

Flow Cytometric Analysis of Bax and Bak Activations. Upon the induction of apoptosis, the proapoptotic Bax and Bak proteins undergo conformational changes, which expose otherwise inaccessible N-terminal epitopes. At specific time points after pristimerin treatment, cells were detached using cell dissociation solution (Sigma). Cells were then fixed in paraformaldehyde (0.25%, 5 min), washed three times in PBS, and incubated for 30 min with a mouse monoclonal antibody against amino acids 12 to 24 of Bax (clone 6A7; BD Pharmingen) or Bak (Calbiochem, San Diego, CA). Antibodies were diluted 1:50 in PBS containing digitonin (100 mg/ml). After three washes in PBS, cells were incubated with fluorescein isothiocyanate-labeled anti-mouse antibody for 30 min, washed twice in PBS, and resuspended in PBS. The increases in accessibility of these epitopes can be monitored by flow cytometry.

Preparation of Cytosolic and Mitochondrial Fractions. The cells were washed with ice-cold PBS, left on ice for 10 min, and then resuspended in isotonic homogenization buffer (250 mM sucrose, 10 mM KCl, 1.5 mM MgCl₂, 1 mM sodium-EDTA, 1 mM sodium-EGTA, 1 mM dithiotreitol, 0.1 mM phenylmethylsulfonyl fluoride, and 10 mM Tris-HCl, pH 7.4) containing a proteinase inhibitor mixture (Roche, Basel, Switzerland). After 80 strokes in a Dounce homogenizer, the unbroken cells were spun down at 30g for 5 min. The mitochondria fractions were fractionated at 750g for 10 min and 14,000g for 20 min, respectively, from the supernatant. For cytosolic fractionation, after 10 strokes with a loose homogenizer, we collected the supernatant after spun down at 750g for 10 min and 14,000g for 20 min.

Statistical Analysis. Data were analyzed with unpaired two-tailed Student’s t test. Data were expressed as the mean ± S.E.M. derived from at least three independent experiments. Differences were considered significant at p < 0.05.

Results

Pristimerin Induces Mitochondrial Cell Death in Several Human Cancer Cell Lines. To examine whether pristimerin induces cell death in human cervical cancer cells, three different human cervical cancer cell lines (HeLa, CaSki, and SiHa) were treated with 1 μM pristimerin, and cell death was measured by flow-cytometric analysis with PI staining. Treatment of pristimerin effectively induced cell death in three types of cancer cells (Fig. 1A). The IC₅₀ value ranged from 0.85 to 1.7 μM in HeLa, SiHa, and CasKi cells after 72 h of incubation with pristimerin (Fig. 1A). Moreover, there is a time- and dose-dependent increase of cell death in HeLa cells, reaching approximately 60% of cells after 36 h of treatment with 1 μM pristimerin (Fig. 1A). In addition, analysis of apoptotic cell death with Annexin-V staining also clearly revealed that Annexin-V-positive cell populations were markedly increased by pristimerin treatment (Fig. 1B). We next investigated whether caspase activities are required for the induction of cell death by pristimerin. As shown in Fig. 1C, pristimerin induced activation of caspase-9 and caspase-3. Moreover, a broad-spectrum caspase inhibitor, z-VAD-fmk, completely attenuated the pristimerin-induced cell death (Fig. 1D). These findings suggest that pristimerin induces apoptotic cell death in human cancer cells in a caspase-dependent fashion.

Selective Activation of Bax Is Required for the Pristimerin-Induced Mitochondrial Membrane Potential Loss and Subsequent Cell Death. To determine whether mitochondrial pathway is involved in the induction of cell death by pristimerin, we examined changes in mitochondrial membrane potential and release of proapoptotic molecules from the mitochondria by pristimerin treatment. As shown in Fig. 2A, pristimerin significantly induced the dissipation of mitochondrial membrane potential and subsequent cytosolic redistribution of cytochrome c and AIF, indicating that pristimerin-induced cell death is accompanied by mitochondrial dysfunction. Because it has been demonstrated that proapoptotic Bcl-2 family members, especially Bax and Bak, are crucial to the mitochondrial cell death pathways (Gustafsson and Gottlieb, 2007), we next analyzed activation of Bax and/or Bak after pristimerin treatment using flow cytometric analysis with activity-dependent antibodies (antibodies recognizing N-terminal epitopes) of Bax or Bak. Pristimerin induced a marked activation of Bax (Fig. 2B), but not Bak, and subsequently induced mitochondrial relocalization of Bax from cytosol (Fig. 2B). Moreover, small interfering RNA (siRNA) targeting of Bax clearly attenuated mitochondrial membrane potential loss (Fig. 2C) and cell death (Fig. 2D). These results indicate that selective activation of Bax plays a crucial role in pristimerin-induced mitochondrial cell death.

JNK1 Acts as an Important Mediator of Bax Activation and Mitochondrial Cell Death in Response to Pristimerin Treatment. MAPK has been implicated in the regulation of apoptotic cell death in response to various stimuli (Li et al., 2005; Kim et al., 2008). Treatment of cells with pristimerin also resulted in a marked increase in the phosphorylated forms of all three MAPKs, indicating activation of these kinases in response to pristimerin (Fig. 3A). Moreover, as shown in Fig. 3B, pretreatment of SP600125, a JNK-specific inhibitor, effectively blocked pristimerin-induced mitochondrial membrane potential loss and cell death, whereas SB203580, a p38 MAPK inhibitor, and PD98059, a mitogen-activated protein kinase kinase inhibitor, did not. Moreover, siRNA targeting of MAPK also revealed that si-JNK, but not si-ERK and si-p38 MAPK, inhibited mitochondrial membrane potential dissipation and cell death. It is noteworthy
that inhibition of JNK with SP600125 treatment clearly attenuated conformational changes and mitochondrial relocation of Bax (Fig. 3C). In addition, SP600125 clearly attenuated pristimerin-induced cyt
crome c and AIF release form mitochondria, and caspase-9 and -3 activations (Fig. 3D). These results indicate that JNK1 acts as an important mediator of the Bax activation and subsequent mitochondrial dysfunction during pristimerin-induced cell death.

The Induction of Reactive Oxygen Species Generation Is Critically Required for the Activation of Mitochondrial Cell Death Pathway by Pristimerin. Oxidative damage has been shown to plays an important role in anticancer effects of chemotherapeutic drugs (Simizu et al., 1998; Park et al., 2005; Kuwabara et al., 2008). Thus, we subsequently examined changes in the intracellular ROS level in cells treated with pristimerin. As shown in Fig. 4A, treatment of pristimerin led to an approximately 3-fold increase of mean DCF fluorescence, indicating an increase in intracellular ROS. To further determine a link between elevation of the intracellular ROS and mitochondrial cell death, cells were preincubated with antioxidant NAC before pristimerin treatment. Treatment of pristimerin did not induce cell death in the presence of NAC (Fig. 4A). Moreover, NAC markedly inhibited pristimerin-induced mitochondrial membrane potential loss, AIF and cytochrome c release, and caspase activations (Fig. 4B). Inhibition of ROS with NAC treatment also completely attenuated pristimerin-induced activation of JNK (Fig. 4C) and conformational change and mitochondrial redistribution of Bax (Fig. 4D). These observations suggest that an increase in the intracellular ROS is critically required for pristimerin-induced cell death through JNK activation and subsequent Bax-mediated mitochondrial membrane potential loss.

PARP-1 Activation Is Located Downstream of the ROS Signaling in Pristimerin-Induced Mitochondrial Cell Death Process. ROS-mediated DNA damage has been reported to trigger activation of PARP-1 and subsequent cell death (Hong et al., 2004). Thus, we next examined whether PARP-1 is involved in pristimerin-induced mitochondrial cell death. Treatment of HeLa cells with pristimerin induced a marked activation of PARP-1 (Fig. 5A). Pretreatment of 1,5-dihydroxyisoquinoline (DIQ) or siRNA targeting of PARP-1 significantly attenuated pristimerin-induced cell death (Fig. 5B).
Fig. 2. Selective activation of Bax is required for the pristimerin-induced induced mitochondrial membrane potential loss and subsequent cell death. A, left, HeLa cells were treated with 1 μM pristimerin. Cells were harvested at the indicated times, and mitochondrial membrane potential of the cells were determined by retention of DiOC₆(3) (40 μM) added during the last 30 min of the treatment. The amount of retained DiOC₆(3) was measured by flow cytometry. Results from three independent experiments are presented as means ± S.E.M. Significantly different from control, *, P < 0.01. Right, after 24 h, cytosolic, mitochondrial, or nuclear fraction was prepared and subjected to immunoblot analysis with anti-cytochrome c and -AIF antibodies. α-Tubulin, HSP60, and histone H3 were used as cytosolic, mitochondria, and nuclear marker proteins, respectively. B, left, after 24 h, activity related modulations of Bax and Bak were determined by flow cytometric analysis using specific antibodies recognizing N-terminal epitope of Bax or Bak as described under Materials and Methods. Right, after 24 h, mitochondrial fractions were prepared and subjected to immunoblot analysis with anti-Bax antibody. HSP60 was used as a mitochondrial marker protein. C, cells were transfected with control or Bax siRNA and treated with 1 μM pristimerin for 24 h. Left, cell lysates were subjected to immunoblot analysis with anti-Bax antibody. β-Actin was used as a loading control. Right, mitochondrial membrane potential of the cells were determined by retention of DiOC₆(3). The amount of retained DiOC₆(3) was measured by flow cytometry. Significantly different from control, *, P < 0.05. D, HeLa cells transfected with control or Bax siRNA were treated with 1 μM pristimerin. After 24 h, cell death was measured as the percentage of PI-positive cells using flow cytometric analysis. Significantly different from control, *, P < 0.05.
Moreover, as shown in Fig. 5C, antioxidant NAC completely blocked pristimerin-induced PARP-1 activation, whereas DIQ, a PARP-1-specific inhibitor, did not affect ROS production (Fig. 5C), indicating that PARP-1 is located downstream of the ROS signaling in pristimerin-induced cell death process. Treatment of DIQ also significantly blocked mitochondrial membrane potential loss and AIF and cytochrome c release from the mitochondria (Fig. 5D). However, DIQ did not suppress pristimerin-
induced JNK activation (Supplementary Fig. S1). Conversely, inhibition of JNK with SP600125 did not affect PARP-1 activation (Supplementary Fig. S1).

The Activation of Both JNK and PARP-1 Is Essentially Required for the Pristimerin-Induced Cell Death. To confirm that activation of both JNK and PARP-1 is involved in pristimerin-induced mitochondrial cell death, HeLa cells were pretreated together with the JNK-specific inhibitor SP600125 and the PARP-1 specific inhibitor DIQ before treatment with pristimerin. As shown in Fig. 6A, the cells simultaneously treated with both inhibitors show more dramatic attenuation of the cell death than the cells treated with either reagent alone. Inhibitory effect of the simultaneous treatment was almost the same degree as ROS inhibi-

Fig. 4. The induction of ROS generation is critically required for the activation of mitochondrial cell death pathway by pristimerin. HeLa cells were treated with 1 μM pristimerin for 24 h in the presence or absence of NAC. Cells were loaded with DCFH-DA for 30 min. A, left, the DCF fluorescence was visualized using fluorescence microscope (top right), and the amount of retained DCF was measured using flow cytometry as described under Materials and Methods. Bottom right, cell death was measured as the percentage of PI-positive cells using flow cytometry. Significantly different from control, *, P < 0.01. B, left, mitochondrial membrane potential of cells was determined by retention of DiOC₆(3) (40 μM) added during the last 30 min of the treatment. The amount of retained DiOC₆(3) was measured by flow cytometry. Significantly different from control, *, P < 0.01. Right, after 24 h, cytosolic, mitochondrial, or nuclear fraction was prepared and subjected to immunoblot analysis with anti-cytochrome c and -AIF antibodies. α-Tubulin, HSP60, and histone H3 were used as cytosolic, mitochondrial, and nuclear marker proteins, respectively. Total cell lysates were subjected to immunoblot analysis with anti-caspase-3, -9, and PARP-1 antibodies. β-Actin was used as a loading control. C, total cell lysates were subjected to immunoblot analysis with specific antibodies as indicated. β-Actin was used as a loading control. D, left, activity related modulation of Bax was determined by flow cytometric analysis using specific antibodies recognizing N-terminal epitopes of Bax as described under Materials and Methods. Significantly different from control, *, P < 0.01. Right, mitochondrial and cytosolic fractions were subjected to immunoblot analysis with anti-Bax antibody. HSP60 and α-tubulin were used as mitochondrial and cytosolic marker proteins, respectively.
tion by NAC. In addition, the combination of SP600125 and DIQ induces more dramatic inhibition of the loss of mitochondrial membrane potential, cytochrome c and AIF release, and caspase-9 and -3 activations than each reagent alone (Supplementary Fig. S2, A–C), suggesting that activation of both JNK and PARP-1 is essentially required for the pristimerin-

Fig. 5. Intracellular ROS induction is involved in PARP-1 activation in pristimerin-induced mitochondrial cell death process. A, HeLa cells were treated with 1 μM pristimerin at the indicated times, and cell lysates were subjected to immunoblot analysis with anti-PAR antibody. β-Actin was used as a loading control. B, left, cells were pretreated with PARP-1 inhibitor DIQ (50 μM) or were transfected with PARP-1 si-RNA (40 nM) and then treated with pristimerin for 24 h. Left, cell death was measured as the percentage of PI-positive cells using flow cytometric analysis. Significantly different from control, *, P < 0.05. Right, total cell lysates were subjected to immunoblot analysis with anti-PAR antibody. C, left, cells were treated with 1 μM pristimerin in the presence or absence of NAC. After 24 h, total cell lysates were subjected to immunoblot analysis with anti-PAR antibody. Right, HeLa cells were treated with 1 μM pristimerin for 24 h in the presence or absence of DIQ (50 μM). Cells were loaded with DCFH-DA for 30 min, and the retained DCF was analyzed by flow cytometry. D, left, cells were treated with 1 μM pristimerin in the presence or absent of DIQ. After 24 h, mitochondrial membrane potential of the cells were determined by retention of DiOC₃(3). The amount of retained DiOC₃(3) was measured by flow cytometry. Significantly different from control, *, P < 0.01. Right, cytosolic and nuclear fractions were subjected to immunoblot analysis with anti-cytochrome c and -AIF antibody. α-Tubulin and histone H3 were used as cytosolic and nuclear marker proteins, respectively.
induced cell death. However, the combination treatment of inhibitors did not affect pristimerin-induced ROS production (Supplementary Fig. S2D), indicating that ROS is an upstream effector for JNK and PARP-1 activation.

Discussion

Pristimerin is a quinonemethide triterpenoid compound that has long been used as anti-inflammatory, antioxidant, antimalarial, and insecticidal agents (Brinker et al., 2007; Gao et al., 2007). Although pristimerin recently has been shown to induce apoptosis in certain cancer cells, the cell death mechanism by pristimerin is largely unknown. In this study, we investigate the molecular basis for the pristimerin-induced cell death in human cancer cells. We show that pristimerin induces mitochondria-mediated cell death and that ROS-dependent activation of both JNK and PARP-1 is critically required for the mitochondrial dysfunction.

Many reports provide evidence that JNK can function as a proapoptotic kinase in response to a variety of stress signals (Kang and Lee, 2008; Kim et al., 2008). These reports suggested that JNK has been shown to activate caspases and may also target other factors that have been implicated in the regulation of apoptotic cell death, including Bax and Bak (Kang and Lee, 2008; Kim et al., 2008). Consistent with these findings, we also found that JNK is involved in pristimerin-induced Bax activation and subsequent mitochondrial cell death. Inhibition of JNK attenuated pristimerin-induced conformational change and mitochondrial translocation of Bax, but not Bak, as well as caspase activations. These results are correlated well with the fact that JNK acts at an early step before dysfunction of mitochondria in several cell types (Kang and Lee, 2008; Kim et al., 2008).

Accumulation of intracellular ROS in response to diverse stimuli has been shown to lead the mitochondrial membrane-permeability transition and subsequent activation of cell death machinery (Fleury et al., 2002). Moreover, recent studies also provide evidence for the role of ROS as the potential inducers of MAPK activation during apoptotic cell death in response to a variety of different stimuli (Fleury et al., 2002; Park et al., 2005; Kuwabara et al., 2008). We show further evidence that the ROS is essential for the JNK activation and subsequent mitochondrial cell death by pristimerin treatment. We showed that the antioxidant NAC completely attenuated pristimerin-induced JNK activation, Bax relocation, and mitochondrial cell death. Several mechanisms have been proposed for JNK activation that involves ROS-dependent dissociation of a regulatory factor that maintains the pathway in an active state. In nonstressed cells, apoptosis signal-regulating kinase 1 has been known to be associated with reduced thioredoxin (Trx) (Hsieh and Papaconstantinou, 2006). The interaction between apoptosis signal-regulating kinase 1 and Trx was found to be highly dependent on the redox status of Trx. Oxidation of Trx by ROS releases ASK-1 and leads to JNK activation, possibly through dimerization of ASK-1 (Torres and Forman, 2003; Hsieh and Papaconstantinou, 2006). However, in this study, we failed to observe ASK-1 activation in response to pristimerin treatment. Moreover, siRNA targeting of ASK-1 did not have any effect on JNK activation and cell death (data not shown), indicating that pristimerin-induced JNK activation is ASK-1-independent. The precise mechanisms by which ROS-dependent activation of JNK in response to pristimerin treatment occurs remain to be elucidated.

PARP-1 is a nuclear protein involved in the cellular response to DNA damage that plays a role in DNA damage

Fig. 6. The activation of both JNK and PARP-1 is essentially required for the pristimerin-induced mitochondrial cell death. A, HeLa cells were treated with 1 μM pristimerin in the presence of SP600125 (10 μM) and/or DIQ (50 μM), or NAC (10 mM). After 24 h, cell death was measured as the percentage of PI-positive cells using flow cytometric analysis. Significantly different from control, *, P < 0.05, **, P < 0.001. B, a schematic model for the molecular basis of pristimerin-induced mitochondrial cell death, suggesting that ROS-dependent activation of both JNK and PARP-1 is essentially required for the pristimerin-induced mitochondrial cell death.
signaling and repair (Ditsworth et al., 2007). Recent evidence indicates that excessive activation of PARP-1 depletes pools of intracellular NAD\(^+\) and ATP, consequently leading to necrotic or apoptotic cell death (Ditsworth et al., 2007; Mathews and Berk, 2008). In this study, we provide further evidence that activation of PARP-1 is involved in pristimerin-induced mitochondrial dysfunction and cell death. We showed that inhibition of PARP-1 significantly attenuated mitochondrial membrane potential loss, cytochrome c and AIF release, and cell death by pristimerin treatment. It is possible that PARP-1 activation by pristimerin treatment in our study is caused by ROS-dependent DNA damage, because recent reports showed that ROS-mediated DNA damage in hydrogen peroxide injury or in neurodegenerative disease triggers PARP-1 activation and subsequent cell death (de Vries et al., 2008). As expected, we found that pristimerin induces a significant degree of DNA damage, as assessed by the phosphorylation level of histone H2AX (γ-H2AX) and its foci formation (data not shown), an established marker for double-strand breaks in chromosomal DNA (Tu et al., 2005). Moreover, antioxidant NAC completely blocked pristimerin-induced DNA damage (data not shown) as well as PARP-1 activation, suggesting that PARP-1 activation by pristimerin treatment may be caused by ROS-dependent DNA damage.

Pristimerin has been shown to exert potent proteasome inhibition activity both in vitro and using proteasome extracts (Yang et al., 2008; Tiedemann et al., 2009). As noted above, proteasome inhibitors can induce significant oxidative stress (ROS); furthermore, cells exposed to proteasome inhibitors can be rescued by various antioxidants, including NAC (Ling et al., 2003; Fribley et al., 2004; Minami et al., 2005; Llobet et al., 2008). Moreover, proteasome inhibitors can also induce Bax and JNK activation (Dai et al., 2003; Dewson et al., 2003; Yu et al., 2003; Yang et al., 2004). In this study, in human cervical cancer cells, we also found that proteasome inhibitor induced ROS generation, JNK activation, and subsequent mitochondrial cell death (data not shown). However, it is still unclear whether pristimerin-induced mitochondrial cell death is directly due to ROS generation or is occurring as a result of more direct proteasome inhibition. Therefore, the exact mechanisms by which pristimerin increases the intracellular ROS level and subsequent mitochondrial cell death remain to be elucidated.

In summary, we demonstrated in this study that pristimerin induces mitochondrial cell death through ROS-dependent activation of both JNK1 and PARP-1 in human cancer cells; JNK1 activation is required for the activation of Bax and mitochondrial potential loss; and PARP-1 is also involved in the mitochondrial membrane potential loss but did not affect Bax activation (Fig. 6B). Eliciting the molecular mechanisms used by naturally occurring products to regulate cell death is critical for both our understanding of cell death events and the development of cancer therapeutic agents.

References

Address correspondence to: Dr. Su-Jae Lee, Laboratory of Molecular Biochemistry, Department of Chemistry, Hanyang University, 17 Haengdang-Dong, Seongdong-Ku, Seoul 133-791, Korea. E-mail: sj0420@hanyang.ac.kr