Curcumin Dually Inhibits both Mammalian Target of Rapamycin and Nuclear Factor-κB Pathways through a Crossed Phosphatidylinositol 3-Kinase/Akt/IκB Kinase Complex Signaling Axis in Adenoid Cystic Carcinoma

Zhi-Jun Sun, Gang Chen, Wei Zhang, Xiang Hu, Yang Liu, Qian Zhou, Ling-Xing Zhu, and Yi-Fang Zhao

The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education (Z.-J.S., G.C., W.Z., X.H., Y.L., Q.Z., L.-X.Z., Y.-F.Z.) and Department of Oral and Maxillofacial Surgery (Z.-J.S., G.C., W.Z., X.H., Y.-F.Z.), School & Hospital of Stomatology, Wuhan University, Wuhan, China

Received June 15, 2010; accepted October 19, 2010

ABSTRACT

Adenoid cystic carcinoma (ACC) is a highly malignant tumor that is generally unresponsive or only weakly responsive to the currently available antineoplastic agents. Thus, novel therapeutic strategies and agents are urgently needed to treat this aggressive neoplasm. Curcumin, a component of turmeric (Curcuma longa), has been shown to have a diversity of antitumor activities. We show here that curcumin is a potent inhibitor of ACC progression in vitro and in vivo. Curcumin concentration-dependently inhibited the growth of ACC cells via induction of apoptosis. The ability of ACC cells to migrate/invade and induce angiogenesis was also significantly attenuated by curcumin, accompanied by the down-regulation of vascular endothelial growth factor (VEGF) and matrix metalloproteinase-2 and -9. Moreover, our data also demonstrated that the inhibitory effects of curcumin on ACC cells were due to its dual inhibition of both mammalian target of rapamycin (mTOR) and nuclear factor-κB (NF-κB) pathways through a crossed phosphatidylinositol 3-kinase/Akt/IκB kinase signaling axis. Most importantly, curcumin effectively prevented the in vivo growth and angiogenesis of ACC xenografts in nude mice, as revealed by the induction of cell apoptosis and reduction of microvessel density in tumor tissues. In addition, we further assessed the nature activation status of both mTOR and NF-κB pathways in ACC tissues and confirmed the concurrent high activation of these two pathways in ACC for the first time. Taken together, our findings suggest that further clinical investigation is warranted to apply curcumin as a novel chemotherapeutic regimen for ACC because of its dual suppression of both mTOR and NF-κB pathways.

Introduction

Adenoid cystic carcinoma (ACC), a highly aggressive neoplasm mostly occurring in the salivary gland and breast (Persson et al., 2009), accounts for approximately 22% of all salivary gland malignancies and approximately 1% of all head and neck malignancies (Hotte et al., 2005). After curative surgery, radiotherapy, and chemotherapy, the disease-specific survival at 10 years for patients with ACC remains to be 29 to 40% (Fordice et al., 1999). Most deaths from salivary ACC are caused by local recurrence and distant metastasis.
those resistant to conventional therapy. Therefore, effective agents with minimal untoward side effects are urgently needed to control the malignant progression of ACC.

Curcumin [1,7-bis(4-hydroxy-3-methoxyphenyl)-1- to-6-heptadine-3,5-dione; C16H12O6], a natural polyphenol derived from the spice turmeric (Curcuma longa), is one such agent that has been demonstrated to be nontoxic to humans (Lao et al., 2006). Extensive research over several decades have shown that curcumin possesses anti-inflammatory, antioxidant, antiviral, and anti-infectious activities (Goel et al., 2008). Furthermore, curcumin has been shown to prevent tumor initiation, promotion, and metastasis in breast, ovarian, colon, lung, and other cancers (Li et al., 2004; Aggarwal et al., 2005; Lin et al., 2007; Milacic et al., 2008; Wang et al., 2008; Padhye et al., 2010). These antitumor effects of curcumin seem to be closely linked to its ability to inhibit cell proliferation, induce cell apoptosis, suppress cell invasion, and reduce angiogenesis (Lev-Ari et al., 2006; Yoonsungnoen et al., 2006; Shankar et al., 2008; Yodkeeree et al., 2009). It is noteworthy that this compound has entered clinical trials for certain human cancers (Anand et al., 2008; Dhillon et al., 2008).

Extensive studies have revealed that curcumin exerts its wide range of antitumor effects through modulating a diversity of signaling pathways involving transcription factor nuclear factor-κB (NF-κB), IκBα kinase (IKK), phosphatidylinositol 3-kinase (PI3K), Akt, extracellular signal-regulated kinase (ERK), c-Jun NH2-terminal kinase (JNK), p38 mitogen-activated protein kinase (MAPK), and others (Aggarwal et al., 2006; Kunnunakkara et al., 2007; Chen and Zheng, 2008). Among those implicated, however, NF-κB is generally regarded as the most potent target (Li et al., 2004; Lin et al., 2007). Curcumin has the capacity to suppress NF-κB activation through the inhibition of IKK, Akt-dependently or Akt-independently (Lin et al., 2007; Kunnunakkara et al., 2008; Wang et al., 2008). In this regard, curcumin has also shown to be a potent Akt-dependent inhibitor of mammalian target of rapamycin (mTOR) (Beevers et al., 2006; Li et al., 2007; Yu et al., 2008), which has been identified as a key player in tumor progression (Seeliger et al., 2007). Nevertheless, it is worthwhile to mention that mTOR can also be Akt-independently activated by the IKKβ pathway, and blockade of IKKβ is able to inactivate mTOR (Seeliger et al., 2007; Lee et al., 2008). Thus, it is plausible that curcumin, a tested inhibitor of IKKβ (Shishodia et al., 2005; Aggarwal et al., 2006), could target both IKKβ and Akt to inactivate the mTOR pathway. However, to our best knowledge, the precise cross-talk mechanisms underlying the antitumor activities of curcumin, especially in ACC, are still far from clear.

Here, we initially explored the role of curcumin in ACC, and found that curcumin not only significantly inhibited in vitro growth, migration/invasion, and angiogenesis-induction in ACC cells but also effectively prevented the in vivo growth and angiogenesis of ACC-M tumors in mice, relating with the dual-inhibition of both mTOR and NF-κB pathways through a crossed PI3K/Akt/IKK signaling axis. Furthermore, we assessed the nature activation status of both mTOR and NF-κB pathways in ACC tissues and confirmed the concurrent high activation levels of these two pathways in ACC for the first time.

Materials and Methods

Reagents and Plasmas. Curcumin (>98% pure), dimethyl sulfoxide (DMSO), PI3K inhibitor 2-(4-morpholinyl)-8-phenyl-1-(4H)-benzopyran-4-one hydrochloride (LY294002), NF-κB inhibitor pyrrolidine dithiocarbamate (PDTC), IKK inhibitor N-6-(chloro-9H-pyrido[3,4-b][indol-8-yl]-3- pyridinecarboxamide dihydrochloride (PS1115), mTOR inhibitor rapamycin, Hoechst 33258, propidium iodide (PI), and ribonuclease (RNase) were purchased from Sigma-Aldrich (St. Louis, MO). Dulbecco’s modified Eagle’s medium (DMEM), fetal bovine serum (FBS), penicillin, and streptomycin were obtained from Invitrogen (Carlsbad, CA). Primary antibodies against human phospho-PI3K p85 (Tyr458), PI3K, phospho-Akt (Ser473), Akt, NF-κB p65, IκB-α, phospho-IKK-α/β (Ser176/180), IKK-α/β, phospho-mTOR (Ser2448), mTOR, phospho-ERK (Thr202/Tyr204), ERK, phospho-p38 (Thr180/Tyr182), p38, phospho-JNK (Thr183/Tyr185), JNK, phospho-S6 (Ser235/236), Bax, Bcl-2, and cleaved poly(ADP-ribose) polymerase (PARP) were purchased from Cell Signaling Technology (Danvers, MA). Primary antibodies against mouse CD31, Histone H2A, and β-actin were purchased from Santa Cruz Biotechnology, Inc. (Santa Cruz, CA). The expression vectors encoding constitutively active Akt (pUSE-CA-Akt), as well as the corresponding empty vectors (pUSE), were kindly provided by Dr. Michael Robinson (University of Pennsylvania, Philadelphia, PA).

Patients, Immunohistochemistry, and Double-Labeling Immunofluorescence Histochemistry. Fifty pathologically confirmed human ACC specimens with corresponding six pericancerous normal salivary gland (NSG) tissues were collected at the Hospital of Stomatology, Wuhan University (Wuhan, China). All specimens were fixed in buffered 4% paraformaldehyde and embedded in paraffin. The procedures were performed in accordance with the National Institutes of Health guidelines regarding the use of human tissues. The study was approved from the review board of the Ethics Committee of Hospital of Stomatology (Wuhan University). The immunohistochemical and double-labeling immunofluorescence histochemical analyses were performed according to our previous procedures (Sun et al., 2010a), as described in the Supplementary Materials and Methods.

Cell Culture and Conditional Medium Collection. The high (ACC-M) and low (ACC-2) metastasis cell lines of human ACC (Guan et al., 1997) and human endothehoil hybridoma cell line EAHy926 were obtained from the China Center for Type Culture Collection and maintained in DMEM supplemented with 10% FBS, 100 U/ml penicillin, and 100 µg/ml streptomycin in a humidified atmosphere of 95% air and 5% CO2 at 37°C. Cells were serum-starved for 12 h before treatment with curcumin in serum-deprived medium.

When ACC cells were grown to 70% confluence after overnight incubation, they were serum-starved for 12 h and then treated with or without curcumin in serum-deprived DMEM as indicated. After 12 h, cells were washed thoroughly with PBS and further incubated in serum-deprived medium for another 24 h, and then the cleared supernatants were collected as conditional medium (CM) and stored at −80°C.

Transient Transfection. ACC cells seeded in 6-cm culture dishes were transfected with pUSE-CA-Akt or pUSE vector plasmids using Lipofectamine 2000 (Invitrogen) according to the manufacturer’s instruction. The expression of p-Akt after the transfection was confirmed by Western blotting.

Cell Growth Analysis and Viability Measurement. Cell Titer-Glo (CTG; Promega, Madison, WI) luminescence assay was performed to measure the growth curves of ACC cells. This luminescence assay determines the presence of live cells in a growing culture based on the quantitation of adenosine triphosphate released by metabolically active cells. In brief, both ACC-2 and ACC-M cells (5000 cells/well) were seeded in a 96-well microplate (Corning Life Sciences, Lowell, MA) in a final volume of 100 µl. After overnight incubation, cells were treated with the indicated concentrations of curcumin for 12,
24, 48, or 72 h. After completion of the treatment, 100 μl of CTG solution was added to each well and incubated for 20 min at room temperature in the dark. Lysate (50 μl) was transferred to a 96-well white plate (Greiner Bio-One GmbH, Frickenhausen, Germany), and then the luminescence was measured. The percentage of cell growth was calculated by considering 100% growth at the time of curcumin addition. Cell viability was measured by the Vi-CELL cell viability analyzer (Beckman Coulter, Fullerton, CA) under the same treatment conditions as mentioned for the CTG assay.

Determination of Apoptosis. Apoptosis induction by curcumin in ACC cells was determined according to our previous procedures (Sun et al., 2010a) as follows: 1) morphological evaluation by Hoechst staining; 2) quantitation of cytoplasmic histone-associated DNA fragments with Cell Death Detection ELISA PLUS kit (Roche Applied Science, Indianapolis, IN); 3) quantitative assessment of early and late apoptosis using the Annexin V-FITC/PI double-staining kit (BD Biosciences, San Jose, CA); 4) caspase-3 and -9 activity measurement by Colorimetric Caspase Activity Assay kit (BD Pharmingen, San Diego, CA); and 5) Western blot analysis for Bax/Bcl-2 ratio and PARP cleavage. See the Supplementary Materials and Methods for more details.

Tumor Cell Migration and Invasion Assays. The ability of ACC-M cells to pass through Matrigel-coated filters was measured using Transwell Boyden chamber (Corning Life Sciences) containing a 6.5-mm diameter polycarbonate filter (pore size, 8 μm). Matrigel was diluted to 200 μg/ml and applied to the top side of the filter in cell invasion assays, whereas in cell migration assays, the filter was not coated. ACC-M cells treated with or without indicated concentration of curcumin for 12 h were seeded on the upper chamber at a density of 2 × 10⁴ cells/well in 100 μl of serum-deprived medium, whereas medium with 10% FBS was applied to the lower chamber as a chemoattractant. After incubation for 24 h at 37°C, the cells in the upper surface of the membrane were carefully removed with a cotton swab, and migrated or invaded cells were fixed with methanol, stained with eosin dye, and then photographed and quantified.

Assessment of In Vitro and In Vivo ACC-Induced Angiogenesis. The effects of curcumin on ACC-induced angiogenesis were determined by a set of angiogenesis assays as described previously (Sun et al., 2010b), including the endothelial cell migration and capillary-like tube formation assays in vitro, as well as the rat aortic ring, chicken chorioallantoic membrane (CAM), and Matrigel plug assays in vivo. See Supplementary Materials and Methods for more details.

Semiquantitative Reverse Transcription-PCR. To evaluate the mRNA expression of growth factors, interleukin-6 (IL-6), and matrix metalloproteinases (MMPs) after curcumin treatment, semiquantitative reverse transcription (RT)-PCR was performed. Total RNA was isolated with TRIzol reagent (Invitrogen). Aliquots (1 μg) of RNA were reverse transcribed to cDNA (20 μl) with Oligo(dT) and AMV reverse transcriptase (Takara, Kyoto, Japan). One fifth of the cDNA was used as a template for PCR using a PE9700 RT-PCR system (Applied Biosystems, Foster City, CA). The PCR products were electrophoresed in 2% agarose gel and visualized with ethidium bromide. The intensity of each band was analyzed densitometrically using Gene Tools software (Syngene, Cambridge, UK). See Supplementary Materials and Methods for the designed primer sequences for PCR.

ELISAs for Secretion of Growth Factors, IL-6, and MMPs. ACC-M cells were seeded in six-well plates, either untreated or treated with indicated concentrations of curcumin for 12 h. After that the cells were washed thoroughly with PBS and further incubated in serum-deprived medium for another 24 h to allow irritating factor production. Subsequently, the supernatants were collected and used to determine secretion of VEGF, basic fibroblast growth factor (bFGF), granulocyte colony stimulating factor, platelet-derived growth factor, IL-6, MMP-2, and MMP-9 using commercially available kits (R&D Systems, Minneapolis, MN) according to the manufacturer’s recommendations.

Double-Labeling Immunofluorescence Analysis for Cell. The indirect immunofluorescence analyses for cells were performed as described previously (Sun et al., 2010a).

Western Blot Analysis. The Western blot analysis was performed as described earlier (Sun et al., 2010a). In brief, a total amount of 40 μg of protein from each sample in different groups was denatured, separated using a 10% SDS-polyacrylamide gel electrophoresis, and electroblotted on polyvinylidene fluoride membranes (Millipore Corporation, Billerica, MA). The immunoblots were blocked with 5% nonfat dry milk at room temperature for 1 h, and then cultured overnight at 4°C with the primary antibodies at dilutions recommended by the suppliers, followed by incubation with horseradish peroxidase-conjugated secondary antibody (Pierce Chemical, Rockford, IL) for 1 h at room temperature. Then blots were developed by a SuperEnhanced chemiluminescence detection kit (Applygen Technologies Inc., Beijing, People’s Republic of China).

Nude Mouse Xenografts. Female BALB/c nude mice (18–20 g; 6–8 weeks of age) were purchased from the Experimental Animal Center of Wuhan University in pressurized ventilated cage according to institutional regulations. All studies were approved and supervised by Animal Care and Use Committee of Wuhan University. Exponentially growing ACC-M cells (2 × 10⁶ in 0.2 ml of medium) were inoculated subcutaneously into the flank of the mice. After 7 days, tumor-bearing mice were randomly divided into two groups, which were, respectively, given curcumin (1 g/kg p.o. daily; n = 8) or corn oil (Control, 100 μl p.o. daily; n = 8) for 28 consecutive days. Tumor growth was determined by measuring the size of the tumors daily. Tumor volumes were calculated according to the formula (width² × length)/2. The mice were euthanatized on day 28, and the tumors were captured, photographed, and then embedded in paraffin or frozen at −80°C for the following immunohistochemical analysis, terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) assay, and microvessel density detection, as described in the Supplementary Materials and Methods.

Statistical Analysis. All values were expressed as mean ± S.E. of three independent experiments. One-way analysis of variance, Student-Newman-Keuls, as well as Spearman’s rank correlation test were used for statistical analysis. P < 0.05 was considered significantly different.

Results

Curcumin Inhibits the Growth of ACC Cells. As shown in Fig. 1, A and B, curcumin concentration-dependently inhibited the growth of both ACC-2 and ACC-M cells, but it was more prominent in ACC-M cells. An approximate 6-fold induction in the growth of ACC-M cells was noticed at 72 h in the absence of curcumin. Treatment with increased concentrations of curcumin (10, 20, and 40 μM) decreased the cell growth of ACC-M by almost 25, 70, and 100% at 12 h, respectively (Fig. 1B). It is noteworthy that we also observed that curcumin treatment at the concentrations of 20 and 40 μM resulted in an even lower cell growth below 100% at 48 and 72 h, indicating probable cell death. We then determined the cell viability after curcumin treatment (Fig. 2, C and D). The results showed that all of the tested concentrations of curcumin demonstrated no effect on ACC cell survival at 12 h, suggesting that the growth inhibition of ACC cells by curcumin at 12 h was not associated with cell death. However significant death of ACC cells at 24, 48, and 72 h was noticed when treated with 20 and 40 μM curcumin. Thus, based on these results, we selected 12 h for curcumin treatment in the tumor cell migration/invasion as well as angiogenesis induction assays to avoid the interference from cell death. However,
Curcumin treatment for 24 h was used in the other experiments.

Curcumin Induces Apoptosis of ACC Cells. To determine whether the cytotoxicity exerted by curcumin was due to apoptosis induction, morphological observation was first performed microscopically. As shown in Fig. 2A, after exposure to 20 μM curcumin for 24 h, several apoptotic morphological features such as apoptotic bodies, cell shrinkage, and chromatin condensation were observed in both ACC-2 and ACC-M cells by Hoechst 33258 staining assays. Then, we quantitatively assessed the DNA fragmentation using the Cell Death Detection ELISA$^\text{PLUS}$ kit. Likewise, the results (Fig. 2B) revealed that the formation of DNA fragments elicited by curcumin treatment was concentration-dependent in both ACC-2 and ACC-M cells and was more prominent in ACC-M cells ($P < 0.05$). Because curcumin is a tested inhibitor of NF-κB, it has been demonstrated to be more activated in ACC-M cells. More importantly, we indeed found that the capacity of curcumin in growth inhibition and apoptosis induction is probably more prominent in the high-metastasis cell line ACC-M compared with that in the low-metastasis cell line ACC-2, suggesting high specificity. Thus, the ACC-M cell line was chosen for further apoptosis detection and for the subsequent migration/invasion, angiogenesis induction, and mechanism studies.

Further confirmation of apoptosis-induction was determined by Annexin V-FITC and PI double-staining, which can quantitatively assess the early apoptotic and late apoptotic cell population. Of interest, the results showed that treatment with curcumin for 12 h concentration-dependently induced the early apoptosis of ACC-M cells, but the proportion of late-apoptotic cells was not significantly increased (Fig. 2C, left). This may well explain why exposure to curcumin for 12 h did not result in significant cell death but only decreased the cell growth activity, as revealed by cell growth analysis and viability measurement (Fig. 1, B and D). However, after 24 h treatment with curcumin, both the early and late-apoptotic cell population, especially the later one, were significantly increased (Fig. 2C, right), which confirmed the apoptosis induction by curcumin. On the other hand, the activities of caspase-9 and caspase-3 were found to increase significantly in curcumin-treated ACC-M cells (Fig. 2D, left). In addition, the results showed that both the ratio of Bax/Bcl-2 and cleavage of PARP were significantly increased by curcumin in a concentration-dependent manner (Fig. 2D, right).

![Fig. 1](https://example.com/fig1.png)

Fig. 1. Inhibitory effects of curcumin on ACC cell growth and viability. A and B, cell growth was measured by the CTG luminescent assay in 96-well plates in the presence of increasing concentrations of curcumin, as indicated, for 12, 24, 48, and 72 h, and the results were expressed as the percentage of growth relative to 100% at the time of curcumin addition. C and D, cell viability was measured using the Vi-CELL cell viability analyzer. Treatment conditions were identical, as indicated in the CTG assay, and results are represented as a percentage of the control group. All data are presented as the mean from three different experiments with duplicate ($*$, $P < 0.05$; $**$, $P < 0.01$ versus the control group); bars, ± S.E.
Curcumin Inhibits Migration and Invasion of ACC-M Cells. The influence of curcumin on ACC cell migration and invasion was determined using the wound healing and Transwell Boyden chamber assays. As a result, both the migration and invasion of ACC-M cells were significantly impaired after curcumin treatment in a concentration-dependent manner (Fig. 3A). Meanwhile, the results also revealed that the mRNA expression and protein secretion of both MMP-2 and MMP-9 were downregulated by curcumin treatment (Fig. 3D), which might explain the impaired migration and invasion ability of ACC-M cells.

Fig. 2. Curcumin induces apoptosis in ACC cells. A, detection of apoptosis in ACC cells by Hoechst 33258 staining. ACC-M and ACC-2 cells were cultured with DMSO (Control) or curcumin (20 μM) for 24 h. Cells were then fixed and stained with a DNA-specific dye, Hoechst 33258. B, quantitation of DNA fragmentation using the Cell Death Detection ELISA kit. ACC-M and ACC-2 cells were treated with DMSO (Control) or indicated concentrations of curcumin for 24 h and then analyzed using the Cell Death Detection ELISA kit. C, representative dot plots of PI versus Annexin V-FITC. ACC-M cells were treated with DMSO (Control) or indicated concentrations of curcumin and analyzed after 12 and 24 h, respectively. The bottom left quadrant contains the vital (Annexin V−/PI−) population; the bottom right contains the early apoptotic (Annexin V+/PI−) population; the top right contains the late apoptotic (Annexin V+/PI+) population; and the top left contains the necrotic (Annexin V−/PI+) population. Quantitative analysis showing the percentage of early and late apoptotic cells (bottom). D, the activities of caspase-9 and caspase-3 were assessed by Caspase Activity Assay kit (left). Right, the expression levels of cleaved PARP, Bax, and Bcl-2 were determined by Western blotting. Columns, mean; bars, S.E. * P < 0.05; **, P < 0.01 versus the control group.
Curcumin Inhibits ACC-Induced Angiogenesis In Vitro and In Vivo. It is clearly seen from the results (Fig. 3B) that the CM from ACC-M cells without curcumin pretreatment induced EAhy926 cell migration by 4-fold compared with the control (blank medium). However, curcumin pretreatment produced a concentration-dependent preven-
tion of the endothelial cell migration induced by CM. Moreover, a similar result was also observed in the tube formation assay that curcumin concentration-dependently prevented the tube-like structure formation induced by ACC-M cells (Fig. 3B).

The rat aortic ring, CAM, as well as Matrigel plug assays were then performed to further confirm the inhibitory effects of curcumin on ACC-induced angiogenesis in vivo. As shown in Fig. 3C, treatment with curcumin resulted in a significant decrease in vessel sprouting at the cut edge of rat aortic rings. In addition, the CAM assay demonstrated that the newly formed vessels were markedly reduced when incubated with the CM from curcumin-treated ACC-M cells. It is noteworthy that the Matrigel plug assay also showed similar results that the ability of ACC-M cells to induce angiogenesis was significantly impaired after curcumin pretreatment. In addition, the results also unmasked possible mechanisms that exposure of ACC-M cells to curcumin led to the suppression of VEGF and bFGF in both mRNA and protein levels (Fig. 3D) but showed no effect on granulocyte colony stimulating factor, platelet-derived growth factor, or IL-6 production (data not shown).

Curcumin Dually Inhibits the mTOR and NF-κB Pathways through a Crossed PI3K/Akt/IKK Signaling Axis. As the results show, curcumin significantly suppressed the activation of PI3K, Akt, IKKα, IKKβ, NF-κB, mTOR, and S6 in ACC cells in a concentration-dependent and time-dependent manner (Fig. 4A) but showed no effect on the phosphorylation status of ERK, p38, and JNK (data not shown). As shown in Fig. 4B, overexpression of CA-Akt nearly blocked curcumin-mediated IKKα inactivation but only partially retrieved the down-regulation of NF-κB by curcumin. It also only partially prevented curcumin-induced apoptosis as revealed by the Cell Death Detection ELISA^PLUS^. However, it showed no influence on curcumin-mediated IKKβ inactivation, indicating that the activity of IKKβ in ACC was probably Akt-independent.

Further investigation indeed validated this hypothesis in that LY294002, a specific PI3K inhibitor, effectively suppressed the phosphorylation of Akt and IKKα (Fig. 4C) in the absence of curcumin, but there was no significant decrease in the phosphorylation level of IKKβ. In addition, LY294002 significantly eliminated the inhibitory effects of curcumin on Akt and IKKα and meanwhile partially blocked curcumin-induced cell apoptosis and mTOR and NF-κB down-regulation. Likewise, PS1145, a specific IKKα/β inhibitor, almost completely blocked the influence of curcumin on NF-κB activation but only partially prevented the apoptosis induction and mTOR inhibition, manifested after curcumin treatment, and could still induce further cell apoptosis and mTOR and S6 inactivation. Whereas, when LY294002 and PS1145 were used in combination, the responses of PI3K, Akt, IKKα, IKKβ, NF-κB, mTOR, and S6 to curcumin treatment were nearly abrogated (Fig. 4C), and the apoptosis induction was also completely prevented. Together, these findings demonstrated that curcumin probably targets both the Akt-dependent IKKα and Akt-independent IKKβ and finally leads to the dual inhibition of both mTOR and NF-κB pathways. Nevertheless, the relationship between mTOR and NF-κB pathways is still unclear. Thus, the NF-κB inhibitor PDTC and mTOR inhibitor rapamycin, either alone or in combination, were then applied as shown in Fig. 4D. The results showed that treatment with PDTC alone effectively deleted the responses of NF-κB to curcumin but only partially reversed the apoptosis induction by curcumin and showed no effect on curcumin-mediated down-regulation of mTOR and S6. A similar insufficient effect was also revealed for rapamycin treatment alone. However, combined treatment with both PDTC and rapamycin almost abrogated all of the effects of curcumin on NF-κB and mTOR pathways, as well as cell apoptosis, suggesting that the mTOR and NF-κB pathways are two major but independent downstream targets for curcumin-mediated inhibition in ACC. More vividly, the double-labeling immunofluorescence analyses revealed that the activity of mTOR and NF-κB were significantly and concurrently down-regulated by treatment with curcumin, accompanied by suppression of the Akt/IKK signaling axis (Supplementary Fig. S1). Thus, taking all the above results together, we may expect that curcumin may dually inhibit both mTOR and NF-κB pathways through a crossed PI3K/Akt/IKK signaling axis.

Curcumin Prevents Tumor Angiogenesis and Promotes Cell Apoptosis in ACC-M Xenografts. To further authenticate the striking antitumor effects of curcumin on ACC cells in vitro, xenografts in nude mice were used to verify the inhibitory activities of curcumin in vivo. As shown in Fig. 5, A and B, the growth of ACC-M tumors was obviously prevented by curcumin treatment for 28 days, whereas no toxicity was observed. By performing the in situ TUNEL assay, we observed a large increase in the number of apoptotic cells in the tumor tissues treated with curcumin (Fig. 5C). Moreover, the results also showed that the microvessels marked as CD31-positive staining were significantly reduced by curcumin treatment (Fig. 5C). To further correlate these in vivo tumor-therapeutic effects to the mechanisms identified in vitro, we then assessed the expression level of some key biomarkers in the tumor tissues by immunohistochemical analysis. As the results show, both VEGF and MMP-9 expressions were obviously down-regulated in curcumin-treated tumors concomitant with the suppression of NF-κB nuclear translocation and p-S6 activation (Fig. 5D). All of the above results are consistent with the findings unmasked in our in vitro studies and confirm that curcumin could effectively prevent tumor-induced angiogenesis and promote the apoptotic cell death of ACC by dual inhibition of both mTOR and NF-κB pathways.

Concurrent High Activation Status of the mTOR and NF-κB Pathways in ACC. We next explored the nature activation status of both mTOR and NF-κB pathways in ACC tissues. Representative examples of immunohistochemical results of the selected cases are shown in Fig. 6A. Here, p-S6 was intensely stained in the cytoplasm of most ACC cells accompanied by a strong staining of p-mTOR in the cytoplasm and/or nuclei. Meanwhile, the nuclear staining of NF-κB was detected in some ACC cells at a mean rate of 14.3% in the same area. Moreover, the double-labeling immunofluorescence histochemistry analysis confirmed the concurrent activation of mTOR and NF-κB pathways in ACC (Fig. 6B). As shown in Supplementary Table, when the immunohistochemical staining of the tested markers in the ACC tissues was evaluated against NSG tissues, all of them were significantly higher in ACC cases across all the three histological types. More importantly, the Spearman rank test revealed a significant correlation between the staining of...
Fig. 4. Curcumin dually inhibits the mTOR and NF-κB pathways through a crossed PI3K/Akt/IKK signaling axis. A, ACC-M cells were treated with indicated concentrations of curcumin in serum-deprived medium for indicated time. The expression levels of PI3K, Akt, IKKα/β, mTOR, S6, and their phosphorylation forms, as well as IκB and nuclear form of NF-κB were determined by Western blotting. B, ACC-M cells were transfected with CA-Akt and vector plasmids, followed by incubation with curcumin (40 μM) in serum-deprived medium for 24 h. The expression levels of p-Akt, p-IKK, and nuclear NF-κB were detected by Western blotting. C, ACC-M cells were pretreated with LY294002 (20 μM) or/and PS1145 (10 μM) for 1 h followed by incubation with curcumin (40 μM) in serum-deprived medium for 24 h. The expression levels of p-mTOR, p-S6, p-IKK and p-Akt, as well as nuclear NF-κB, were measured by Western blotting. Densitometric quantitation relative to the control is shown on the top of the immunoreactive bands. Cell apoptosis was assessed by quantitation of DNA fragmentation using Cell Death Detection ELISAPLUS kit. The percentage of DNA fragmentation was calculated by considering 100% fragmentation unified at the time of curcumin addition. All data are presented as the mean from three different experiments with duplicate (+, P < 0.01 versus DMSO-treated control cells; †, P < 0.01 versus curcumin-treated cells without any other pretreatment); bars, ± S.E.
Fig. 5. Curcumin prevents tumor growth in vivo. A, tumor regression observed in ACC xenografts treated with curcumin. ACC-M cells were used to establish xenografts in athymic nu/nu mice, and tumor-bearing animals were given curcumin (1 g/kg p.o. daily; n = 8) or corn oil (vehicle, 100 μl p.o. daily; n = 8) for 4 consecutive weeks. An example of tumor regression in curcumin-treated animals is depicted (left). Right, tumor size from ACC-M xenografts (top) and body weight of mice (bottom) in both vehicle- and curcumin-treated groups was assessed daily, as indicated. Points, mean; bars, ± S.E. B, lesions dissected from ACC-M xenografts after treatment with vehicle or curcumin for 28 days. Analysis of variance followed by the Student-Newman-Keuls test was used to determine the difference between the curcumin- and vehicle-treated groups (P < 0.001) at day 28. C, apoptotic cells and microvessels in both curcumin- and vehicle-treated ACC-M tumor tissues were determined by the in situ TUNEL assay and CD31 immunofluorescence staining, respectively. D, immunohistochemical analyses of the indicated biomarkers in both curcumin- and vehicle-treated ACC-M tumor tissues.
p-mTOR and p-S6 (Supplementary Fig. S2A). In addition, both of them showed significant correlation with NF-κB activation (Supplementary Fig. S2, B and C). Taken together, the above data demonstrate that both mTOR and NF-κB pathways are ubiquitously activated in ACC and may concurrently play important roles in its malignant progression.

In addition, the results also showed that the activation status of both mTOR and NF-κB pathways in the high-metastasis cell line ACC-M were significantly higher than that in the low-metastasis cell line ACC-2, correlating with the higher activation level of the PI3K/Akt/IKK signaling axis (Supplementary Fig. 3A). These findings in ACC cell cultures were consistent with those demonstrated in ACC tissue specimens, which further implicated the clinical significance of the concurrent activation of mTOR and NF-κB pathways in ACC progression. More importantly, a significant synergism in the induction of apoptosis was observed in ACC-M cells after treatment with the combination of NF-κB and mTOR inhibitors compared with either NF-κB or mTOR inhibition alone (Supplementary Fig. S3B), demonstrating the strong rationale for dual-targeted therapies against this aggressive tumor.

Discussion

In the present study, we initially conducted in vitro studies and found that curcumin significantly inhibited the growth of ACC cells via the induction of apoptosis. Moreover, the migration/invasion and angiogenesis induction of ACC cells was also attenuated by curcumin and even earlier than the appearance of late apoptosis. We further applied a clinically relevant nude mouse xenograft model to evaluate the therapeutic effects of curcumin on ACC progression and found that curcumin treatment efficiently prevented the in vivo growth and angiogenesis of ACC tumors. These results suggest that further clinical investigation is warranted to apply curcumin as a novel therapeutic regimen for ACC.

Previous research has indicated that NF-κB is tightly involved in the malignant progression of ACC (Zhang et al., 2005; Zhang and Peng, 2007, 2009; Sun et al., 2010a). Meanwhile, curcumin has been widely accepted as a potent inhibitor of NF-κB (Kunnumakkara et al., 2007, 2008; Anand et al., 2008; Kunnumakkara et al., 2008; Wang et al., 2008). Thus, it is reasonable for us to identify NF-κB as an eventual target of curcumin for the inhibitory activities in ACC as well. Our results indicated that curcumin significantly inhibited the nuclear translocation of NF-κB, accompanied by decreased IKK-α/β phosphorylation and up-regulated IκB-α expression, suggesting the involvement of IKK/NF-κB pathway in the inhibition of ACC by curcumin.

PI3K/Akt pathway-regulated NF-κB activation, through a p38/IKKβ-dependent or an IKKα-dependent mechanism (Via-tour et al., 2005), plays essential roles in the malignant develop-
opment of various tumors (Viatour et al., 2005; Zhang et al., 2007). It is noteworthy that our previous study indicated that the PI3K/Akt pathway was also intensively involved in the NF-κB activation in ACC (Sun et al., 2010a). Therefore, to investigate whether curcumin-mediated down-regulation of IKK/NF-κB interferes with the PI3K/Akt signaling axis, we examined the effect of curcumin on the PI3K/Akt pathway. Consequently, curcumin significantly suppressed the PI3K/Akt pathway, based on the observation of down-regulated phosphorylation levels of both PI3K and Akt. In contrast, curcumin had no effect on the MAPK signaling pathways, as represented by the unchanged phosphorylation status of ERK, p38, and JNK, which further exclude the suppression of Akt/p38/IKKβ pathway from the possible mechanisms underlying curcumin-induced NF-κB down-regulation in ACC. Thus it might be hypothesized that the inhibitory activity of curcumin in ACC cells is probably due to, at least in part, its down-regulation of IKK/NF-κB pathway, both Akt-dependent and Akt-independent.

To validate our hypothesis and gain more insights into the mechanism by which curcumin inhibits ACC, we initially evaluate the influence of CA-Akt overexpression on curcumin-mediated inhibitory effects on ACC cells. As expected, transfection of ACC-M cells with CA-Akt efficiently reversed curcumin-induced inhibition of IKKα but showed less effect on IKKβ inactivation, which might be responsible for the still obviously observed apoptosis induction and NF-κB inactivation by curcumin. Furthermore, the results also showed that pretreatment with the IKK inhibitor PS1145 or NF-κB inhibitor PDTC could eliminate the effects of curcumin on NF-κB activation. However, we unexpectedly found that the apoptosis induction by curcumin was only partially prevented by PS1145 or NF-κB pretreatment. These results suggest that the down-regulation of NF-κB may only partially contribute to the inhibitory effects of curcumin, and it is unlikely to be the sole component targeted by curcumin.

Considering the above observations, we turned to explore other possible components targeted by curcumin, especially those common downstream molecules of both Akt and IKKβ. It is noteworthy that mTOR, a highly conserved serine/threonine kinase, is one such molecule that has been shown to play critical roles in cancer initiation and progression (Guerchin and Sabatini, 2007; Li et al., 2007) through Akt-, IKKβ-, and/or MAPK-dependent pathways (Lee et al., 2007). In addition, despite unclear underlying mechanism, curcumin has been reported to inhibit mTOR activation in other cancer cells (Beevers et al., 2006; Li et al., 2007; Yu et al., 2008). Therefore, we tested the effect of curcumin on mTOR activation in ACC cells and found that curcumin could potently decrease the phosphorylation level of mTOR and its downstream effector S6. To further determine the functional significance of the mTOR suppression in curcumin-mediated inhibitory activities, ACC-M cells were pretreated with the specific inhibitor of mTOR, rapamycin, followed by exposure to curcumin. Similar to the effect of PDTC, rapamycin only partially reversed the cell apoptosis induced by curcumin and showed no effect on curcumin-mediated NF-κB down-regulation, which repeatedly suggested a concurrent suppression of both the NF-κB and mTOR pathways by curcumin. To make this conclusion more convincing, we pretreated ACC cells with both rapamycin and PDTC, followed by exposure to curcumin. As a result, combination of PDTC and rapamycin almost abrogated all of the effects of curcumin on NF-κB and mTOR pathways and cell apoptosis, confirming that the inhibitory activities of curcumin in ACC are highly dependent on its dual suppression of both NF-κB and mTOR pathways. Furthermore, the results also revealed that curcumin-mediated dual suppression of both NF-κB and mTOR pathways were both Akt- and IKKβ-dependent, as demonstrated by the significant difference for combination treatment compared with either PS1145 or LY294002 alone.

To make the above findings more clinically significant and therapeutically meaningful, we then explored the nature activation status of both the mTOR and NF-κB pathways in ACC. As shown in our previous study (Sun et al., 2010a), the NF-κB pathway was ubiquitously activated in ACC through the PI3K/Akt/IKK signaling axis. Here, we further confirmed its concurrence with mTOR activation. Our results suggested that the mTOR and NF-κB pathways were indeed concurrently activated in ACC tissues. In an attempt to gain more insights into the concurrent activation of the mTOR and NF-κB pathways, two ACC cell lines were fully used. Previous studies, including those from our laboratory (Zhang et al., 2005; Zhang and Peng, 2007, 2009; Sun et al., 2010a), have revealed that compared with ACC-2 cells, ACC-M cells seemed more potent in invasive growth, apoptosis evasion, angiogenesis induction, and distant metastasis. However, the precise molecular mechanisms underlying the malignant difference between these two cell lines are still far from clear. Here, we unmasked for the first time that the activation status of both mTOR and NF-κB pathways in the high-metastasis cell line ACC-M was significantly higher than that in the low metastasis cell line ACC-2, correlating with the higher activation level of the PI3K/Akt/IKK signaling

![Fig. 7. Schematic representation of the proposed mechanisms underlying curcumin-mediated inhibitory effects on ACC progression. Curcumin specifically targets the PI3K/Akt/IKK signaling axis, which consequently leads to the concurrent but independent suppression of both NF-κB and mTOR pathways and concomitant activation of caspases as well as down-regulation of VEGF and MMPs, resulting in apoptosis induction, angiogenesis prevention, and invasion suppression, and finally causes the inhibition of ACC progression.](image-url)
Shishodia S, Amin HM, Lai R, and Aggarwal BB (2005) Curcumin (diferuloylmeth-
Viatour P, Merville MP, Veurs B, and Chariot A (2005) Phosphorylation of NF-

Address correspondence to: Dr. Yi-Fang Zhao, Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China. E-mail: yifang@whuss.com
Supplementary data

Molecular Pharmacology #66910

Curcumin dually inhibits both mTOR and NF-κB pathways through a crossed PI3K/Akt/IKK signaling axis in adenoid cystic carcinoma

Zhi-Jun Sun¹, Gang Chen¹, Wei Zhang, Xiang Hu, Yang Liu, Qian Zhou, Ling-Xing Zhu, and Yi-Fang Zhao

Supplementary Materials and Methods

Immunohistochemistry. Paraffin embedded specimens were serially cut into 4-μm sections, deparaffinized, and antigen retrieved by microwave. After that, the sections were washed with phosphate-buffered saline (PBS) and incubated within 3% hydrogen peroxide and 10% goat or rabbit serum for 15 min, followed by an overnight incubation with the indicated antibodies (p-mTOR [1:200]; p-S6 [1:200]; NF-κB p65 [1:500]). The antibody binding was detected by horseradish peroxidase-conjugated secondary antibody using diaminobenzidine substrate kit (Dako, Carpinteria, CA) according to the manufacturer’s protocol. For analysis, at least five fields with typical pathological changes were randomly selected at a magnification of 400 with light microscope (Leica, Wetzlar, Germany) and counted by two independent observers (ZJ Sun and G Chen) blindly. For NF-κB p65, the staining was localized within both the cytoplasm and/or nucleus, but only the nuclear location of NF-κB p65 was categorized as positive. The rate of the nuclear localization of p65 was calculated as described by Nakayama et al. (Nakayama et al., 2001). For p-mTOR and its downstream target p-S6, the staining scores were calculated as the summation of staining intensity (0, no staining; 1, mild staining; 2, moderate staining; and 3, intense staining) and the percentage of positive cells (0, <10%; 1, 10%-25%; 2, 25%-50%; 3, 50-75%; and 4, 75-100% of stained cells).

Double-Labeling Immunofluorescence Histochemistry. Double-labeling immunofluorescence histochemistry was performed on formalin-fixed, paraffin-embedded 5-μm sections. Briefly, the tissue sections were dewaxed in xylene, hydrated through graded alcohols and distilled water, and washed thoroughly with PBS. Antigen retrieval was done
using 10 mM citrate buffer (pH 6.0) in a pressure cooker heated by microwave oven (80% power) for 20 min. The sections were allowed to cool down and rinsed twice with PBS, and then incubated in 3% hydrogen peroxide in PBS for 30 min, followed by another incubation in 10% nonimmune donkey serum (Sigma-Aldrich, St. Louis, MO) for 1 h at room temperature. After that, excess solution was discarded and the sections incubated with p-S6 (1:100) and p65 (1:100) antibodies together overnight at 4 °C. After washing with PBS, the sections were sequentially incubated with FITC-conjugated donkey anti-rabbit antibody and TRTIC-conjugated donkey anti-mouse antibody (1:200; Jackson ImmunoResearch Laboratories, West Grove, PA), respectively, for 1 h. Nuclei were counterstained with 4,6-diamidino-2-phenylindole (DAPI), followed by observation under a fluorescence microscope.

Hoechst Staining for Morphological Evaluation. ACC-2 and ACC-M cells were seeded on 6-cm culture dishes. After incubation with or without curcumin (20 μM) for 24 h, cells were processed for Hoechst staining. Briefly, cells were fixed in 70% ethanol, washed with PBS, and stained with Hoechst 33258 dye, followed by extensive washes. Nuclear staining was examined under a fluorescence microscope and three images for each dish were captured using Image-Pro Plus version 5.1 software (Media Cybernetics, Bethesda, MD).

DNA Fragmentation Assay. Induction of apoptosis by curcumin in human ACC cells was assessed by analysis of cytoplasmic histone-associated DNA fragmentation. Briefly, ACC-2 and ACC-M cells at 1×10⁴/well were plated in 96-well plates and incubated with or without curcumin for 24 h. Then cytoplasmic histone-associated DNA fragmentation was determined
with the Cell Death Detection ELISAPLUS kit (Roche, Applied Science, Germany) according to
the manufacturer's instructions.

Annexin V-FITC/PI Double-Labeling. The quantitative assessment of apoptosis was
determined by Annexin V-FITC and PI double-staining flow cytometry. Briefly, ACC-M cells at
1×10^6/well were plated in a 6-cm dish and incubated with or without curcumin for 24 h, then
harvested and collected by centrifugation, resuspended in binding buffer, and labeled with
Annexin V-FITC and PI double staining kit (BD Biosciences, San Jose, CA) according to the
instructions of manufacturer. After incubation in the dark for 30 min, cells were analyzed on the
flow cytometer using Cell Quest software. The Annexin V-FITC−/PI− population was regarded
as normal healthy cells, while Annexin V-FITC+/PI− cells were taken as a measure of early
apoptosis, Annexin V-FITC+/PI+ as late apoptosis, and Annexin V-FITC−/PI+ as necrosis.

Caspase Activity Measurement. ACC-M cells at 1×10^5/well were seeded in six-well plates,
either untreated or treated with curcumin for 24 h, and then the activities of caspase-9 and -3
were studied. This caspase assay is based on the ability of the active enzyme to cleave the
chromophore from the enzyme substrate of caspase-9 (Ac-LEHD-pNA), and caspase-3
(Ac-DEVD-pNA). Briefly, cells were collected, washed with PBS and lysed in lysis buffer for 20
min at 4 °C followed by centrifugation at 10000 × g for 30 min. Then cell lysates were
incubated with enzyme specific colorigenic substrates in assay buffer for 2 h at 37 °C. The
activity of caspase-9 and -3 was described as the cleavage of colorimetric substrate by
measuring the absorbance at 405 nm.
Wound Healing Assay. For determination of cell motility, ACC-M cells (1 × 10^5 cells/well) were plated in 6-well culture plates and were grown to 80–90% confluence. The center of the cell monolayers were scraped with a sterile micropipette tip to create a gap of constant width. Then the cellular debris was subsequently washed with PBS, and the remaining ACC-M cells were exposed to various concentrations of curcumin as indicated for 12 h. The cells were fixed and stained with acridine orange. Three random images were obtained using a fluorescent microscope with a Leica camera.

Endothelial Cell Migration Assay. To investigate the effects of curcumin on ACC-induced migration of EAhy926 cells, the Transwell Boyden chamber assay was performed as described above. Briefly, conditional medium (CM) from ACC cells pretreated with or without curcumin for 12 h were added to the lower chambers, and then EAhy926 cells were suspended in 100 μL of serum-deprived DMEM medium and seeded into the upper chambers. After 12 h of incubation at 37 °C, migrated cells were fixed with methanol, stained with crystal violet, and then photographed and analyzed.

Capillary-Like Tube Formation Assay. Capillary-like tube formation assay was also performed to examine the effects of curcumin on ACC-induced angiogenesis in vitro. EAhy926 cells (2 × 10^5 cell/dish) in CM from ACC-M cells pretreated with or without curcumin for 12 h were seeded into 6 cm culture dishes coated with Matrigel and incubated for 24 h at 37 °C. After that, the formation of capillary-like structures were observed and captured, the tubes were scanned and quantitated using Image-Pro Plus 5.2 (Media Cybernetics).
Rat Aortic Ring Assay. The thoracic aortas were harvested from Sprague Dawley rats (6 weeks of age) and placed in the 48-well plates coated with 120 μL of Matrigel and sealed in place with an overlay of 50 μL of Matrigel. CM from ACC-M cells pretreated with or without curcumin for 12 h was added to the wells in a final volume of 200 μL. As control, medium alone was assayed. On Day 6, the microvessel outgrowth area was photographed under a phase microscope, and measured with Image-Pro Plus (Media Cybernetics).

Chicken Chorioallantoic Membrane assay. To further investigate the effect of curcumin on tumor-induced angiogenesis, a modified chick chorioallantoic membrane (CAM) assay was carried out. Fertilized White Leghorn chicken eggs were incubated at 37 °C under conditions of constant humidity. The developing CAM was separated from the shell by opening a window at the broad end of the egg above the air sac on Day 7. The opening was sealed with Micropore surgical tape (3M Health Care), and the eggs were returned to the incubator. On Day 9, tape was removed, and sterile filter paper discs containing 20 μL CM were placed on the surface of each CAM. The holes were covered with Micropore surgical tape again and the eggs were incubated for an additional 3 days. The area around the filter paper discs was photographed with a stereo-microscope, and the newly formed vessels were counted in a double-blind manner. Assays for each test sample were carried out using 8-10 eggs.

In Vivo Matrigel Plug Assay. Briefly, 0.6 mL Matrigel containing 0.2 mL CM was injected subcutaneously into nude mice. After 7 days, the skin of the mouse was pulled back to expose the Matrigel plug completely. The plugs were photographed and then hemoglobin was measured using the Drabkin method and Drabkin reagent kit 525 (Sigma-Aldrich).
Semi-Quantitative Reverse Transcription-PCR. The primer sequences for PCR were designed as follows: VEGF: 5'-TCATCTCTCTATGTGCTGGC-3' and 5'-ATGAACTTTCTGCTCTCGG-3'; b-FGF: 5'-GTGTGTGCTAACCCTTACCT-3' and 5'-GCTCTTAGCAGACATGGGAAG-3'; G-CSF: 5'-AGACAGGAAGACAGAAGG-3' and 5'-GCCAGAGTGAGGGTGGGAAGAG-3'; PDGF: 5'-CCCCTGCCCATCCAGGAAGAG-3' and 5'-TTGCGCCACCTTGCACGTGGTGC-3'; MMP-2: 5'-ACTGAGTGCCGCTGTTTGC-3' and 5'-CGCTTCTGGCTGGTCTGT-3'; MMP-9: 5'-CCTGGAACTCACACGACATTC-3' and 5'-TGGAACACTCAGAAGCGAGAAG-3'; IL-6: 5'-TTCAATGAGGAGACTTGCCTG-3' and 5'-ACAACAATCTGAGGTCG-3'; GAPDH (control): 5'-AACGGATTTGGGCTATGGG-3' and 5'-CAGGGGTGCTAAGCAGTTGG-3'.

In situ Detection of Apoptotic Index in Xenografts Tumor Samples. Apoptotic cells in tumor samples were determined by the terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) assay using the In Situ Cell Death Detection Kit (Roche) according to the manual. Six representative areas of each section without necrosis were selected and both apoptotic cells and total nuclei cells were counted under a light microscope at ×400 magnification. The apoptotic index was expressed as the percentage of positive apoptotic tumor cells to total tumor cells.

Microvessel Density in Xenografts Tumor Samples. To quantify angiogenesis in xenografts tumor samples, microvessels were identified by CD31 immunofluorescence staining as described by Amornphimoltham et al. (Amornphimoltham et al., 2008). The CD31 stained section were observed under a Leica fluorescence microscope, and images were captured
from different areas in each section. Then the images were processed using Image-Pro Plus (Media Cybernetics). The vessel density in each image was estimated by measuring the pixel intensity in each field of view. The vessel density of each group was represented as intensity per pixel. A total of 20 high power fields were examined from three tumors of each group.

References

Supplementary Table

Immunostaining scores for p-mTOR, p-S6, and NF-κB in NSG (N), as well as cribriform (C), tubular (T) and solid (S) ACC tissues.

<table>
<thead>
<tr>
<th>Histologic type</th>
<th>p-mTOR</th>
<th>p-S6</th>
<th>NF-κB</th>
</tr>
</thead>
<tbody>
<tr>
<td>C (n = 23)</td>
<td>4.74 ± 0.26a</td>
<td>4.82 ± 0.24a</td>
<td>12.81 ± 1.12a</td>
</tr>
<tr>
<td>T (n = 18)</td>
<td>4.72 ± 0.33a</td>
<td>5.11 ± 0.27a</td>
<td>13.89 ± 1.57a</td>
</tr>
<tr>
<td>S (n = 9)</td>
<td>5.44 ± 0.38b</td>
<td>5.78 ± 0.43b</td>
<td>19.17 ± 2.18b</td>
</tr>
<tr>
<td>N (n = 6)</td>
<td>0.83 ± 0.31b</td>
<td>1.00 ± 0.26b</td>
<td>0.89 ± 0.80c</td>
</tr>
</tbody>
</table>

Values are mean ± SE. Within a column, means not sharing a common superscript letter are significantly different ($P < 0.05$).
Supplementary Figure 1. Double-labeling immunofluorescence analyses for NF-κB and p-mTOR (A), p-mTOR and p-Akt (B), NF-κB and p-Akt (C), NF-κB and p-IKKα/β (D), p-mTOR and p-IKKα/β (E), as well as p-IKKα/β and p-Akt (F) in ACC-M cells treated with DMSO (Control) or curcumin (20 μM).
Supplementary Figure 2. Correlation among the activation of mTOR, S6, and NF-κB in ACC tissues. Spearman correlation and linear regression were used to determine the relationship between p-mTOR and p-S6 (A), p-mTOR and NF-κB (B), as well as p-S6 and NF-κB (C), respectively. There were significant correlations among the activation status of mTOR, S6, and NF-κB.
Supplementary Figure 3. Activation status of the NF-κB and mTOR pathways, as well as the PI3K/Akt/IKK signaling axis in ACC cell lines. A, the expression levels of PI3K, Akt, IKKα/β, mTOR, S6 and their phosphorylation forms, as well as nuclear NF-κB were determined by Western blot analysis in ACC-M and ACC-2 cell lines, respectively. B, ACC-M cells were pretreated with PDTC (20 μM) or/and rapamycin (100 nM) for 1 h. The expression levels of p-mTOR, p-S6, as well as nuclear NF-κB were determined by Western blotting. Cell apoptosis was assessed by quantitation of DNA fragmentation using the Cell Death Detection ELISA PLUS assay. All data are presented as mean from three different experiments with duplicate (*, P < 0.05; **, P < 0.01 versus the control group); bars, ±SE.