


















Fig. 5. Ad.5/3-mda-7–induced CD95 activation is dependent on the de novo ceramide synthesis pathway. A, A498 cells in four-well chambered slides or 60-mm
dishes were transfected with empty-vector plasmid to express a scrambled siRNA or a plasmid to knockdown ceramide synthase 6 (siLASS6). Twelve hours after
transfection cells were infected with Ad.5/3-cmv or Ad.5/3-mda-7 (50 moi) and treated with either vehicle (DMSO) or myriocin (1 �M). Twenty-four hours after
infection, cells were treated with vehicle (DMSO), 4HPR (0.5 �M), or 17AAG (100 nM), as indicated. Six hours after drug exposure, cells were either fixed for
immunohistochemistry to determine the levels of plasma membrane CD95 (lower graph) or lysed followed by CD95 immunoprecipitation to determine caspase 8
association (DISC) complex formation (upper immunoblot) (n � 3, � S.E.M.; #, p � 0.05 less than corresponding treatment in siSCR cells). B and C, A498 and
UOK121LN cells were infected independently in triplicate with Ad.5/3-cmv or Ad.5/3-mda-7 (50 moi) and treated with either vehicle (DMSO) or myriocin (1 �M).
Twenty-four hours after infection, cells were treated as indicated with vehicle (DMSO), 4HPR (0.5 �M), or 17AAG (100 nM). Cells were isolated 24 h after
drug-exposure and viability determined by trypan blue dye exclusion [n � 2, � S.E.M.; # p � 0.05 less than corresponding treatment in vehicle-treated (VEH) cells].
D and E, A498 and UOK121LN cells were transfected independently in triplicate with empty-vector plasmid to express a scrambled siRNA or a plasmid to
knockdown ceramide synthase 6 (siLASS6). Twelve hours after transfection, cells were infected with Ad.5/3-cmv or Ad.5/3-mda-7 (50 moi). Twenty-four hours after
infection, cells are treated as indicated with vehicle (DMSO), 4HPR (0.5 �M), or 17AAG (100 nM). Cells were isolated 24 h after drug exposure, and viability was
determined by trypan blue dye exclusion (n � 2, � S.E.M.; #, p � 0.05 less than corresponding treatment in VEH cells). F, A498 cells were transfected independently
in triplicate with empty-vector plasmid or a plasmid to express dominant-negative PERK. Twelve hours after transfection, cells were infected with Ad.5/3-cmv or
Ad.5/3-mda-7 (50 moi). Twenty-four hours after infection, cells were treated as indicated with vehicle (DMSO) or 17AAG (100 nM). Cells were isolated 6 h after drug
exposure, and the levels of ceramide determined by mass spectrometry (n � 2, � S.E.M.; � , p � 0.05 greater than corresponding Ad.5/3-cmv control).
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the enhanced generation of ROS was Ca2�-dependent. Inhi-
bition of the de novo ceramide synthesis pathway, or specif-
ically knockdown of LASS6, suppressed the abilities of Ad.5/
3-mda-7 as well as 4HPR or 17AAG to promote CD95
activation and suppressed the induction of cytosolic Ca2� and
ROS by either 17AAG or 4HPR. Surprisingly, however, our
data demonstrated that 17AAG did not significantly enhance
bulk MDA-7/IL-24–induced ceramide or dihydro-ceramide
levels. However, when ER stress signaling was compromised
by expression of dominant-negative PERK that blocked the
MDA-7/IL-24–induced increase in ceramide levels, 17AAG
was able to partially overcome the block to ER stress signal-
ing and facilitate MDA-7/IL-24–induced ceramide genera-
tion. Clearly, a more detailed time course analysis of cer-
amide generation and degradation pathways will be required
to fully understand the interaction of 17AAG and MDA-7/
IL-24 with respect to lipid signaling and how ceramide levels

are regulated. Thus, our data argue that ceramide generation
or alterations in ceramide metabolism caused by expression
of MDA-7/IL-24 is essential for Ad.5/3-mda-7 lethality and
for the ability of agents that generate ROS, such as 17AAG or
4HPR, to activate CD95 and to ultimately cause tumor cell
killing (Fig. 7).

The actions of As2O3 (a therapeutic agent) in leukemic cells
have largely been linked to the generation of ROS and the
induction of tumor cell differentiation (Zhou et al., 2007).
Unlike either 4HPR or 17AAG, As2O3 can degenerate to
release arsenic as well as O�; hence, its ability enhance
MDA-7/IL-24 toxicity would be expected to have some differ-
ences from those of 4HPR or 17AAG. Indeed, unlike 4HPR or
17AAG, quenching of cytosolic Ca2� or inhibition of de novo
ceramide synthesis pathways did not prevent As2O3 from
interacting with MDA-7/IL-24 to profoundly increase ROS
levels. In addition, the reverse of our data with 4HPR or

Fig. 6. Ad.5/3-mda-7 infection of RCC tumors suppresses RCC tumor growth that is enhanced by 17AAG. A and B, A498 cells were injected into the
rear right flanks of athymic mice. Tumors were grown over the subsequent 29 days. Animals were segregated into tumor volumes of approximate
equivalent mean tumor size and standard error; the tumor was injected with either Ad.5/3-cmv or Ad.5/3-mda-7. Animals were treated 24 h later with
either vehicle or 4HPR (100 mg/kg) (A) or 17AAG (100 mg/kg) (B) every day for 3 days. One week after the first virus infection, tumors were again
infected in an identical manner with adenovirus. Tumor volumes were measured every 2 or 3 days. The mean volume of the tumor is presented as a
fold increase over the preinfected volume (defined as 1.00) (n � 2, � S.E.M.; 9–10 mice per group total over two studies; #, p � 0.05 less than vehicle
or individual treatments). C, A498 tumors were isolated 2 days after the second virus infection. Sections (10 �m) were taken and stained by
hematoxylin and eosin (H&E; morphology) and TUNEL (apoptosis) and for cleaved caspase 3, Ki67, and MDA-7/IL-24 expression. Data are from
representative images from multiple tumors shown for hematoxylin and eosin at 20� magnification and for other slides using a confocal microscope
at 100� magnification.
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17AAG with respect to changes in cytosolic Ca2� was ob-
served using As2O3; the As2O3-induced increase of Ca2� was
ROS-dependent. However, despite all of these differences
and in a manner similar to 4HPR or 17AAG, and despite all
of the additional ROS generation caused by As2O3 � Ad.5/3-
mda-7 treatment, As2O3 still required CD95 expression/func-
tionality and LASS6 function to enhance MDA-7/IL-24 le-
thality. Thus as with MDA-7/IL-24 itself, which can kill
tumor cells through multiple convergent apoptotic mecha-
nisms, agents that generate ROS can facilitate MDA-7/IL-24
lethality through multiple mechanisms that converge on en-
hanced death receptor signaling.

MDA-7/IL-24 is a secreted cytokine and has been shown in
several studies to have a “toxic bystander” effect on distant
tumor cells (Sarkar et al., 2002; Su et al., 2005; Sauane et al.,
2008; Emdad et al., 2009; Eulitt et al., 2010 and references
therein). We discovered that secreted MDA-7/IL-24 produces
a conditioned media that, when placed onto uninfected RCCs,
suppresses the growth of the uninfected cells and elevates
apoptosis levels in a CD95–dependent fashion; this lethality
is further enhanced by As2O3, 4HPR, and by 17AAG. Based
on simple mass action effects, it is not possible to infect every
tumor cell within a tumor using an adenovirus, and this has
been one possible reason why so many gene therapy ap-
proaches have failed in the clinic. As MDA-7/IL-24 is se-
creted, our findings argue that this cytokine could have ther-
apeutic utility in chemotherapy-resistant metastatic renal

carcinoma. That a 20-fold lower Ad.5/3-mda-7 virus dose
resulted in no significant alteration in tumor growth argues
that for translation into the clinic to achieve optimal results,
a virus with serotype modification plus tumor conditional
replication in addition to MDA-7/IL-24 production and an
approach to target virus delivery using systemic administra-
tion may be required (i.e., Ad.5/3-CTV) (Greco et al., 2010).

One characteristic hallmark of RCC is loss of VHL protein
expression (Ishizawa et al., 2004). We found that re-expres-
sion of VHL in VHL(�/�) RCCs suppressed MDA-7/IL-24
toxicity, in agreement with data arguing that VHL-express-
ing RCCs are less tumorigenic and that MDA-7/IL-24 toxicity
is reduced in nontransformed cells. MDA-7/IL-24 kills tumor
cells, in part, by causing a toxic form of ER stress, and one
plausible mechanism for the disparity in MDA-7/IL-24 toxic-
ity in transformed versus nontransformed cells is the greater
levels of protein expression and unfolded proteins in trans-
formed cells. Because VHL is an E3 ligase the actions of
which will tend to reduce the toxic protein load in a tumor
cell, our findings are also compatible with VHL expressing
cells having a lower load of unfolded (toxic) proteins.

Prior studies from our laboratory have noted that MDA-7/
IL-24 can suppress the growth of RCC tumors and has a
bystander effect, an effect that can be enhanced by the mul-
tikinase inhibitor sorafenib (Eulitt et al., 2010). On the basis
of the findings in the present manuscript, we attempted to
determine whether agents that generate ROS could enhance
MDA-7/IL-24 toxicity in RCC tumors. To our surprise, 4HPR
did not seem to interact in vivo with MDA-7/IL-24 expression
to suppress tumor growth rates. Clearly, further studies are
required using higher doses of 4HPR and altered adminis-
tration schedules to confirm this lack of in vivo effect. In
contrast, 17AAG significantly reduced growth in tumors in-
fected with Ad.5/3-mda-7. It is possible that the effect of
17AAG was due to generation of both ROS and to inhibition
of protective signaling pathways in the tumors. Further stud-
ies, including the clinical translation of viruses to express
MDA-7/IL-24 into patients, will be required to define poten-
tial therapeutic efficacy of MDA-7/IL-24 in kidney cancer.
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