Identification of Dynamin-2-Mediated Endocytosis as a New Target of Osteoporosis Drugs, Bisphosphonates

Yuka Masaike, Takeshi Takagi, Masataka Hirota, Joe Yamada, Satoru Ishihara, Tetsu M. C. Yung, Takamasa Inoue, Chika Sawa, Hiroshi Sagara, Satoshi Sakamoto, Yasuaki Kabe, Yasuyuki Takahashi, Yuki Yamaguchi, and Hiroshi Handa

Integrated Research Institute, Tokyo Institute of Technology, Yokohama, Japan (Y.M., S.I., H.H.); Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan (T.T., M.H., J.Y., T.M.C.Y., T.I., S.S., Y.K., Y.Y., H.H.); Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Japan (C.S.); Institute of Medical Science, University of Tokyo, Tokyo, Japan (H.S.); and Research Association for Biotechnology, Yokohama, Japan (Y.T.)

Received June 30, 2009; accepted November 9, 2009

ABSTRACT

Nitrogen-containing bisphosphonates are pyrophosphate analogs that have long been the preferred prescription for treating osteoporosis. Although these drugs are considered inhibitors of prenylation and are believed to exert their effects on bone resorption by disrupting the signaling pathways downstream of prenylated small GTPases, this explanation seems to be insufficient. Because other classes of prenylation inhibitors have recently emerged as potential antiviral therapeutic agents, we first investigated here the effects of bisphosphonates on simian virus 40 and adenovirus infections and, to our surprise, found that viral infections are suppressed by bisphosphonates through a prenylation-independent pathway. By in-house affinity-capture techniques, dynamin-2 was identified as a new molecular target of bisphosphonates. We present evidence that certain bisphosphonates block endocytosis of adenovirus and a model substrate by inhibiting GTPase activity of dynamin-2. Hence, this study has uncovered a previously unknown mechanism of action of bisphosphonates and offers potential novel use for these drugs.

Bisphosphonate (BP) drugs are pyrophosphate analogs that have long been the preferred prescription for treating resorption-related bone diseases, such as osteoporosis and different types of tumor-induced osteolysis (Heymann et al., 2004; Russell et al., 2007). The mechanism of action of the two types of BP drugs, non–nitrogen-containing BPs (NN-BPs) and nitrogen-containing BPs (N-BPs), are believed to be different. On the one hand, NN-BPs, such as etidronate (ETI), are metabolized into nonhydrolyzable ATP analogs that lead to apoptosis (Frith and Rogers, 2003; Roelofs et al., 2006). On the other hand, N-BPs, such as alendronate (ALN) and zoledronate (ZOL), are considered inhibitors of prenylation, which involves the transfer of an isoprenoid lipid moiety from farnesyl pyrophosphate or geranylgeranyl pyrophosphate onto a C-terminal cysteine residue of proteins with a CXXX box, a characteristic prenylation motif (Frith and Rogers, 2003; Roelofs et al., 2006). At the molecular level, N-BPs target farnesyl diphosphate synthase (FPPS), thereby inhibiting the production of the substrates required for prenylation of small GTPases (Reszka et al., 1999; Coxon et al., 2000).

Prenylation inhibitors other than N-BPs have emerged recently as potential antiviral therapeutic agents (Einav and Glenn, 2003). For example, statins such as lovastatin (LOV) inhibit HIV-1 infection through HMG-CoA reductase inhibition (del Real et al., 2004) or respiratory syncytial virus.
replication by inhibiting RhoA geranylgeranylation (Gower and Graham, 2001). Other examples include the farnesyl transferase inhibitors, such as BZA-5B and FTI-277, which have been shown to inhibit the prenylation of CXX box found in the hepatitis δ virus large δ antigen, leading to the suppression of production of hepatitis δ virus particles in different systems (Glenn et al., 1998; Bordier et al., 2002). In theory, prenylation inhibitors could also exert antiviral effects on other viruses with key molecules containing the CXX box, such as the RNA polymerase protein of hepatitis A virus and animal enterovirus (Einav and Glenn, 2003) and the UL32 protein of herpes simplex virus, which has a lower titer accompanied by decreased viral protein synthesis in prenylation inhibitor-treated cells (Parassassi et al., 2001).

With respect to N-BPs, there are still few reports on the use of N-BPs in the context of antiviral therapy. One article showed that N-BPs inhibit the growth of human T-cell leukemia virus type I-infected T-cell lines by inhibiting prenylation through FPPS targeting (Ishikawa et al., 2007), whereas others report the clinical use of N-BPs to reverse HIV-associated osteoporosis without in-depth discussion of the role of prenylation therein (Qaqish and Sims, 2004; Negredo et al., 2005). Hence, there seems to be a potential for dual use of N-BPs as osteopathic and antiviral drugs, although the underlying mechanisms remain unclear.

Thus far, it has been assumed that N-BPs exert their effects on bone resorption by disrupting the signaling pathways downstream of prenylated small GTPases (Frith and Rogers, 2003). However, this explanation seems to be insufficient, because certain unprenylated small GTPases are found in their active form even in the presence of N-BPs (Dunford et al., 2006), whereas certain N-BPs exert effects that are not reversible by replenishing cells with substrates for protein prenylation, which suggests that N-BPs may have cellular targets other than FPPS (van Beek et al., 2003). Given the emerging roles of prenylation inhibitors in antiviral therapeutics and the wide but relatively unclear potential for protein prenylation, which suggests that N-BPs may have cellular targets other than FPPS. Hence, to search for this new N-BP molecular target, we used high-performance latex beads (glycidylmethacrylate-covered glycidylmethacrylate-styrene copolymer core beads) that we developed in-house, which is an affinity purification matrix that exhibits chemical and physical stability, high capacity for ligand fixation, and high purification efficiency (Shimizu et al., 2000). Therefore, it has been assumed that N-BPs exert their effects on bone resorption by disrupting the signaling pathways downstream of prenylated small GTPases (Frith and Rogers, 2003). However, this explanation seems to be insufficient, because certain unprenylated small GTPases are found in their active form even in the presence of N-BPs (Dunford et al., 2006), whereas certain N-BPs exert effects that are not reversible by replenishing cells with substrates for protein prenylation, which suggests that N-BPs may have cellular targets other than FPPS. Hence, to search for this new N-BP molecular target, we used high-performance latex beads (glycidylmethacrylate-covered glycidylmethacrylate-styrene copolymer core beads) that we developed in-house, which is an affinity purification matrix that exhibits chemical and physical stability, high capacity for ligand fixation, low nonspecific protein binding, and high purification efficiency (Shimizu et al., 2000; Sakamoto et al., 2009). Using ALN-conjugated beads, we isolated dynamin-2 (DYN2) and sorting nexin 9 (SNX9) (Lundmark and Carlsson, 2003). Our data show that certain types of N-BPs and NN-BPs target GTPase activity of DYN2, leading to defective scission and release of endocytic vesicles into the cytoplasm. Hence, this study unveils a novel prenylation-independent pathway that is targeted by both types of BPs in inhibiting viral infections and may contribute to widening the scope of use of these efficacious drugs beyond bone diseases.

Materials and Methods

Cell Culture and Reagents. Mouse macrophage cell line RAW264.7 cells were cultured in Dulbecco’s modified Eagle’s medium containing 10% fetal bovine serum (FBS). Human 293FT cells were cultured in Dulbecco’s modified Eagle’s medium containing 10% FBS and G418 (Geneticin). Human HeLa cells were cultured in minimum essential medium containing 10% FBS. ALN and ETI were obtained from Asahi Kasei (Shizuoka, Japan), and ZOL was obtained from Novartis Pharma (Tokyo, Japan). Small unilamellar vesicles (SUVs) were prepared essentially as described previously (Sweitzer and Hinshaw, 1998; Catimel et al., 2009), in the following way: bovine total brain extract (Sigma-Aldrich, St. Louis, MO) was dissolved in chloroform/methanol (1:2). The solvent was evaporated, and lipid was redissolved in the appropriate buffer to a final concentration of 25 or 1 mg/ml by sonication. Likewise, SUVs of defined compositions were prepared using phosphatidylcholine (PC) or PC/phosphatidylinositol (3,4,5)-triphosphate (PIP₃) (9:1).

Affinity Purification Using ALN-Conjugated Beads. The cytoplasmic extract of RAW264.7 cells was prepared as described previously (Dignam et al., 1983) and was dialyzed with buffer A [10 mM HEPES, pH 7.9, 10% glycerol, 100 mM KCl, 0.2 mM EDTA, 1 mM diithiothreitol (DTT), and 1 mM phenylmethylsulfonyl fluoride (PMSF)]. ALN was conjugated through the amino group to SGNEGDE beads by incubating 100 μM ALN with 5 μg of SGNEGDE at pH 11 at 70°C for 24 h, essentially as described previously (Shimizu et al., 2000). For affinity purification, ALN-fixed beads (0.5 mg) were incubated with 250 μl (1 mg protein/ml) of RAW264.7 cell cytoplasmic extract in buffer B (10 mM HEPES, pH 7.9, 10% glycerol, 50 mM KCl, 0.2 mM EDTA, 1 mM DTT, 1 mM PMSF, and 0.1% Nonidet P-40) at 4°C for 4 h. After the beads were washed five times with buffer B, bound proteins were eluted with buffer C (10 mM HEPES, pH 7.9, 10% glycerol, 300 mM KCl, 0.2 mM EDTA, 1 mM DTT, 1 mM PMSF, and 0.1% Nonidet P-40). Where indicated, various concentrations of free ALN, ZOL, or ETI were added to the cell extract before incubation with the beads. In Fig. 5, ALN-fixed beads (0.25 mg) were incubated with 10 μg of recombinant DYN2 proteins in 200 μl of buffer B in the absence or presence of the indicated SUVs for 4 h and processed as above.

Plasmids and Recombinant Proteins. The cDNA encoding DYN2 was obtained from Dr. Nakayama (Tsukuba University, Ibaraki, Japan). The DNA fragment encoding vesicular stomatitis virus-tagged DYN2 was prepared by polymerase chain reaction using the primers 5’-GG(AA/TT)CACTGTATGAAATGGAAC-CCGCTTGTTAGGGCGATGGGCAACCGCGGGAT-3’ and 5’-CCCAAGCTTCTAGTCGAGCAGGGACG-3’ (Shimizu et al., 2000). For affinity purification, ALN-fixed beads (0.5 mg) were incubated with 250 μl (1 mg protein/ml) of RAW264.7 cell cytoplasmic extract in buffer B (10 mM HEPES, pH 7.9, 10% glycerol, 50 mM KCl, 0.2 mM EDTA, 1 mM DTT, 1 mM PMSF, and 0.1% Nonidet P-40) at 4°C for 4 h. After the beads were washed five times with buffer B, bound proteins were eluted with buffer C (10 mM HEPES, pH 7.9, 10% glycerol, 300 mM KCl, 0.2 mM EDTA, 1 mM DTT, 1 mM PMSF, and 0.1% Nonidet P-40). Where indicated, various concentrations of free ALN, ZOL, or ETI were added to the cell extract before incubation with the beads. In Fig. 5, ALN-fixed beads (0.25 mg) were incubated with 10 μg of recombinant DYN2 proteins in 200 μl of buffer B in the absence or presence of the indicated SUVs for 4 h and processed as above.

Recombinant histidine- and vesicular stomatitis virus-tagged DYN2 protein was expressed in insect cells according to the manufacturer’s instructions (Invitrogen) and purified with nickel-chelate resin (Qiagen, Hilden, Germany), GST-tagged SNX9, DYN2-GTPase, DYN2-middle, DYN2-C-h, and DYN2-GED-PRD were expressed in *Escherichia coli* BL21 (DE3) and purified with glutathione Sepha-
rose (GE Healthcare), and then the GST tag was removed by digestion with PreScission Protease (GE Healthcare).

GTPase Assay. GTPase assay was performed as described previously (Damke et al., 2001) with some modifications. rDYN2 (0.1 µM) was incubated in the absence or presence of liposomes in GTPase buffer (0.1 M HEPES, pH 7.9, 1 mM EDTA, 1 mM MgSO₄, 1 mM DTT, 1 mM sodium azide, and 0.2 mM PMSF) at room temperature for 10 min. Next, ALN was added where indicated and further incubated for 10 min. Then, 1 mM GTP containing 1 µCi of [γ-³²P]GTP was added and incubated for 30 min at 37°C. The reactions were stopped by the addition of 1 µl of 5% trichloroacetic acid, and 1.5-µl aliquots of the samples were spotted on polyethyleneimine-cellulose plates and developed with 0.5 M LiCl/1 M formic acid. The plates were dried and analyzed with a BAS2000 image analyzer (Fuji Film, Tokyo, Japan).

Cellular Uptake of Transferrin or LDL. HeLa cells serum-starved for 18 h were incubated with 30 µM chlorpromazine (CPZ) for 15 min or with 200 µM ALN, ZOL, or ETI for 4 h, and then with 5 µg/ml Alexa-Fluor-546-transferrin or Alexa-Fluor-488-LDL (Invitrogen) for 15 min. To remove transferrin or LDL that was attached to the cell surface, the cells were washed with ice-cold buffer containing 0.2 M acetic acid and 0.5 M NaCl and then with ice-cold phosphate buffered-saline three times. Thereafter, the cells were fixed with 4% formaldehyde for 15 min and visualized under the fluorescence microscope IX-DSU confocal microscopy, the cells were fixed with 4% formaldehyde for 15 min or with 200 µM GGOH for 4 h, and then with recombinant SV40 or adenovirus each carrying the luciferase gene. Two hours after infection, the medium was replaced with fresh medium containing the same concentrations of chemicals, and 18 h after infection, luciferase assay was carried out according to the manufacturer’s instructions (Promega, Madison, WI). SV40-luc was constructed by replacing the T-antigen gene with the firefly luciferase gene (Nakanishi et al., 2008). AxCA Luc+, recombinant adenovirus expressing the luciferase gene under the control of the CAG promoter, was obtained from the RIKEN Bio-Resource center (RDB 2453; Ibaraki, Japan). In Figs. 2, A and B, and C, 293FT cells were incubated with 100 µM ALN or 10 µM LOV in the presence or absence of various concentrations of geranylgeraniol (GGOH) for 4 h and then infected with recombinant SV40 or adenovirus each carrying the luciferase gene. Cell lysates were subjected to luciferase assays and immunoblotting. Luciferase activity was normalized to the activity of lane 1. Data represent the means ± S.D. of nine (lanes 1–6) or six (lanes 7–11) independent experiments. *p < 0.01 (Mann-Whitney U test). D, 293FT cells were treated with various concentrations of ALN (0.4–300 µM) and then infected with recombinant adenovirus carrying the luciferase gene. Luciferase activity was measured, normalized to the activity obtained in the absence of ALN, and plotted against logarithmic concentrations of ALN. Data represent the means ± S.D. of three independent experiments. Inset, the correlation coefficient is shown.

Liposome Scission Assay. Unilamellar liposome was prepared as described previously (Sweitzer and Hinshaw, 1998; Catimel et al., 2009). Solution containing 100 µg of liposome was centrifuged at 12,000g for 10 min, and the pellet was resuspended in buffer containing 25 mM HEPES, pH 7.4, 25 mM KCl, 2.5 mM magnesium acetate, 150 mM potassium glutamate, and 10 mM calcium acetate with or without 400 nM DYN2 and 2 mM ALN, and then it was incubated at 4°C for 4 h. Thereafter, the samples were further incubated with 400 µM GTP at 37°C for 10 min and then centrifuged at 12,000g for 10 min. Grids were glow-discharged using an ion-coater, and 2 µl of the samples was mounted on the grids, stained with 2% uranium acetate, and observed with a H-7500 electron microscope (Hitachi, Tokyo, Japan) at 80 kV.

Analysis of Viral Infection. In Fig. 1, B and C, 293FT cells were incubated with 100 µM ALN or 10 µM LOV in the presence or absence of various concentrations of geranylgeraniol (GGOH) for 4 h and then infected with recombinant SV40 or adenovirus each carrying the luciferase gene. Two hours after infection, the medium was replaced with fresh medium containing the same concentrations of chemicals, and 18 h after infection, luciferase assay was carried out according to the manufacturer’s instructions (Promega, Madison, WI). SV40-luc was constructed by replacing the T-antigen gene with the firefly luciferase gene (Nakanishi et al., 2008). AxCA Luc+, recombinant adenovirus expressing the luciferase gene under the control of the CAG promoter, was obtained from the RIKEN Bio-Resource center (RDB 2453; Ibaraki, Japan). In Figs. 2, A and B, and C, 293FT cells were treated with various concentrations of ALN or LOV, or the indicated concentrations of GGOH) and then infected with recombinant SV40 or adenovirus each carrying the luciferase gene. Cell lysates were subjected to luciferase assays and immunoblotting. Luciferase activity was normalized to the activity of lane 1. Data represent the means ± S.D. of nine (lanes 1–6) or six (lanes 7–11) independent experiments. *p < 0.01 (Mann-Whitney U test). D, 293FT cells were treated with various concentrations of ALN (0.4–300 µM) and then infected with recombinant adenovirus carrying the luciferase gene. Luciferase activity was measured, normalized to the activity obtained in the absence of ALN, and plotted against logarithmic concentrations of ALN. Data represent the means ± S.D. of three independent experiments. Inset, the correlation coefficient is shown.
with adenovirus for 18 h. Adenovirus infection was analyzed by immunoblotting or immunofluorescence microscopy using anti-E1A monoclonal antibody (NeoMarkers, Fremont, CA). To examine protein prenylation levels, we used anti-Rap1A antibody (Santa Cruz Biotechnology, Santa Cruz, CA), which reacts with the nonprenylated form of Rap1A. The infected cells were also observed with an H-7500 electron microscope (Hitachi).

Results

Inhibition of Viral Infections by ALN through a Prenylation-Independent Pathway. The first step in this study was to test whether a popular N-BP, ALN (Fig. 1A), exerts an inhibitory effect on different types of viruses. LOV, known to inhibit the mevalonate pathway by a different mechanism from ALN (i.e., by blocking HMG-CoA reductase activity), was used as control. Immunoblot analysis of the nonprenylated form of the small GTPase Rap1A showed that under our conditions, prenylation of cellular proteins is inhibited by ALN and LOV (Fig. 1, B and C, lanes 2 and 7) and that this inhibition is restored by GGOH, an intermediate of the mevalonate pathway, in a concentration-dependent manner (lanes 3–6 and 8–11). Here, recombinant SV40 and adenovirus each carrying the luciferase gene were used to measure their infectivity. As shown in Fig. 1B, SV40 infection was inhibited by both ALN and LOV (lanes 2 and 7). We were surprised, however, by the finding that GGOH had only a small effect on SV40 infection of ALN-treated cells, whereas it completely rescued SV40 infection of LOV-treated cells (lanes 3–6 and 8–11). Even more puzzling is the observation that adenovirus infection was inhibited by ALN but not by LOV appreciably (Fig. 1C, lanes 2 and 7), and that GGOH had little effect on adenovirus infection of ALN-treated cells (lanes 3–6). These results suggest that although inhibition of the mevalonate pathway is partly responsible for the suppression of SV40 infection by ALN and LOV, there is a different pathway that is important to infection by these viruses and is targeted by ALN. From the data shown in Fig. 1D, IC50 for the antiviral effect of ALN was calculated to be 8.3 μM.

To gain more insight into the additional pathway, we tested another N-BP, ZOL (Fig. 1A), and an NN-BP, ETI (Fig. 1A), for their effects on adenovirus infection by determining the expression level of the adenovirus E1A protein (Fig. 2A). Consistent with the knowledge that NN-BPs exert their pharmacological effects without inhibiting the mevalonate pathway (Coxon et al., 2000), prenylation of Rap1A was inhibited by ALN and ZOL but not by ETI appreciably (lanes 3–5). Nonetheless, these drugs were equally effective in inhibiting adenovirus infection (lanes 3–5), and GGOH did not rescue the inhibition by ALN (lane 7). These results were further validated by immunofluorescence staining using anti-E1A antibody, which showed negligible fluorescence signal from ALN- and ETI-treated cells exposed to adenovirus (Fig. 2B). It is therefore likely that adenovirus infection is suppressed through a prenylation-independent pathway not only by N-BPs but also by NN-BPs, which are considered to be structurally similar to, but functionally distinct from, N-NPs.

Identification of DYN2 and SNX9 as ALN-Binding Proteins. The above finding suggests that these drugs have common cellular targets other than FPPS. To identify such targets, we carried out an affinity purification of ALN-binding proteins from extracts of rat macrophage cells RAW264.7 using high-performance latex beads (Shimizu et al., 2000) conjugated with ALN. Consequently, two proteins, one 100 kDa and the other 70 kDa, were found to bind specifically to ALN-conjugated beads (Fig. 3A). Sequence analysis by quadrupole time-of-flight mass spectrometry revealed that the 100- and 70-kDa proteins are DYN2, a factor important in various types of endocytic pathways (Takei et al., 1995; Mayor and Pagano, 2007), and SNX9, a factor that interacts with dynamin and regulates its assembly during endocytosis (Lundmark and Carlsson, 2003; Soulet et al., 2005), respectively. The identities of these proteins were confirmed by immunoblotting using their respective antibodies (Fig. 3B). Next, recombinant DYN2 (rDYN2) and SNX9 (rSNX9) proteins were overexpressed in insect cells and E. coli, respectively, and the binding of these proteins to ALN-conjugated beads was examined. As shown in Fig. 3C, rDYN2 bound to the beads independently of rSNX9, whereas rSNX9 only bound in the presence of rDYN2, indicating that ALN bound to DYN2 directly and that SNX9 was copurified by associating with DYN2.

Next, binding specificity was examined by adding free ALN, ZOL, or ETI (Fig. 3D). All three drugs led to the release

![Fig. 2. Inhibition of adenoviral infection by ALN, ZOL, and ETI. A. HeLa cells were treated with the indicated compounds and then infected with adenovirus. Cell lysates were immunoblotted with the indicated antibodies. B, fluorescence microscopy of adenovirus-infected cells. E1A and DNA were visualized with anti-E1A antibody and 4',6-diamidino-2-phenylindole (DAPI), respectively.](image-url)
of both rDYN2 and rSNX9 from the beads in a concentration-dependent manner, suggesting that both N-BPs and NN-BPs can target DYN2. These data are consistent with DYN2 being a molecular target of BPs in adenovirus infection.

ALN Reverses Lipid-Mediated Enhancement of DYN2 GTPase Activity through Competitive Binding to DYN2.

Dynamins are large GTPases that mediate many forms of endocytosis (Mayor and Pagano, 2007), and their GTPase activity is stimulated upon binding to lipid membranes (Praefcke and McMahon, 2004). Thus we examined whether ALN has any effect on DYN2 GTPase, using rDYN2 and lipid prepared from bovine brain. In the absence of lipid, ALN had a negligible effect on GTP hydrolysis to GDP by rDYN2 at the concentrations examined (Fig. 4A). Lipid stimulated rDYN2 GTPase activity 3-fold, and ALN reversed lipid-mediated enhancement of the GTPase activity. Because ALN binds to magnesium ions very well, its inhibitory effect could be due to the chelation of magnesium ions in the reactions. To exclude this possibility, we increased the magnesium concentration from 1 to 2 mM. As a result, there was no appreciable change in the inhibitory effect of 500 μM ALN.

Given the finding that ALN inhibited the GTPase activity only partially even at the highest concentration examined, we speculated that ALN inhibits only the lipid-activated fraction of DYN2, possibly through competitive binding of ALN and lipid to DYN2. As shown in Fig. 4B, rDYN2 binding to ALN-fixed beads were indeed inhibited by increasing concentrations of lipid. Collectively, these results suggest that ALN reverses the lipid-mediated enhancement of DYN2 GTPase activity through competitive binding to DYN2.

ALN Binds to DYN2 through Its Phosphoinositide Lipid-Binding PH Domain.

DYN2 is composed of the GTPase domain, the middle domain, the lipid-binding PH domain, the GED, and the PRD (Artalejo et al., 1997; Schmid et al., 1998). We carried out ALN binding assays using a series of DYN2 mutants and found that its GST-tagged PH domain (GST-PH) binds to ALN, although somewhat weakly (Fig. 5A). Because the DYN2 PH domain is known to bind preferentially to acidic phospholipid (Catimel et al., 2009), synthetic lipid composed of PC or PC and PIP₃ (9:1) was used instead of native lipid as competitors of ALN binding assays. Consequently, PIP₃-containing lipid was found to inhibit rDYN2 or GST-PH binding to ALN efficiently (Fig. 5B). These results led us to conclude that ALN binds to DYN2 through its phosphoinositide lipid-binding PH domain.

ALN, ZOL, and ETI Inhibit Endocytosis. Because DYN2 and its GTPase activity play important roles in endocytosis, our findings raise the possibility that inhibition of viral infection is due to defective endocytosis. This hypothesis was first tested using a model system. After incubation of HeLa cells with BPs at 37°C for 4 h, uptake of fluorescently labeled transferrin, which is a marker of the clathrin-mediated pathway, was measured by flow cytometry and fluorescence confocal microscopy. Our results show that, in the presence of ALN, ZOL, or ETI, transferrin uptake was significantly decreased and that the suppression level was sim-
imilar to that in the presence of CPZ, a clathrin-dependent endocytosis inhibitor (Fig. 6).

ALN Inhibits Liposome Vesiculation in Vitro and Scission of Endocytic Vesicles in Adenovirus-Infected Cells. Dynamin self-assemble into ring-like complexes to carry out vesicle scission by tubulation and severance of lipid membranes using GTP hydrolysis as source of energy (Mayor and Pagano, 2007). This activity can be reconstituted in vitro using purified rDYN2, which also self-associates and binds to lipid bilayers to form tubular structures (Fig. 7A, +rDYN2, −GTP) that can be constricted to form small lipid vesicles upon GTP addition (+rDYN2, +GTP) (Weizer and Hinch, 1998). However, this vesiculation activity was inhibited in the presence of ALN (+rDYN2, ALN, +GTP). Because this observation is similar to that of a GTPase-deficient mutant rDYN2 (K44A) (Damke et al., 1994), which forms tubular lipid structures but is incapable of vesiculation as a result of a point mutation in the GTP binding site (+rDYN2 (K44A)), our results strongly suggest that ALN targets the GTPase activity of DYN2 to suppress endocytosis.

HeLa cells infected with adenovirus in the absence or presence of ALN were analyzed by electron microscopy. As shown in Fig. 7B, normal endocytic vesicles containing virus particles are round and are found detached from the plasma membrane, whereas in the presence of ALN, these vesicles seem to be trapped near the cytoplasmic membrane. Thus, these observations suggest that the cause of ALN-mediated inhibition of adenovirus infection may be defective scission as a result of DYN2 GTPase activity inhibition at the neck of the invaginated pit (arrow).

Discussion

In this study, we investigated the effects of BPs on SV40 and adenovirus infections and found that these viruses show different sensitivity toward the various drugs examined. The results obtained using the HMG-CoA reductase inhibitor LOV indicate that prenylation of a certain cellular or viral protein is important to SV40 infection, although the existence of such a protein is not known. On the other hand, the results obtained using ALN and GGOH indicate that ALN exerts its inhibitory effects on viral infection partly or entirely through a mevalonate-independent pathway, most likely through inhibition of DYN2-mediated endocytosis, as our biochemical data suggest here. ALN was found to target DYN2 GTPase activity, leading to its inability to pinch off endocytic vesicles. Moreover, DYN2 was found to be targeted by ETI, an NN-BP that is not known to target FPPS, which further supports our discovery of an additional nonmevalonate-related inhibitory mechanism for BPs. Adenovirus infection requires DYN2 in clathrin-dependent endocytosis, and expression of the GTPase-deficient mutant DYN2 (K44A) significantly reduces infec-

Fig. 5. ALN binds to DYN2 through its phosphoinositide lipid-binding PH domain. Recombinant DYN2 or its GST-tagged mutants, schematically shown at the top, were subjected to ALN-binding assays. In B, SUVs composed of PC or PC/PIP3 (9:1) were added to binding reactions as competitors. Aliquots of input (A) and eluate (A and B) materials were analyzed by SDS-PAGE and silver staining.

Fig. 6. ALN, ZOL, and ETI inhibit endocytosis. HeLa cells were incubated with Alexa-Fluor-546 transferrin or were left untreated (unlabeled). Before transferrin uptake, cells were treated with CPZ, ALN, ZOL, or ETI, or left untreated (nontreated). Incorporation of the fluorescent dye was examined by fluorescence-activated cell sorting (left) and fluorescence confocal microscopy (right). The incorporation level in nontreated cells and in drug-treated cells is indicated by arrows.
tivity (Wang et al., 1998). SV40 enters cells via caveolar endocytosis (Anderson et al., 1996), a clathrin-independent but DYN2-dependent pathway. Thus, our identification of DYN2 as a target for antiviral activity of BPs is consistent with its key role in multiple endocytic pathways.

It may be surprising that using ALN as ligand, a highly charged molecule, DYN2 was purified almost exclusively. We have carried out a number of affinity purifications using various low molecular weight compounds as ligands. In some cases, numerous proteins were obtained in initial experiments, and subsequent optimization of various parameters, such as the amount of ligand immobilized, composition of binding and washing buffers, and elution conditions (e.g., competitive elution using free ligand), was necessary. But in the other cases, only one or a few proteins were isolated without the need for extensive optimization, leading to rapid identification of relevant molecular targets (Sakamoto et al., 2009). In principle, relative abundance of affinity-purified proteins is determined by the concentration of each protein in input material and its equilibrium dissociation constant for the ligand. Hence, a simple interpretation of our data are that there was sufficient difference in K_d between DYN2 binding and other “nonspecific” binding that might have occurred through ionic interactions. Besides, although it is not central to the discussion here, we believe that a key to success is the use of affinity beads called SG beads and FG beads, which we have developed over decades (Sakamoto et al., 2009). They are spherical organic-polymer particles of approximately 200 nm in diameter, which is 2 to 3 orders of magnitude smaller than the diameter of typical agarose beads. Their nonporous structure, large surface area per weight, and moderately hydrophilic surface seem to contribute to a high signal-to-background ratio in purification.

Below we discuss the possibility that clinically relevant doses of BPs contribute to treatments of diseases other than blocking bone loss. On the one hand, we determined the IC$_{50}$ for the antiviral effect of ALN to be 8.3 μM (Fig. 1D). On the other hand, it is generally accepted that after bisphosphonate administration, a fraction of the drug becomes incorporated into the skeleton, whereas the remainder is cleared rapidly from the blood to the urine (Russell et al., 2007). After single oral administration of 70 mg of ALN to humans, its elimination half-life is 1.67 h and the maximum plasma concentration is 41 ng/ml or 0.16 μM (Yun and Kwon, 2006). It is therefore unlikely that by the regimen used in the study, plasma concentrations of ALN come close to the level that affects DYN2-mediated endocytosis. However, a few studies have shown that some of the drug also accumulates temporarily in soft tissues, such as liver and spleen, and is subsequently released over a period of days (Stepensky et al., 2003), although its precise pharmacokinetics remains to be determined. In another study, it was suggested that bisphosphonate concentrations at the aorta are much higher (up to 24-fold) than plasma levels (Ylitalo et al., 1996). In addition, the deposition in soft tissues may vary by the mode of drug administration (Stepensky et al., 2003). Furthermore, bisphosphonates are generally safe and well tolerated even at higher doses; for example, patients with Paget’s disease receive up to 400 mg of bisphosphonates per day. In summary, local tissue concentrations of bisphosphonates may be higher than their plasma concentrations, and even higher local concentrations may be achieved by considering pharmaceutical formulations and mode of administration. For these reasons, we consider that our present findings may have potential clinical implications.

BPs have been prescribed for more than three decades in the treatment of bone diseases and are currently the most widely used bone resorption drugs. BPs mainly target osteoclasts but can also affect other cell types in various ways, including the suppression of proliferation, adhesion, migra-

Fig. 7. ALN inhibits DYN2-dependent liposome vesiculation. A, SUVs prepared from bovine brain were incubated with wild-type rDYN2 or its GTPase-deficient mutant K44A in the presence or absence of ALN and GTP as indicated. Electron micrographs of negatively stained SUVs were taken. Scale bar, 1 μm. B, defective scission of endocytic vesicles in adenovirus-infected HeLa cells in the presence of ALN. Electron micrographs of ultrathin sections of adenovirus-infected HeLa cells were taken without or with prior ALN treatment. Scale bar, 500 nm. Ad, adenovirus particles; arrow, the neck of the invaginated pit.
Bisphosphonates Inhibit Dynamin-2-Mediated Endocytosis 269

Praefcke GJ and McMahon HT (2004) The dynamin superfamily: universal membrane scission proteins and the last step required to release internalized molecules from invaginating endocytic vesicles into the cytoplasm (Bruzanniti et al., 2005), which may also explain their effects on tumor cells.

Through the discovery of DY2 as a target of BPs, this study has uncovered a previously unknown mechanism of action of BPs and offers potential novel use for these drugs. Our findings will probably be extendable to research on other viruses. One example is HIV-1, the infectivity of which is known to be enhanced by DY2 (Pizzato et al., 2007). However, because of the complexity of the various pathways used by viruses to enter cells and the various cellular roles played by DY2, much work is still needed to clarify how different viruses use these pathways to BD treatments. Incidentally, investigations or trials of alternative uses of BPs, such as studies on the inhibition of growth of human T-cell leukemia virus type I-infected T-cell lines (Ishikawa et al., 2007) or the treatment of HIV-associated osteoporosis (Qasghis and Sims, 2004; Negredo et al., 2005), are emerging. The knowledge gained through these efforts may lead to better antiviral therapies through effective combinatorial treatments using new and old strategies.

Acknowledgments

We are grateful to Dr. Kazuhiro Nakayama (Kyoto University) for providing the DY2 cDNA and to Dr. Hiroyuki Kouji (Institute for Life Science Research, Asahi Chemical Industry Co. Ltd.) for providing bisphosphonates.

References

Artalejo CR, Lemoen MA, Schlessinger J, and Palfrey HC (1997) Specific role for the Life Science Research, Asahi Chemical Industry Co. Ltd.) for provid-