RNA-Induced Silencing Complex-Bound Small Interfering RNA Is a Determinant of RNA Interference-Mediated Gene Silencing in Mice

Jie Wei, Jeffrey Jones, Jing Kang, Ananda Card, Michael Krimm, Paula Hancock, Yi Pei, Brandon Ason, Elmer Payson, Natalya Dubinina, Mark Cancilla, Mark Stroh, Julja Burchard, Alan B. Sachs, Jerome H. Hochman, W. Michael Flanagan, and Nelly A. Kuklin

Received December 7, 2010; accepted March 21, 2011

ABSTRACT
Deeper knowledge of pharmacokinetic and pharmacodynamic (PK/PD) concepts for RNA therapeutics is important to streamline the drug development process and for rigorous selection of best performing drug candidates. Here we characterized the PK/PD relationship for small interfering RNAs (siRNAs) targeting luciferase by examining siRNA concentration in plasma and liver, the temporal RNA-induced silencing complex binding profiles, mRNA reduction, and protein inhibition measured by noninvasive bioluminescent imaging. A dose-dependent and time-related decrease in bioluminescence was detected over 25 days after a single treatment of a lipid nanoparticle-formulated siRNA targeting luciferase messenger RNA. A direct relationship was observed between the degree of in vivo mRNA and protein reduction and the Argonaute2 (Ago2)-bound siRNA fraction but not with the total amount of siRNA found in the liver, suggesting that the Ago2-siRNA complex is the key determinant of target inhibition. These observations were confirmed for an additional siRNA that targets endogenously expressed Sjögren syndrome antigen B (Ssb) mRNA, indicating that our observations are not limited to a transgenic mouse system. Our data provide detailed information of the temporal regulation of siRNA liver delivery, Ago2 loading, mRNA reduction, and protein inhibition that are essential for the rapid and cost-effective clinical development of siRNAs therapeutics.

Introduction
RNA interference (RNAi) is an evolutionarily conserved mechanism involved in regulation of gene expression (Tuschl, 2001; Scherr and Eder, 2007). RNAi uses small double-stranded RNAs known as small interfering RNAs (siRNAs) to induce site-specific cleavage of an mRNA transcript, leading to its subsequent degradation. Synthetic siRNAs hold tremendous therapeutic potential because of their ability to induce potent, persistent, and specific suppression of disease-causing genes. As evidence for this, it is noteworthy that the first clinical trial of an RNAi-based drug started only 3 years after the initial discovery of RNAi in mammalian cells (Elbashir et al., 2001). Several RNAi-based drugs are currently under clinical evaluation (Watts et al., 2008). As this area matures, so will the processes by which siRNA clinical candidates are chosen. In particular, a detailed understanding of the pharmacokinetic (PK) fate and pharmacodynamic (PD) effect of siRNAs in vivo will provide a rigorous basis for candidate selection and therefore improve the performance of the candidate in clinical studies. (Meibohm and Derendorf, 2002; Bartlett and Davis, 2006; Gabrielsson et al., 2009).

Effective delivery remains a major technical challenge associated with siRNA therapeutics (Sepp-Lorenzino and Ruddy, 2008). Systemic delivery of siRNAs involves multiple steps, including siRNA biodistribution, cellular interaction
with the delivery vehicle, intracellular uptake, endosomal release, Clp-1 phosphorylation, and binding of siRNAs to RNA-induced silencing complex (RISC) (Gilmore et al., 2006; Parker et al., 2006; Vaishnaw et al., 2010). RISC is a complex of multiple proteins including Argonaute 2 (Ago2), Dicer, and transactivating response RNA-binding protein. Ago2 is the “slicer” responsible for cleaving the mRNA transcript. During siRNA-RISC assembly, the siRNA duplex is unwound, and one strand (i.e., the passenger strand) is degraded, whereas the other strand (i.e., the guide strand) facilitates target mRNA degradation (Matranga et al., 2005; Lima et al., 2009). Inefficiencies in any of these steps could hypothetically mitigate the PD effect of an siRNA therapy.

Few clinical PK/PD studies using siRNAs have been reported. Davis et al. (2010) reported PK results from the first phase I trial of a siRNA systemically delivered to cancer patients using a targeted nanoparticle. Tumor biopsies were analyzed from three different patients. All biopsies after siRNA treatment showed reduced mRNA expression for the target ribonucleotide reductase M2. Tumor biopsies from one patient who received the highest dose of nanoparticle-formulated siRNA showed an mRNA fragment consistent with the siRNA-directed site-specific Ago2 cleavage of ribonucleotide reductase M2 transcript. This report provided the first evidence for the RNAi mechanism of action in humans. Unfortunately, the concentration of the siRNA delivered to the tumor was not quantified, and no PK and PD relationship could be established. Reports from two phase I studies evaluated the pharmacokinetics of ALN-RSV01, a siRNA against respiratory syncytial virus (RSV) (DeVincenzo et al., 2008). However, because ALN-RSV01 was administered intranationally to patients, systemic exposure to the siRNA was minimal. Furthermore, no siRNA-mediated inhibition of the RSV target was evaluated.

Although it is understandable that patient-based siRNA PK and PD relationships are incomplete, it is surprising that there is a lack of siRNA-focused preclinical PK and PD reports, especially with the advent of small-animal molecular imaging as a means for evaluating PD (Willmann et al., 2008). Bioluminescent images captured over time can replace imaging as a means for evaluating PD (Willmann et al., 2010). Bioluminescent imaging as a means for evaluating PD (Willmann et al., 2010). While the relationship between siRNA concentration and its PD effect is clear, the PK/PD relationship of siRNAs reported here will enable more informed decisions in selecting the optimal siRNA chemistry, delivery vehicle, dose, and schedule for the evaluation of siRNA molecules destined for the clinic.

Materials and Methods

siRNA Design, Synthesis, and Sequence. Chemically modified siRNAs contained either ribo (r), deoxy (d), fluoro (flu), or O-methyl (ome) 2′ modifications as described previously (Zou et al., 2008). The passenger strand contained an inverted abasic cap (iB) where indicated. siRNAs were synthesized as described previously (Wincott, 2001). The siRNA sequences and modification are as follows.

siRNA Delivery and Formulation. Lipid nanoparticles were made using the cationic lipid 2-{4-[(3b)-cholest-5-en-3-yloxy]-octyl}dimethyl-3-[(9Z,12Z)-octadeca-9,12-dien-1-yloxy]propan-1-amine (Merck and Co., Inc., Whitehouse Station, NJ), cholesterol (Northern Lipids, Burnaby, BC, Canada), and monomethoxy polyethylene glycol-1.2-dimyristoylglycerol (NOF Corporation, Tokyo, Japan) at a 60:38:2 M ratio, respectively.

In Vivo Studies. All experimental animal procedures adhered to a protocol approved by the Institutional Animal Care and Use Committee and were consistent with local, state, and federal regulations and the journal requirements. Studies were performed in homozygous Rosa26-LSL-luciferase transgenic mice as described previously (Tao et al., 2010). The mice were licensed from the Dana-Farber Cancer Institute and bred at Taconic Farms (Hudson, NY). Rosa26 mice consist of a FVB.129S6 (B6) genetic background containing a luciferase (Luc) cDNA preceded by a loxp-stop-loxp (L-S-L) in the Rosa26 locus (Safran et al., 2003). The optimal dose of recombinant Cre adenovirus, Ad-CMV-Cre (Vector Biolabs, Philadelphia, PA) that excised the stop sequence, thereby placing the luciferase gene under control of the Rosa26 locus (Safran et al., 2003). The optimal dose of recombinant Cre adenovirus capable of inducing maximum luciferase expression was determined to be 2 to 3 × 10^8 plaque-forming units. Steady-state luciferase expression was reached ~2 weeks after injection of the virus. The bioluminescence emanating from the livers of Ad-CMV-Cre–induced Rosa26-LSL-Luc mice persisted for at least 2 months without perceptible decrease in bioluminescence. For RNA analysis, animals were euthanized, and both plasma samples and a section of the right medial lobe of the liver were collected from each animal. Plasma samples were stored at ~80°C before use. The excised liver sections were placed in RNALater at 4°C for mRNA quantification and stored at ~80°C or flash-frozen for siRNA quantification and stored at ~80°C before use.

Bioluminescence Measurement and Analysis. Bioluminescence was measured using a Xenogen IVIS (Alameda, CA) imaging system as described previously (Tao et al., 2010). In brief, mice were injected intraperitoneally with 0.2 ml of luciferase substrate d-luciferin (Caliper Life Sciences, Hopkinton, MA) solution (20 mg/ml in PBS) 10 min before imaging. Mice were anesthetized using 3% iso-
flurane with the oxygen flow at 1 l/min for 3.5 min. Images were taken using a 20-cm field of view and an exposure time of 1 s. Bioluminescent images were displayed by overlaying a bioluminescence intensity representative pseudocolor image (blue representing the lowest intensity and red representing the highest intensity) on a gray-scale mouse image to generate a two-dimensional picture of the distribution of bioluminescence in the mouse liver. Bioluminescence values were calculated by measuring the photon flux (photons per second) in the region of interest surrounding the bioluminescence signal emanating from the mice with the Living Image software (Xenogen Corp, Alameda, CA). Bioluminescence reduction after luciferase siRNA treatment was evaluated by calculating the luminescence intensity values (photons per second per centimeter squared per steradian) at the time of measurement relative to values of pretreatment (day 0), and presented as relative bioluminescence (−log2-fold change or percentage reduction).

Pharmacodynamic Half-Life Calculation. Time dependence of log2-fold changes in luciferase bioluminescence as a result of siRNA silencing and its subsequent decay were fitted with the following equation: \(\log_2(\text{bioluminescence}) = \frac{X}{2} e^{-k_1 t} + \frac{X}{2} e^{-k_2 t} \). This in sum of exponentials, the second term represents the decay of the preformed pool of luciferase protein. For simplicity, both protein expression and silencing are assumed to be maximal before the first measurement at day 1. Half-life of luciferase transcript is calculated from the silencing decay term: \(t_{1/2} = \frac{\ln(2)}{k_2} \).

Pharmacodynamic Durability. Area under the curve (AUC) was calculated via the trapezoid method using Prism (GraphPad Software, La Jolla, CA). In brief, vertical lines are dropped from each point to the baseline, and diagonals are drawn between each pair of points to form trapezoids. The areas of the trapezoids are calculated \(\text{AUC} = \frac{Y_1 + Y_2}{2} (X_2 - X_1) \) and then the areas of all trapezoids are summed, resulting in the AUC.

Quantification of mRNA Reduction. Total RNA was isolated from liver samples using RNeasy96 Universal Tissue Kit (QIAGEN, Valencia, CA) following the product protocol. Approximately 30 mg of liver was homogenized using a TissueLyser Beadmill (QIAGEN) for 20 min at 25 Hz in 750 l of lysis reagent (Qiazol lysis reagent). Total RNA was extracted using RNeasy96 Universal Tissue Kit (QIAGEN, Valencia, CA) following the product protocol. Approximately 30 mg of liver was homogenized using a TissueLyser Beadmill (QIAGEN) for 20 min at 25 Hz in 750 l of lysis reagent (Qiazol lysis reagent). The on-column DNase I treatment was performed prior to RNA elution. Reverse transcription polymerase chain reaction (RT-PCR) was performed using 350 ng of RNA and the TaqMan Gene Expression and Cells-to-CT Kit (Applied Biosystems, Foster City, CA) according to the product protocol. Real-time qPCR was performed in a 10-l reaction volume using the 7900 HT Fast Real-Time PCR System (Applied Biosystems). All reactions were conducted in duplicate.

GAPDH (glyceraldehyde-3-phosphate dehydrogenase) was used as an endogenous control gene.

Relative quantification of mRNA was performed using the comparative Ct method \(\Delta \Delta C_t \) (Livak and Schmittgen, 2001). In brief, the endogenous gene Gapdh was used as an internal control gene to normalize each PCR for the amount of RNA added in the reverse transcription reactions and presented as \(\Delta C_t(\text{Ct}_{\text{target}} - \text{Ct}_{\text{Gapdh}}) \); therefore, the Ct value of target gene was normalized to the Ct value of Gapdh for each sample. The relative expression level of target gene of interest after siRNA treatment was evaluated by normalizing the mean \(\Delta \Delta C_t \) of \(\text{Ct}_{\text{target}} - \text{Ct}_{\text{Gapdh}} \) value of siRNA treated group to the mean \(\Delta \Delta C_t \) of \(\text{Ct}_{\text{target}} - \text{Ct}_{\text{Gapdh}} \) value of PBS treated negative control group, presented as \(\Delta \Delta \text{Ct} \) (\(\Delta \Delta \text{Ct}_{\text{siRNA-treated}} - \Delta \Delta \text{Ct}_{\text{PBS-treated}} \)), representing −log2-fold change, or as 100 \(\times \left(1 - 2^{-\Delta \Delta C_t}\right)\), representing percentage of mRNA reduction.

In Vivo siRNA Quantification. The siRNA concentration of the plasma and liver samples was determined using the following sample preparation and stem-loop RT-PCR and real-time qPCR methods, modified from a method described previously (Chen et al., 2005). Liver samples were homogenized using 500 l of Qiazol lysis reagent per 50 mg of tissue and a Genogrinder 2000 (Spex Certiprep Inc, Metuchen, NJ) with a 5/32-in stainless steel bead at 1300 strokes/min for 5 min. Samples were subsequently incubated at 37°C for 30 min. Plates were spun briefly, and the homogenate was diluted 1:1000 in Tris-EDTA buffer. The concentration of siRNA was determined using an eight-point standard curve generated by spiking a 0.1% dilution of treatment-naive mouse liver homogenate or plasma with a 10-fold serial dilution of naked siRNA starting at 100 ng/ml.

The RT primer sequence of the luciferase siRNA was 5′-GTCGATATC-CAGTTGCAGGTCGAGTGGCTACAGGCACGACTGATAC-GACAATAAG-3′. The annealing step was performed in a 16-μl reaction containing 25 nM stem-loop RT primer and 10 μl of diluted homogenate. The reaction was incubated at 95°C for 5 min, 60°C for 2 min, 70°C for 2 min, 60°C for 2 min, and 4°C for 2 min with a 4°C hold. RT-PCR was performed using the TaqMan MicroRNA Reverse Transcription Kit (Applied Biosystems) per the product protocol but using only 0.5 μl of reaction of MultiScribe RT enzyme.

Real-time qPCR was performed in a 20-μl reaction volume using a 7500 Fast Real-Time PCR System (Applied Biosystems). All reactions were run in triplicate. The forward primer sequence was 5′-CGCGGTATCTTCTCTTCTAGCC-3′. The reverse primer sequence was 5′-AGTGCGAGGGTTCGAG-3′. The probe sequence was 5′-6FAM-CACGCGACTGATAC-MGBNFQ-3′. The same procedures were applied for Ssb siRNA quantification. The RT primer sequence for Ssb siRNA was 5′-GTCGATATCCAGGTC AGGTTGAGGGTTCGAGTGATACGACAAACACAGA-3′. The forward primer for Ssb siRNA was 5′-CGCGGTATCTTCTTCTAGCC-3′. The reverse primer for Ssb siRNA is 5′-AGTGCGAGGGTTCGAG-3′. The probe sequence for Ssb siRNA is 5′-6FAM-TGCGACTG ATACGACAAACACAGA-MGBNFQ-3′. All primers were obtained from Integrated DNA Technologies (Corvalle, IA), and probes were obtained from Applied Biosystems. siRNA concentrations were calculated according to the detected linear regression between Ct value and log siRNA concentration from standards.
Results

A Noninvasive In Vivo Model for Monitoring siRNA Pharmacodynamics in Real Time. As previously reported, mice containing a luciferase gene preceded by a loxp-stop-loxp in the Rosa26 locus were used to investigate whether bioluminescence can serve as a noninvasive model for monitoring RNAi in vivo (Tao et al., 2010). Rosa26-LSL-Luciferase mice were injected intravenously with Cre recombinase expressing adenovirus to induce the luciferase expression in liver and subsequently used for the evaluation of siRNA-mediated in vivo gene silencing (Fig. 1A). Mice were dosed with luciferase siRNA, and the duration of gene silencing was monitored by noninvasive bioluminescence system (Fig. 1B). siRNA-mediated inhibition of in vivo bioluminescence and decreased mRNA levels were correlated, indicating that bioluminescence can serve as a noninvasive model for monitoring mRNA knockdown (Fig. 1C; \(R^2 = 0.80, P < 0.0001, n = 100 \)).

We confirmed the work of Tao et al. (2010) for the utility of the model by showing a linear correlation between bioluminescence and luciferase mRNA using four different time points and five different concentrations of luciferase siRNA. In addition, we evaluated the effect of 2 irrelevant siRNAs [a scrambled universal control (UC3) siRNA and the Ssb siRNA] on in vivo luminescence (Supplemental Figs. 1 and 2). Our results demonstrate that both the raw luminescence data (Supplemental Fig. 1, A and B) and luminescence data normalized to the pretreatment value per mouse (Supplemental Fig. 1C) for Ssb-, UC3-, and PBS-treated groups are not significantly different from each other at the \(p < 0.01 \) using Kruskal-Wallis test (nonparametric ANOVA). These data demonstrate lack of a nonspecific effect of irrelevant

![Diagram](https://via.placeholder.com/150x150)

Fig. 1. In vivo siRNA-mediated gene silencing was monitored by noninvasive bioluminescence imaging. A, experimental design schematic. Liver-specific luciferase expression was induced in Rosa26-loxp-stop-loxp-Luc mice by the injection of Ad-CMV-Cre. Two weeks after luciferase induction, all mice were imaged and randomized based on their bioluminescence. Mice were intravenously injected with 0.3, 1, 3, or 6 mg/kg LNP-formulated siRNA targeting luciferase mRNA. Bioluminescence was measured on days 0 (pretreatment) and 1 to 4 (post-treatment), and observed twice a week to day 25. B, visual representation of bioluminescence imaging of mice after administration of luciferase siRNA at 3 mg/kg. Images were taken at day 0 (pretreatment) and days 1, 4, 14, and 25 (post-treatment) and displayed by overlaying the bioluminescence values representative pseudocolor image (blue representing the lowest intensity and red representing the highest intensity, \(1.0 \times 10^6-1.0 \times 10^8 \text{ p/sec/cm}^2\text{sr} \)), on the grayscale mouse image. C, Correlation between bioluminescence (\(-\log_2\text{fold change}\) or percentage reduction) and luciferase mRNA inhibition (\(-\log_2\text{fold change}\)). Coefficient of determination (\(R^2 \)) equals 0.80. Each data point represents one mouse (\(n = 100 \)). D, Dose-dependent luciferase siRNA-mediated reduction in bioluminescence (\(-\log_2\text{fold change}\) or percentage reduction) was monitored over 25 days. Mice were intravenously injected with 0.3, 1, 3, or 6 mg/kg lipid nanoparticle (LNP)-formulated siRNA-targeting luciferase mRNA. Each data point represents the mean ± S.D. based on five mice per group. The solid lines represent double exponential fit of the \(-\log_2\text{fold change}\) of luminescence to day 0.
PK/PD for RNAi Is Driven by siRNA Binding to Ago2

siRNA on bioluminescence. For subsequent analysis, we used PBS as our negative control.

After we confirmed the utility of the model, we next investigated the pharmacological effect of varying the luciferase siRNA dose. Maximum inhibition of bioluminescence was seen by day 3 for all siRNA doses. Bioluminescence recovery to the initial predose steady-state levels was dose-dependent and, for 3 and 6 mg/kg doses, occurred after 25 days (Fig. 1D). The pharmacologic effect was directly correlated with the dose of siRNA administered. The PD half-life of the chemically modified siRNA was determined by calculating the rate of bioluminescence recovery. Except for the 0.3 mg/kg dose, which showed minimal biological activity, the siRNA PD half-life for all other doses was similar (overlapping 95% confidence intervals), indicating that the loss of biological siRNA-mediated activity was dose-independent (Table 1). For the 3 mg/kg dose, the average \(t_{1/2} \) was outside of the confidence interval of the 6 mg/kg dose. However, the confidence intervals for 3 and 6 mg/kg doses overlap. An extra sum-of-squares F-test analyses rejected the 3 mg/kg dose as being different from the other groups at the \(p > 0.01 \) significance level (Table 1).

Because clinical dose schedules are dependent on the duration of action of the therapeutic administered, we examined luciferase siRNA duration of action. The siRNA-mediated duration of action was measured by the AUC that combines both maximum target inhibition and the PD half-life of the siRNA. Luciferase siRNA-dependent duration of action was determined by measuring bioluminescence over the course of the experiment (25 days). As shown in Table 1, the duration of the PD effect increased with increasing siRNA concentrations. Because the PD half-life of the chemically modified luciferase siRNA was similar for all doses, the siRNA biological durability, in this case, was driven by maximum target inhibition. Different siRNAs targeting the same mRNA as well as different chemical modification patterns applied to siRNAs will influence maximum silencing, the PD half-life of the siRNA, and, thus, siRNA durability.

Gene Silencing Correlates with the Amount of siRNA Bound to Ago2. To further understand the relationship between siRNA dose and target silencing, we examined the level of bioluminescence, the amount of siRNA present in the liver, and the amount of siRNA bound to Ago2 at various time points. Mice were imaged at baseline (predose) and subsequently sacrificed at different days after the injection of increasing doses of the luciferase-targeting siRNA (Fig. 2). Dose-dependent responses were observed for all measurements, luciferase-protein silencing approaching a plateau near the 6 mg/kg dose (Fig. 2, A–C). Compared with day 1, substantially lower levels of siRNA were detected in the liver at day 3, with a further decrease seen by day 7 (Fig. 2A). The liver siRNA concentrations were below the threshold of detection for the two lower dose groups at day 14 and for all dose groups at day 25. Despite the rapid decline in the total amount of siRNA found in the liver, the fraction of siRNA bound to Ago2 seemed more persistent, with small, but detectable levels seen out to day 25 (Fig. 2B). The siRNA amount detected from nonspecific mouse IgG pull-down assay control was marginal compared with siRNA from Ago2 pull-down assay (data not shown). The percentage of siRNA bound to Ago2 increased with time compared with total siRNA in liver. At days 1 and 3, the amount of siRNA bound to Ago2 was approximately 15 and 50%, respectively, of the total siRNA in liver. After day 7, more than 90% of the total siRNA was bound to Ago2 (Fig. 2, A and B), suggesting that RISC-bound siRNA persists long after nonproductive liver-associated siRNAs are eliminated and accounts for the observed target silencing at day 14 and 25 (Fig. 2C). These data suggest that Ago2 binding and possibly the subcellular compartments in which the siRNA-Ago2 complexes are located protect the siRNA from intracellular nucleases, resulting in increased siRNA stability and prolonged siRNA-mediated silencing. This conclusion is reflected in the strong relationship (\(R^2 = 0.87, n = 125 \)) between luciferase protein inhibition as measured by bioluminescence and the fraction of siRNA bound to Ago2 over time (Fig. 2D). In contrast, a weaker correlation between luciferase protein inhibition and total siRNA in the liver was observed (\(R^2 = 0.59, n = 105 \)) (Fig. 2E).

To evaluate whether the above observations are widely applicable, a similar experiment employing an siRNA that targets Ssb [Ssb(291)] was performed in C56BL/6 mice. Again, the total amount of siRNA found in the liver decreased at a faster rate relative to the Ago2-bound siRNA fraction (Fig. 3, A and B). Maximum Ssb knockdown was observed at 3 mg/kg and persisted through day 7 (Fig. 2C). A robust correlation (\(R^2 = 0.91, n = 90 \)) across all time points and doses was seen only for mRNA silencing and the fraction bound by Ago2 (Fig. 3D). In contrast, weaker correlation between total Ssb siRNA in liver and mRNA silencing was observed during the time course of the experiment (\(R^2 = 0.23, n = 80 \)) (Fig. 3E).

For both Ssb and luciferase siRNA at doses 1 to 6 mg/kg, the concentration of Ago2-bound siRNAs increased with an escalating dose of siRNA (Figs. 2B and 3B), even beyond doses that achieved substantial mRNA knockdown (Figs. 2C and 3C). Tukey nonparametric pair-wise post-test analysis demonstrated that luciferase siRNA Ago2 binding at 3 mg/kg is significantly different from Ago2 binding at 6 or 9 mg/kg at 1, 3, and 7 days after delivery (\(p < 0.05 \)) (Fig. 2B). Silencing

TABLE 1

Duration of pharmacodynamic effect measured as decrease of bioluminescence over time

<table>
<thead>
<tr>
<th>Dose of siRNA</th>
<th>Bioluminescence Change</th>
<th>PD Effect (t_{1/2})</th>
<th>Duration of the PD Effect AUC</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3 mg/kg</td>
<td>0.8 (43)</td>
<td>5.3 (2.7, 208)</td>
<td>9.1</td>
</tr>
<tr>
<td>1 mg/kg</td>
<td>2.4 (81)</td>
<td>10.0 (8.6, 12.0)</td>
<td>32.1</td>
</tr>
<tr>
<td>3 mg/kg</td>
<td>3.8 (93)*</td>
<td>8.6 (7.6, 9.9)</td>
<td>47.3</td>
</tr>
<tr>
<td>6 mg/kg</td>
<td>4.7 (96)</td>
<td>10.7 (9.6, 12.1)</td>
<td>66.0</td>
</tr>
</tbody>
</table>

AUC = area under the curve; CI = confidence interval; PD = pharmacodynamic; \(t_{1/2} = \) half-life*

* F-test rejects 3 mg/kg being different from the others within the same experiment at the \(P > 0.01 \) significance level.
of luciferase protein, however, is not significantly different at these doses on these days (Fig. 2C).

Likewise, Ssb siRNA Ago2 binding at 3 mg/kg is significantly different from Ago2 binding at 6 or 9 mg/kg at 1 and 3 days after delivery ($p < 0.05$) (Fig. 3B). In contrast, silencing Sb mRNA is not significantly different at these doses on these days (Fig. 3C). We note that SSB is ubiquitously expressed and that there might be some dynamic range compression in measurement of SSB mRNA reduction. We did not observe a significant difference between Ago2 binding for the same doses at day 7.

The statistical analysis suggests that bioluminescence or mRNA knockdown between the 3, 6, and 9 mg/kg dose groups were reaching a plateau. There was, however, a statistically significant difference for the amount of siRNA bound by Ago2 for these dose groups. Based on a range of siRNA doses, time-course studies, and quantitation of both Ssb and luciferase siRNAs bound to Ago2, we estimated that 280 to 1260 siRNA guide strands per hepatocyte resulted in 50% target inhibition of Ssb and luciferase, respectively (Supplemental Table 1).

The Ago2 binding for the 6 and 9 mg/kg dose groups was not statistically significantly different for both luciferase and Ssb siRNA. We are unable to raise the dose 2-fold (from 6 to 12 mg/kg) because a dose ër12 mg/kg induces in vivo toxicity.

To ensure that the differences in Ago2 binding among the various siRNA doses were dependent on dose and not technical artifacts of the miR16 normalization or Ago2 immunoprecipitation, the amount of miR16 bound to Ago2 and the efficiency of Ago2 immunoprecipitation was examined. Analysis of miR16 bound to Ago2 showed no change over the range of luciferase or Ssb siRNA doses (Supplemental Fig. 3). Likewise, the efficiency

Fig. 2. Quantitation of luciferase siRNA in the liver or associated with Ago2 and the relationship to luciferase protein silencing measured by bioluminescence. Mice were intravenously injected with 0.3, 1, 3, 6, or 9 mg/kg LNP-formulated luciferase siRNA. Mice were imaged and sacrificed, and liver tissues were collected at days 1, 3, 7, 14, and 25 after dosing. A, Dose-dependent increases of total siRNA in the liver were observed followed by rapid clearance. Data represent the mean ± S.D. based on five mice per group. At day 3 and beyond for all doses, the error bars are smaller than the data symbols. B, Ago2-associated luciferase siRNA is dose-dependent and persists over time. Luciferase siRNA associated with Ago2 is presented as the copy number ratio of siRNA guide strand to miR16 at each dose and time point (mean ± S.D.; $n = 5$). C, potent and sustained luciferase protein silencing. Relative bioluminescence ($-\log_2$-fold change or percentage reduction) was used to monitor the silencing of luciferase at various doses (milligrams per kilogram) and time (days). Data represent the mean ± S.D. based on five mice per group. D, a correlation between luciferase protein silencing and the amount of siRNA associated with Ago2 was observed across all doses and time points ($R^2 = 0.87; n = 125$). Relative bioluminescence is presented as $-\log_2$-fold change or percentage of reduction and luciferase siRNA associated to Ago2 is presented as the copy number ratio of siRNA guide strand to miR16 at each dose and time point. The line corresponds to a symmetrical sigmoidal fitted curve. Each data point represents individual mouse values. E, relationship between luciferase-protein silencing (relative bioluminescence; $-\log_2$-fold change or percentage reduction) and the concentration of total siRNA in liver (picograms per milligram). The coefficient of determination is 0.59 ($R^2 = 0.59; n = 105$). The line represents the symmetrical sigmoid fitted curve. The amount of siRNA in the liver at day 25 was below level of detection.
of Ago2 immunoprecipitation was evaluated by immunoblotting and shown to be similar (Supplemental Fig. 4).

The Time Course of Biodistribution, RISC Loading, and Bioluminescence Measured at Early Time Points after Luciferase siRNA Administration. We evaluated the early kinetics of gene silencing from 5 min to 72 h after single administration of one dose of luciferase siRNA (Fig. 4) or escalating doses of siRNA (Fig. 5; Supplemental Fig. 5). Highest plasma concentrations were observed at 5 min after siRNA injection, which decreased 10-fold within an

![Figure 3](molpharm.aspetjournals.org)

Fig. 3. Ssb mRNA silencing correlated with the amount of siRNA bound to Ago2. Mice were intravenously injected with 0.3, 1, 3, 6, or 9 mg/kg LNP-formulated siRNA-targeting Ssb mRNA. Mice were sacrificed and livers were collected at days 1, 3, and 7 after dosing. Two independent studies showed similar results. A, total Ssb siRNA in the liver (pg/mg). B, Ago2-associated Ssb siRNA in the liver. The amount of Ssb siRNA associated with Ago2 is presented as the copy number ratio of Ssb siRNA guide strand to miR16 associated with Ago2 (mean ± S.D.; five mice per group) at each dose (milligrams per kilogram) and time point (days). C, dose-dependent time course of Ssb mRNA silencing. Ssb mRNA reduction was evaluated by real-time qPCR as described under Materials and Methods and presented as -log₂-fold change or percentage of reduction (mean ± S.D.; five mice per group). D, a direct correlation between Ssb mRNA silencing and the amount of Ssb siRNA associated with Ago2 was observed across all doses and time points ($R^2 = 0.91$; $n = 90$ mice). The line corresponds to a symmetrical sigmoidal fitted curve. Each data point represents individual mouse value. E, weaker correlation between Ssb mRNA inhibition and the concentration of siRNA in liver ($R^2 = 0.23$; $n = 80$ mice). Each data point represents individual mouse value.
hour. (Fig. 4, A and B; Supplemental Fig. 5A). In liver, the amount of siRNA reached maximum levels at 10 to 20 min and decreased to 1 and 0.2% of the initial siRNA in liver by 24 h and 72 h, respectively (Fig. 4, A and B; Supplemental Fig. 5B). Although the total amounts of siRNA in the liver and the plasma were declining, a time-dependent increase of Ago2-bound siRNA was observed from 5 min after dosing that gradually increased to maximum levels at 6 h (Fig. 4; Supplemental Fig. 5, A–C). The Ago2 binding was followed by detectable mRNA silencing 2 h later (Supplemental Fig. 5D) and protein silencing 6 h later (Fig. 4D; Supplemental Fig. 5E). The time difference between the initial luciferase mRNA and protein knockdown is consistent with 3- to 4-h half-life of the luciferase protein (Leclerc et al., 2000). Tukey’s multiple comparison test demonstrates lack of statistical significance among PBS-, Ssb-, and UC3 siRNA-treated groups at 6 h after treatment (Supplemental Fig. 6). There was no significant difference in bioluminescent signal at 6 h between mice treated with PBS and mice treated with irrelevant siRNA (Ssb or UC3), which demonstrates the lack of a nonspecific effect on luminescence at early time points (Supplemental Fig. 6). The luciferase siRNA treated group was statistically significantly different from the control groups ($p < 0.05$).

We observed that after siRNA injection, Ago2-siRNA complex formation was maximum at 6 h, followed by maximum protein silencing between 24 and 72 h (Fig. 4, C and D). These data demonstrate that the maximum amount of siRNA bound to Ago2 precedes the maximum reduction of bioluminescence. The complete early time data set analyzed across all time points further confirmed the relationship between in vivo target silencing and Ago2-bound siRNA in the liver ($R^2 = 0.65$, $n = 135$) (Fig. 5A). In contrast, no correlation was observed between total liver siRNA concentrations and mRNA silencing (Fig. 5B). These data reveal the early progression of events between siRNA administration and its pharmacological effect in the liver and strongly suggest that Ago2-bound siRNA is a major determinant of target inhibition.

Discussion

One of the biggest challenges in drug development is the transition of a potential therapeutic agent from preclinical research to clinical candidate selection and phase I dosing. siRNA therapeutics are no exception. Differences between RNAi mechanisms in mice and humans might make it difficult to directly translate the PK/PD relationship from mice to humans. However, knowledge of PK/PD in mice would undoubtedly provide valuable information and a possible data-driven linkage between discovery and the clinic. The current
lack of quantitative preclinical PK/PD studies prompted us to examine the fate and biological effect of siRNAs from 5 min to 25 days after a single intravenous administration of an LNP-formulated siRNA. We developed PK/PD relationships for two siRNAs targeting either luciferase or Ssb mRNA. Our results provide a timeline of events after siRNA injection beginning with clearance from the plasma, rapid delivery to the liver, immediate RISC loading, followed by mRNA degradation and protein inhibition. Weak relationship between the total amount of siRNA and mRNA knockdown in liver was seen at early time points. Total siRNA in the liver decreased rapidly after siRNA dosing. Although the majority of siRNA delivered to the liver did not load to RISC and was subsequently cleared from the liver, the amount of Ago2-bound siRNA complexes increased in a dose-dependent fashion and strongly correlated with increased target silencing, suggesting that the number of Ago2-siRNA complexes is a key determinant of RNAi-mediated gene silencing in mice. These data also suggest that our current delivery is inefficient and requires excess input to achieve maximum mRNA silencing.

The value of PK/PD relationships is to inform multiple key drug development goals, including an understanding of the underlying mechanism of action and a prediction of in vivo potency and durability (Meibohm and Derendorf, 2002). Our results suggest that siRNA-mediated in vivo activity and duration of action are based on the number of Ago2-siRNA complexes and the stability of the complex over time. Our in vivo data suggesting that 280 to 1260 Ago2-siRNA complexes per cell are sufficient for 50% silencing correspond remarkably well with cell-based microinjection experiments using luciferase plasmid and varying concentrations of siRNAs (Veldhoen et al., 2006). Ninety percent inhibition of Ssb or luciferase mRNA required approximately 2400 and 7600 Ago2-siRNA complexes, respectively. It is noteworthy that the number of Ago2-siRNA complexes required for 50% silencing of the endogenous Ssb gene is 4-fold less than the number of complexes needed to silence the luciferase transgene. It is likely that the absolute number of Ago2-siRNA complexes required for 50% silencing of other targets will also vary based on the siRNA molecule, turnover of the Ago2 complex in various organs, target mRNA half-life, mRNA expression levels, cell division and turnover, or a combination thereof (Bartlett and Davis, 2006; Adams et al., 2009).

The duration of action of an siRNA is determined by maximum target mRNA silencing and PD half-life of the pharmacologic effect measured. Maximum luciferase-target silencing was dose-dependent, whereas the PD half-life, as measured by the recovery of luciferase-mediated bioluminescence over time, was not significantly different for each treatment group. These results imply that the biological half-life of the Ago2-siRNA complex is similar over a range of siRNA concentrations, suggesting that continuous reloading of Ago2 or loading of newly synthesized Ago2 with an intracellular pool of siRNA is unlikely; otherwise, it would be expected that increasing doses of siRNAs might result in an extended PD half-life. Alternatively, the maximum silencing and half-life of the Ago2-siRNA complex could be solely dependent on the intrinsic properties of the siRNA. For instance, chemically modified siRNAs that improve serum stability have been observed to extend the duration of action compared with unmodified siRNA (Morrissey et al., 2005a,b). Moreover, siRNA chemical modifications that improve the binding on-rate to Ago2 might be expected to improve activity, whereas modifications that slow Ago2 off-rates may result in enhanced durability. Crystal structures of the eukaryotic Ago2 middle domain (Mid) (Boland et al., 2010) that binds the 5’ phosphate of the guide strand and PIWI/Argonaute/Zwille (PAZ) domain (Somoza et al., 2010) that binds the 3’ end of the guide strand provide opportunities for structure-based design of chemically modified siRNAs. In fact, replacement of the conventional two-base deoxythymidine overhang on the 3’ end of the guide strand with two uridines containing 2’-O-methyl modifications improved siRNA duration (Strapps et al., 2010). Dramatic improvements in the equilibrium-binding constant between a siRNA and Ago2 using chemical modifications may increase both potency and durability, resulting in more convenient dose and dose schedules, improved safety profiles, and better doctor and patient acceptance of this new treatment modality.

Quantitative PK/PD analysis of new therapeutic modali-
ties such as siRNAs can address potential safety concerns. In particular, there is a concern that the use of therapeutic siRNAs will be limited to life-threatening diseases because siRNAs have the potential to saturate RISC machinery, resulting in toxicity (Grimm et al., 2006). Over a range of 1 to 6 mg/kg siRNA doses tested, we failed to observe any saturation of Ago2 binding with either the luciferase or Ssb siRNA despite attaining substantial mRNA target inhibition at the identical siRNA doses. These results raise the possibility that luciferase protein inhibition or Ssb mRNA knockdown is saturated by limitations other than Ago2 loading. We did not see a statistically significant increase of the Ago2 bound siRNA from 6 to 9 mg/kg. It is possible that Ago2 saturation occurs at 9 mg/kg dose. However, it remains probable that more than 1.5-fold increase in the dose is required to reach significance. Unfortunately, we are unable to raise the dose to test this, because a 12 mg/kg or higher dose induces in vivo toxicity with the current vehicle.

The lack of siRNA-bound Ago2 saturation at 1 to 6 mg/kg siRNA doses suggests that Ago2 binding is not a limiting step in reaching maximum inhibition of gene expression with our current delivery vehicle. This observation is consistent with the ability to perform combination therapy with two or more siRNAs (Love et al., 2010). One possible explanation for the failure to observe Ago2 binding saturation is that the expression of Ago2 is up-regulated in a dose-dependent fashion after siRNA injection. However, analysis of Ago2 mRNA levels after escalating doses of luciferase or Ssb siRNA administration failed to reveal any significant increase of Ago2 mRNA expression in the liver (data not shown). In addition, our results and those previously reported (John et al., 2007) demonstrated that comparable levels of miR16 bound to Ago2 are seen in the livers of mice given increasing doses of siRNAs. The mechanisms of RNAi are not completely understood today, and other regulatory mechanisms might account for the lack of obvious Ago2 saturation.

The ability to reach substantial target inhibition before Ago2 binding saturation has important implications for optimal dose selection and schedule. The minimal siRNA dose that results in maximal therapeutic effect is the goal. Of course, convenience of the dose schedule will play a role in the selection of the dose; however, increasing siRNA doses that do not enhance duration of action could result in unanticipated toxicities and confound the clinical benefits mediated by the siRNA. Off-target effects have been observed to increase with increasing siRNA concentrations (Martin et al., 2007). Fortunately, chemical modifications such as 2′-O-methyl modification at position 2 of the siRNA guide strand can mitigate many off-target RNA-silencing effects without affecting siRNA potency (Jackson et al., 2006). Nonetheless, the minimal siRNA dose and schedule that reaches a threshold-old number of Ago2-siRNA complexes resulting in therapeutically beneficial effects is the goal of ongoing studies. Further studies addressing the RNAi mechanism of action will be needed to clarify this important point. Taken together, our data provide a quantitative view in vivo PK and PD relationship for LNP-delivered siRNAs. These detailed kinetic studies should aid in selecting potent, chemically modified siRNAs, optimizing siRNA delivery vehicles, mitigating off-target effects, and developing phase I dosing regimens with the ultimate goal of streamlining the clinical development and success of candidate siRNA molecules.

Acknowledgments

We thank Dr. Amy O. Johnson-Levonas and Kathleen Newcomb of Merck Sharp and Dohme Corp. for their editorial and writing support.

Authorship Contributions

Participated in research design: Wei, Cancilla, Flanagan, and Kuklin.

Conducted experiments: Wei, Jones, Kang, Card, Krimm, Hancock, Payson, and Dubinina.

Performed data analysis: Wei, Jones, Card, Krimm, Stroh, Buchard, and Kuklin.

Wrote or contributed to the writing of the manuscript: Wei, Jones, Card, Pei, Ason, Cancilla, Stroh, Buchard, Sachs, Hochman, Flanagan, and Kuklin.

References

Address correspondence to: Nelly A. Kuklin, Sirna Therapeutics, a wholly owned subsidiary of Merck and Co Inc., 1700 Owens St., 4th Floor, San Francisco, CA 94158. E-mail: nelly_kuklin@merck.com

Address correspondence to: Nelly A. Kuklin, Sirna Therapeutics, a wholly owned subsidiary of Merck and Co Inc., 1700 Owens St., 4th Floor, San Francisco, CA 94158. E-mail: nelly_kuklin@merck.com

Address correspondence to: Nelly A. Kuklin, Sirna Therapeutics, a wholly owned subsidiary of Merck and Co Inc., 1700 Owens St., 4th Floor, San Francisco, CA 94158. E-mail: nelly_kuklin@merck.com
Molecular Pharmacology
RISC bound siRNA is a determinant of RNAi mediated gene silencing in mice
J. Wei, et al

A

![Bioluminescence units over time](image)

B

![Box plots of raw luminescence](image)

C

![Box plots of log2 fold change in luminescence](image)

Supplemental figure 1. Evaluation of irrelevant siRNAs (UC3 and Ssb siRNA) on bioluminescence at days 1, 3, 5, 7, 8, 13 and 15 post dose. Five mice per group were imaged and subsequently injected intravenously with 3 mg/kg of the luciferase, Ssb or UC3 siRNA. All mice were imaged at day 1, 3, 5, 7, 13 and 15 after siRNA injections. A) and B) Raw luminescence at day 1-15. C). Luminescence data normalized to the pre-treatment value per mouse. Kruskal-Wallis test (non-parametric ANOVA) shows that Ssb formulated on lipid nanoparticle (LNP), UC3 -LNP and PBS are not significantly different from each other at the p<0.01 level in their effects on luciferase protein activity. Further, Tukey post-hoc tests with Wilcoxon non-parametric adjustment, looking for significant pair wise differences between treatments, found no significant differences between Ssb formulated with LNP , UC3 formulated with LNP and PBS, using either raw or normalized luminescence data (p>0.1).
Supplemental figure 2. Representative pictures of mice treated of luciferase, UC3 or Ssb siRNA. Mice were injected intravenously with 3 mg/kg siRNA and were imaged every other day. Pictures of five mice per group at days 0, 1, 5 and 15 were selected for the figure.
Supplemental figure 3. Injection of escalating doses of luciferase siRNA does not affect the amount of miR16 associated with Ago2. Mice were injected with 0.3, 1, 3, 6, or 9 mg/kg of luciferase or Ssb siRNA. The liver samples were collected at day 1 and the amounts of siRNA or miR16 associated with Ago2 were quantified as described in Materials and Methods. The mean ± standard deviation are based on 5 mice per group. A). The concentration of luciferase siRNA and miR16 co-immunoprecipitated with Ago2 from liver lysates of mice treated with different luciferase siRNA doses. B). The concentration of Ssb siRNA and miR16 co-immunoprecipitated with Ago2 from liver lysates of mice treated with different Ssb siRNA doses.
Supplemental figure 4. Efficiency of the Ago2 immunoprecipitation assay
Liver samples from four mice indicated as A, B, C and D were analyzed before and after immunoprecipitation and immune detection. Following immunoprecipitation: lanes 1 to 4 (post-IP). Prior to immunoprecipitation: lanes 5 to 8 (pre-IP).
Molecular Pharmacology
RISC bound siRNA is a determinant of RNAi mediated gene silencing in mice
J. Wei, et al

Supplemental figure 5. PK/PD relationship from 5 min to 3 days following siRNA injection. Five mice per group were injected intravenously with 0.3, 1, or 3 mg/kg of the luciferase siRNA. Following injection, all mice were first imaged and then sacrificed at 5, 10, 20, and 30 minutes and 1, 2, 6, 24, and 72 hours post dose. Liver samples were collected at each time point and the amount of guide strand bound to Ago2, the total siRNA, and mRNA knockdown were quantified. Each data point represents one group of mice (n=5, mean ± SD). The lines represent linear regression in A-B, symmetrical sigmoidal fitted curves in C-E. A). siRNA concentration in plasma. B). siRNA concentration in liver (pg/mg). C). Ago2 bound siRNA is represented as the copy number ratio of luciferase siRNA to miR16 associated with Ago2. D). mRNA inhibition is presented as -log2-fold change. E). Bioluminescence decrease (-log2-fold change) over time.
Molecular Pharmacology
RISC bound siRNA is a determinant of RNAi mediated gene silencing in mice
J. Wei, et al

Supplemental figure 6. Twenty-five mice were injected with luciferase siRNA at 3 mg/kg or siRNA (Ssb and UC3; each at 3 mg/kg) or PBS as controls. Mice were imaged at time 0 (pretreatment) and 6h following siRNA injections. The data are presented as change in luminescence relative to pretreatment values. Tukey's multiple comparison test demonstrate lack of statistical significance between PBS, Ssb or UC3 siRNA treated groups at 6h post treatment. The luciferase siRNA treated group was statistically significantly different from the control groups (p<0.05)
Molecular Pharmacology
RISC bound siRNA is a determinant of RNAi mediated gene silencing in mice
J. Wei, et al

Supplemental table 1. RISC associated siRNA guide strand copy numbers of EC$_{50}$ and EC$_{90}$ for *Ssb* mRNA KD or Luc protein KD in mouse liver

<table>
<thead>
<tr>
<th>Two steps to calculate EC${50}$ or EC${90}$</th>
<th>siRNA</th>
<th>EC$_{50}$ (95% CI)</th>
<th>EC$_{90}$ (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. copy number ratio of siRNA guide strand to miR16 associated to Ago2</td>
<td>Ssb</td>
<td>0.2 (0.1-0.3)</td>
<td>1.7 (1.0-3.0)</td>
</tr>
<tr>
<td>2. copy number of RISC associated siRNA guide strand per cell</td>
<td>Ssb</td>
<td>280 (140-420)</td>
<td>2380 (1400-4200)</td>
</tr>
<tr>
<td></td>
<td>Luc</td>
<td>1260 (840-1820)</td>
<td>7560 (3500-16380)</td>
</tr>
</tbody>
</table>

CI = confidence interval

The RISC associated siRNA copy numbers per cell corresponding to EC$_{50}$ and EC$_{90}$ for *Ssb* mRNA KD or Luc protein KD were calculated in 2 steps:

1. Ago2 associated siRNA guide strand corresponding to EC$_{50}$ and EC$_{90}$ were calculated using equation “log(Agonist) vs. response -- Find ECAnything” with GraphPad Prism 5 for *Ssb* mRNA KD (n=90) and Luc protein KD (n=125), and presented as the copy number ratio of siRNA guide strand to miR16 associated to Ago2.

2. RISC associated siRNA guide strand per cell corresponding to EC$_{50}$ and EC$_{90}$ were determined by multiplying the Ago2 associated siRNA/miR16 ratio by 1400 (the copy numbers of miR16 quantified per cell) (Pei et al., 2010) as described in materials and methods section.
Measurement of Ago2-associated siRNA

To calculate the copy numbers of Ssb or luciferase bound to Ago2, Ago2 immunoprecipitation assay was performed and the guide strand of the siRNA and miR16 were quantified as described above. The effective concentration of siRNA bound to Ago2 that silenced target expression by 50% or 90% (EC₅₀ or EC₉₀) were calculated based on gene silencing and siRNA Ago2-binding data cross all time points and doses of siRNA using equation "log(Agonist) vs. response- Find ECanything" with Graphpad Prism 5 (GraphPad Software, La Jolla, CA). The copy number bound to Ago2 was determined by multiplying the copy number ratio of siRNA to miR16 at the EC₅₀ or EC₉₀ with 1400 (miR16 copy number per cell) (Pei et al., 2010).

The percentage of Ago2 associated siRNA relative to total siRNA in liver was calculated by 3 steps. Firstly, the miR16 concentrations were measured by stem-loop qPCR as described above for 88 liver homogenates prepared for siRNA quantification. Secondly, total siRNA concentration was normalized to mean value of miR16 concentration to get a copy number ratio of siRNA guide strand to miR16. Finally, compare the copy numbers of Ago2 bound siRNA and total siRNA in liver relative to miR16 to get the percentage of Ago2 associated siRNA of total siRNA in liver.

Reference: