A Dynamic Pharmacophore Drives the Interaction between Psalmotoxin-1 and the Putative Drug Target Acid-Sensing Ion Channel 1a

Natalie J. Saez, Mehdi Mobli, Michael Bieri, Irène R. Chassagnon, Alpeshkumar K. Malde, Roland Gamsjaeger, Alan E. Mark, Paul R. Gooley, Lachlan D. Rash, and Glenn F. King

Institute for Molecular Bioscience (N.J.S., M.M., I.R.C., A.E.M., L.D.R., G.F.K.) and School of Chemistry and Molecular Biosciences (A.K.M., A.E.M.), The University of Queensland, St. Lucia, Queensland, Australia; Department of Biochemistry & Molecular Biology, Bio21 Molecular Science & Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia (M.B., P.R.G.); and School of Molecular and Microbial Biosciences, the University of Sydney, Sydney, New South Wales, Australia (R.G.)

Received March 12, 2011; accepted August 8, 2011

ABSTRACT

Acid-sensing ion channel 1a (ASIC1a) is a primary acid sensor in the peripheral and central nervous system. It has been implicated as a novel therapeutic target for a broad range of pathophysiological conditions including pain, ischemic stroke, depression, and autoimmune diseases such as multiple sclerosis. The only known selective blocker of ASIC1a is ρ-TRTX-Pc1a (PcTx1), a disulfide-rich 40-residue peptide isolated from spider venom. ρ-TRTX-Pc1a is an effective analgesic in rodent models of acute pain and it provides neuroprotection in a mouse model of ischemic stroke. Understanding the molecular basis of the ρ-TRTX-Pc1a–ASIC1a interaction should facilitate development of therapeutically useful ASIC1a blockers. We therefore developed an efficient bacterial expression system to produce a panel of ρ-TRTX-Pc1a mutants for probing structure-activity relationships as well as isotopically labeled toxin for determination of its solution structure and dynamics. We demonstrate that the toxin pharmacophore resides in a β-hairpin loop that was revealed to be mobile over a wide range of time scales using molecular dynamics simulations in combination with NMR spin relaxation and relaxation dispersion measurements. The toxin–receptor interaction was modeled by in silico docking of the toxin structure onto a homology model of rat ASIC1a in a restraints-driven approach that was designed to take account of the dynamics of the toxin pharmacophore and the consequent remodeling of side-chain conformations upon receptor binding. The resulting model reveals new insights into the mechanism of action of ρ-TRTX-Pc1a and provides an experimentally validated template for the rational design of therapeutically useful ρ-TRTX-Pc1a mimetics.

Introduction

It was recognized over 25 years ago that small-diameter trigeminal neurons depolarize in response to mild decreases in pH (Krishtal and Pidoplichko, 1981). However, acid-sensing ion channels (ASICs) were not discovered and recognized as neuronal proton sensors until 1997 (Waldmann et al., 1997). ASICs are now thought to be a primary sensor of pain associated with local tissue acidosis resulting from (patho)physiological conditions such as inflammation, ischemia, infection, physical trauma, and tumors (Sluka et al., 2009).

Abbreviations: ASIC, acid-sensing ion channel; PcTx1, Psalmopoeus cambridgei toxin-1 (psalmotoxin-1); ρ-TRTX-Pc1a, ρ-theraphtoxin-Pc1a; MBP, maltose binding protein; TEV, tobacco etch virus; IPTG, isopropyl β-D-thiogalactopyranoside; Ni-NTA, nickel-nitrilotriacetic acid; HPLC, high-performance liquid chromatography; rpHPLC, reversed-phase high-performance liquid chromatography; MALDI-TOF, matrix-assisted laser desorption ionization/time of flight; MS, mass spectrometry; NUS, nonuniform sampling; HSQC, heteronuclear single quantum correlation; NOESY, nuclear Overhauser effect (or enhancement) spectroscopy; HNHB, (amide proton)–(nitrogen)–(β-proton) correlation; NOE, nuclear Overhauser effect; 3D, three dimensional; CPMG, Carr-Purcell-Meiboom-Gill; MD, molecular dynamics; ECD, extracellular domain; TM, transmembrane; PDB, Protein Data Bank; AIR, ambiguous interaction restraint; R1, longitudinal relaxation rate; R2, transverse relaxation rate; Rext, chemical/conformational exchange rate constant.

This work was supported by the National Health and Medical Research Council of Australia [Project Grant 511067]; and the Australian Research Council [Discovery Grants DP0878608, DP0870443, DP0879065]. N.J.S. was supported by an Australian Postgraduate Award from the Australian Research Council. M.B. was supported by postdoctoral fellowships from the Swiss National Science Foundation [Fellowships PBEP3-125613, PA00P3-134167]. Article, publication date, and citation information can be found at http://molpharm.aspetjournals.org.
doi:10.1124/mol.111.072207.

[The online version of this article (available at http://molpharm.aspetjournals.org) contains supplemental material.

The online version of this article (available at http://molpharm.aspetjournals.org) contains supplemental material.

http://molpharm.aspetjournals.org/content/suppl/2011/08/08/mol.111.072207.DC1
ASICs belong to the epithelial sodium channel/degenerin (ENaC/DEG) superfamily of ion channels, which have the same overall topology and selectivity for transporting sodium (Kellenberger and Schild, 2002). However, ASICs are distinguished by their restriction to chordates, their predominantly neuronal distribution, and their activation by a decrease in extracellular pH (Gründler and Chen, 2010). There are four ASIC subtypes (ASIC1, ASIC2, ASIC3, and ASIC4), encoded by four distinct genes, two of these having alternatively spliced forms (ASIC1a/ASIC1b and ASIC2a/ASIC2b). Functional ASIC channels consist of homo- or heterotrimeric assemblies of these subunits (Jasti et al., 2007; Carnall et al., 2008), each with unique pH sensitivities and kinetics (Hesselager et al., 2004).

ASIC1a is the most abundant ASIC subunit in the central nervous system and, along with ASIC3, has the highest affinity for protons (Gründler and Chen, 2010). Homomeric ASIC1a channels activate at pH 6.9, and the current amplitude increases as the proton concentration increases down to pH 6.0 (Gründler and Chen, 2010). Various studies support a role for ASIC1a in mediating both inflammatory and neuropathic pain, and an undisclosed compound that is purported to be a selective antagonist of ASIC1a reduces thermal and mechanical hyperalgesia in a human inflammatory pain model (Dubé et al., 2009). In addition, ASIC1a seems to play an important role in fear conditioning, epileptic seizure termination, autoimmune disease, and ischemia-induced neurodegeneration (Xiong et al., 2008; Dubé et al., 2009; Sluka et al., 2009; Gründler and Chen, 2010). Thus, ASIC1a has been touted as a novel therapeutic target for a broad range of pathophysiological conditions, including pain, ischemic stroke, depression, and autoimmune diseases (Xiong et al., 2008; Dube´ et al., 2009; Sluka et al., 2009; Gründler and Chen, 2010).

Several small molecule ASIC1a blockers have been reported, but they are mostly weak and nonselective. The diuretic drug amiloride blocks all ASIC subtypes with moderate potency (IC50 ~10–50 μM), whereas several nonsteroidal anti-inflammatory drugs such as ibuprofen weakly inhibit ASIC1a (IC50 ~350 μM) (Xiong et al., 2008). Antiprotozoal diaminodiamine also nonselectively block ASICs with low micromolar potency (Chen et al., 2010). The most potent and selective blocker of ASIC1a is psalmotoxin-1 (PeTx1), a 40-residue peptide isolated from the venom of the tarantula Psalmopoeus cambridgei. PeTx1 [hereafter called π-theraphotoxin-Pc1a (π-TRTX-Pc1a)] based on the rational nomenclature for naming peptide toxins (King et al., 2008) inhibits ASIC1a channels with an IC50 of ~1 nM, but does not block other ASIC subtypes at concentrations up to 50 nM (Escoubas et al., 2000). At higher concentrations (EC50 ~100–140 nM) π-TRTX-Pc1a also positively modulates rat ASIC1b (Chen et al., 2006). π-TRTX-Pc1a is an effective analgesic, comparable with morphine, in rodent models of acute pain (Mazzuca et al., 2007) and intranasal administration of π-TRTX-Pc1a provided neuroprotection in a mouse model of ischemic stroke, even when administered hours after injury (Pignataro et al., 2007).

A low-resolution solution structure of π-TRTX-Pc1a was determined previously, and the channel interaction surface was proposed to reside in a highly cationic β-hairpin loop (Escoubas et al., 2003). In two recent studies (Pietra, 2009; Qadri et al., 2009), this structure of π-TRTX-Pc1a was docked onto a homology model of human ASIC1a and, in both cases, the toxin was found to interact with the acidic pocket on the channel ectodomain that plays a critical role in proton binding. However, the toxin orientation differs between the two models, and the precise molecular details of the toxin-channel interaction remain uncertain.

To provide a better understanding of the mechanism of action of π-TRTX-Pc1a, we developed a bacterial expression system for producing π-TRTX-Pc1a mutants for functional analysis and isotopically labeled protein for determination of a high quality structure. Mutagenesis studies, in combination with NMR relaxation data and molecular dynamics simulations, revealed that the key pharmacophore residues are located in a β-hairpin loop that undergoes significant motion in solution. Experimental restraints were used to dock our new high-resolution structure of π-TRTX-Pc1a onto ASIC1a. The resulting model of the π-TRTX-Pc1a–ASIC1a complex differs substantially from previously published models, and it offers new insights into the mechanism by which π-TRTX-Pc1a modulates the activity of ASIC1a.

Materials and Methods

Production of Recombinant π-TRTX-Pc1a. A synthetic gene encoding π-TRTX-Pc1a, or point mutants thereof, with codons optimized for expression in *Escherichia coli*, was cloned into a variant of the pLys-MBP expression vector expression (Cabrita et al., 2006). This vector encodes a MalE signal sequence for periplasmic export, a His6 affinity tag, a maltose binding protein (MBP) fusion tag (to aid solubility), and a tobacco etch virus (TEV) protease recognition site directly preceding the π-TRTX-Pc1a gene (Fig. 1A). Plasmids were transformed into *E. coli* strain BL21 (DE3) for recombinant toxin production.

Cultures were grown in Luria-Bertani medium at 37°C with shaking at 180 rpm. Expression of the toxin gene was induced with 1 mM IPTG at an OD600 of 1.0 to 1.2 and cells were harvested 3 h later by centrifugation for 10 min at 7741 g. For production of uniformly 13C/15N-labeled π-TRTX-Pc1a, cultures were grown in minimal medium supplemented with 13C6-glucose and 15NH4Cl as the sole carbon and nitrogen sources, respectively.

The His6-MBP-toxin fusion protein was extracted from the bacterial periplasm by osmotic shock using 30 mM Tris, 40% sucrose, 2 mM EDTA pH 8.0, and ice-cold water. The His6-MBP-toxin fusion protein was captured by passing the periplasmic extract (buffered in 20 mM Tris, 200 mM NaCl, 10% glycerol, pH 8.0) over Ni-NTA Superflow resin (Qiagen, Valencia, CA) followed by washing with 15 mM imidazole to remove nonspecific binders. The fusion protein was then eluted with 250 mM imidazole. The buffer was exchanged to remove imidazole, then reduced and oxidized glutathione were added to 3 and 0.3 mM, respectively, to activate TEV protease and promote folding of the protein. Approximately 40 μg of His6-tagged TEV protease was added per mg of π-TRTX-Pc1a, and the cleavage reaction was allowed to proceed at room temperature for 12 h. The cleaved His6-MBP and His6-TEV were removed by passing the solution over Ni-NTA Superflow resin, whereas the eluate containing cleaved π-TRTX-Pc1a was collected for further purification using reversed-phase (rp) HPLC. rpHPLC was performed on a Vydac C18 column (250 × 4.6 mm; particle size, 5 μm) using a flow rate of 1 ml/min and a gradient of 20 to 40% solvent B (0.1% trifluoroacetic acid in 90% acetonitrile) in solvent A (0.1% trifluoroacetic acid in water) over 40 min. To facilitate comparisons with other studies on π-TRTX-Pc1a, residue numbers for the native toxin are used throughout the text even though the recombinant toxin contains an additional N-terminal serine residue that is a vestige of the TEV cleavage site.
Fig. 1. Expression and purification of recombinant π-TRTX-Pc1a. A, schematic of the pLicC-NJS1 vector used for periplasmic expression of π-TRTX-Pc1a. The coding region includes a MalE signal sequence (MalEino) for periplasmic export, a His6 affinity tag, an MBP fusion tag, and a codon-optimized gene encoding π-TRTX-Pc1a, with a TEV protease recognition site inserted between the MBP and toxin coding regions. The locations of key elements of the vector are shown, including the ribosome binding site (RBS). B, SDS-polyacrylamide gel illustrating various steps in the purification of π-TRTX-Pc1a; with a TEV protease recognition site inserted between the MBP and toxin coding regions. The inset is a MALDI-TOF MS spectrum showing the Mr of the purified recombinant toxin (observed, 4774.17 Da; calculated, 4774.21 Da).

MALDI-TOF Mass Spectrometry. Toxin masses were confirmed by matrix-assisted laser desorption/ionization–time-of-flight mass spectrometry (MALDI-TOF MS) using a model 4700 Proteomics Bioanalyzer (Applied Biosystems, Foster City, CA). rpHPLC fractions were mixed [1:1 (v/v)] with α-cyano-4-hydroxycinnamic acid matrix (5 mg/ml in 50/50 acetonitrile/H2O) and MALDI-TOF spectra were collected in positive reflector mode. All masses given are for the monoisotopic M+H+ ions.

Electrophysiological Measurements. Toxin activity was assessed using two-electrode voltage-clamp experiments performed on *Xenopus laevis* oocytes expressing homeric rat ASIC channels. Oocyte preparation, cRNA injection, and electrophysiology were performed as described previously (Jensen et al., 2009). In brief, oocytes were injected with rat ASIC1a (0.25 ng), ASIC1b (1 ng), ASIC2a (2 ng), or ASIC3 (2.5 ng) cRNA, and experiments were performed at room temperature (21–22°C) 2 to 5 days after cRNA injection. Oocytes were clamped at −60 mV (OC-725C oocyte clamp; Warner Instruments, Hamden, CT) using two standard glass microelectrodes (0.5–2 MΩ) filled with 3 M KCl solution. Data acquisition and analysis were performed using pCLAMP software, version 8 (Molecular Devices, Sunnyvale, CA). Currents were elicited by a drop in pH from 7.45 to 6.0 every 60 s using a microperfusion system to allow rapid solution exchange. Serial dilutions of π-TRTX-Pc1a (from 10 pM to 30 nM) were administered after stimulation at pH 7.45, and oocytes were bathed in the toxin solution until the next round of stimulation. The effect of native and mutant π-TRTX-Pc1a on steady-state desensitization of rASIC1a was determined by applying twice the determined IC50 for each peptide at various conditioning pH values from 7.60 to 7.00 for 120 s before stimulation by a pH drop to 6.0. All experiments were performed using ND96 solution spiked with 0.1% bovine serum albumin to minimize adsorption of π-TRTX-Pc1a to plastic tubing. Statistics were performed using Prism 5.0c for Mac OS X (GraphPad Software, San Diego, CA).

Structure Determination. Lyophilized recombinant π-TRTX-Pc1a was resuspended at a final concentration of 300 μM in 10 mM sodium phosphate buffer, pH 6.0, constituted in either 92.5% H2O/7.5% D2O or 100% D2O. The sample was filtered using a low-protein-binding Ultrafree-MC centrifugal filter (0.22-μm pore size; Millipore, Billerica, MA), then 300 μl was added to a susceptibility-matched 5-mm outer diameter microtube (Shigemi Inc., Japan).

Data were acquired at 298 K using a 900 MHz NMR spectrometer (Bruker BioSpin GmbH, Rheinstetten, Germany) equipped with a cryogenically cooled probe. Data for resonance assignments were acquired using nonuniform sampling (NUS). Sampling schedules that approximated the signal decay in each indirect dimension were generated using sched3D (Moli et al., 2010). Pulse programs were modified from the standard Bruker library for NUS mode and are available from the authors upon request. NUS data were processed using the Rowland NMR toolkit (http://www.rowland.org/nmrktk/toolkit.html) and maximum entropy parameters were automatically selected as described previously (Moli et al., 2007). 13C- and 14N-edited HSQC-NOESY (mixing time of 250 ms), (amide proton)-(nitrogen)-(β-proton) correlation (HNHB), and long-range HNCO experiments were acquired using uniform sampling. All experiments were acquired in H2O except for the 13C-edited HSQC-NOESY, which was acquired in D2O.

Dihedral-angles (20 φ, 22 ψ) were derived from TALOS chemical shift analysis (Cornilescu et al., 1999), and the restraint range for structure calculations was set to twice the estimated S.D. Eight additional ϕ restraints of −105 ± 75° were applied for residues for which the intrasriade Hα-Hβ-NOE was clearly weaker than that between the Hα and Hβ of the preceding residue (Fletcher et al., 1997). All three X-Pro peptide bonds were identified as trans on the basis of characteristic NOEs and the Cδ and Cε chemical shifts of the Pro residues. The magnitude of the 1JHNHB couplings measured qualitatively from a 3D HNHB spectrum were used in combination with Hα-Hβ and Hβ-Hδ NOE cross-peak intensities to obtain χ1 restraints and stereo-specific assignments for 11 pairs of β-methylene protons as well as χ1 restraints for Ile4 and Val34. Additional stereo-specific assignments were obtained from preliminary structure calculations, including the methyl groups of all Val and Leu residues.

Hydrogen bonds were identified by acquiring a long-range HNCO experiment and by using preliminary structures to identify the hydrogen-bond acceptor for slowly exchanging amide protons identified by their presence in the 13C-edited NOESY-HSQC spectrum acquired days after reconstitution of the lyophilized protein in D2O. Hydrogen- and disulfide-bond restraints were applied as described previously (Fletcher et al., 1997).

NOE spectra were manually peak picked and integrated, then peaklists were automatically assigned, distance restraints extracted, and an ensemble of structures calculated using the torsion angle dynamics package CYANA (Günther, 2004). The tolerances used for CYANA were 0.03 ppm in the direct H dimension, 0.035 ppm in the indirect H dimension, and 0.25 ppm for the heteronuclear (13C/15N). During the automated NOEY assignment/structure calculation process, CYANA assigned 89% of all NOEY cross-peaks (1391 of 1566).

Spin Relaxation Data Analysis. NMR experiments for measuring (1H,15N) steady-state NOE and longitudinal (R1) and transverse...
(R\textsubscript{1}) 15N relaxation rates were acquired using single-scan interleaved pulse sequences on 600- and 800-MHz Bruker spectrometers equipped with z-gradient cryoprobes. Data were acquired at 298 K using a 450 \textmu M sample of 13C/15N labeled 15N-TRTX-Pc1a. A 15N refocusing pulse was used during 15N evolution, and a heat compensation cycle was placed in the recovery time of 15N experiments. \textsubscript{R1} spectra were recorded with eight delay times (2 x 0.01, 0.05, 0.1, 2 x 0.3, 0.5, 0.7, 2 x 0.9, and 1.1 s) at both 600 and 800 MHz; \textsubscript{R2} spectra were recorded with seven delay times (600 MHz, 2 x 0.016064, 0.032128, 0.064256, 2 x 0.098384, 0.128512, 2 x 0.16064, 0.192768 s; 800 MHz, 2 x 0.014426, 0.028852, 0.057702, 2 x 0.086556, 0.115404, 2 x 0.14426, 0.173107, 2 x 0.336314, 0.408708, 0.490956 s) 15N NOE spectra were acquired with a saturation delay of 4 s and an additional 5 s of relaxation. Spectra were processed using NMRPipe (http://spin.niddk.nih.gov/NMRPipe/) and analyzed using Sparky (http://www.cgl.ucsf.edu/home/sparky/). Model-free analysis was performed using relaxGUI (Bieri et al., 2011).

15R\textsubscript{2} Relaxation Dispersion Data Analysis. 15N 15R\textsubscript{2} relaxation rates were measured at 298 K using single-scan interleaved constant CPMG pulse sequences with a delay of 0.08 s (T\textsubscript{CPMG}) on a Bruker 600 MHz spectrometer. Relaxation dispersion profiles were produced by recording spectra with varying CPMG field strengths (25, 2 x 50, 75, 100, 2 x 150, 2 x 200, 300, 500, 600, 700, 900, 1000, 1500, and 2000 Hz). A reference spectrum without a CPMG pulse train was also recorded. Data fitting, model selection, and simulation were performed using the software NESSY (http://www.cgl.ucsf.edu/home/sparky/).

Molecular Dynamics Simulations of 15N-TRTX-Pc1a. MD simulations of 15N-TRTX-Pc1a in explicit water (SPC model) were performed using GROMACS version 3.3.1 (Van Der Spoel et al., 2005) in conjunction with the GROMOS 53a6 force field (Oostenbrink et al., 2004). The starting structure for simulations was the first model from the ensemble of 15N-TRTX-Pc1a structures determined in the current study. The protonation states of ionizable side chains were set to pH 6.0, the pH at which the structure was determined and at which ASIC1a is activated under physiological conditions. The His14 residue in 15N-TRTX-Pc1a could be positively charged or neutral at pH 6.0; therefore, two systems were simulated. In system 1, both the Nδ and Nε of His14 were protonated (His14 positively charged). In system 2, only the Nε of His14 was protonated (His14 neutral). As the experimental NMR studies were performed at low salt concentration, systems 1 and 2 were simulated in the absence of counter-ions. Each system was simulated twice for 5 ns (four simulations in total) using simulation parameters provided in Supplemental Data. Order parameters were calculated from the simulations using the equation

\[
S^2 = \frac{1}{2} \left[\sum_{\alpha=1}^{3} \sum_{\beta=1}^{3} \sqrt{(\mu_{\alpha} \mu_{\beta})^2 - 1} \right]
\]

where \mu_{\alpha} (\alpha = 1, 2, 3) are the x, y, and z components of the normalized interatomic vector in the molecular frame. In the experiment, the timeframe probed by 15S2 is dependent on the rotational correlation time of the molecule. Given that the length of the trajectories is insufficient to average over the rotational degrees of freedom, the correlation functions and order parameters were calculated after a least-squares fit on the backbone atoms (i.e., Cα, C\textsuperscript{\text{N}}, and N). To correct for bias introduced using this approach, the trajectory was analyzed by averaging the values over 100-, 200-, and 500-ps windows.

Construction of a Homology Model of Rat ASIC1a. Homology modeling was performed using Modeller ver. 9.2 (Eswar et al., 2006). The 1.9-Å resolution crystal structure of chicken ASIC1 (cASIC1) (PDB code 2QTS; Jasti et al., 2007) was used as a template for the extracellular domain (ECD) of rat ASIC1a (rASIC1a), whereas the 3-Å resolution structure of a more complete cASIC1 construct (PDB code 3HGC; Gonzales et al., 2009) was used as the template for the transmembrane (TM) regions. Truncations were made to the N and C termini based on the residues missing from the crystal structures (chain A, 1–41 and 458–526; chain B, 1–40 and 461–526; chain C, 31–38 and 457–526). An initial model based on sequence similarity was refined based on predicted secondary structure. The ECD and TM regions were modeled individually, combined in one PDB file, and then the chain break was fixed using Swiss PDB Viewer. Each subunit of the channel was modeled separately then combined to create a single PDB file containing coordinates for the complete trimer. Protonation states for the channel were set to mimic pH 7 based on the pK\textsubscript{a} values of Glu, Asp, and His residues calculated previously for ASIC1a (Liechti et al., 2010); Glu and Asp residues with a pK\textsubscript{a} > 7 were protonated in the model, whereas all His residues were deprotonated. The model was energy-minimized in water using GROMACS 3.3.1. Water was then removed from the PDB file, and poor rotamers were adjusted in Swiss PDB Viewer. Model quality was monitored using MolProbity (Davis et al., 2007).

Modeling the 15N-TRTX-Pc1a–ASIC1a Complex. HADDOCK v2.1 (Domínguez et al., 2003) was used for docking studies because it allows incorporation of experimentally derived information about residue flexibility and interaction surfaces. Residues Trp24, Arg26 and Arg27 of 15N-TRTX-Pc1a were defined as “active” ambiguous interactions restraints (AIRs) based on mutagenesis experiments described here. Toxin residues 24 to 29 were allowed to be flexible during docking based on the solution dynamics observed in NMR relaxation/dispersion experiments and MD simulations. In addition, unambiguous distance restraints were included for the disulfide bridges and hydrogen bonds in the toxin. All 25 models from the ensemble of 15N-TRTX-Pc1a structures were used for cross-docking against rASIC1a. Before docking, the protonation states of 15N-TRTX-Pc1a residues were set to mimic pH 7, with all Asp, Glu, and His residues deprotonated, because this is the optimal pH for binding of 15N-TRTX-Pc1a to ASIC1a (Salinas et al., 2006). HADDOCK was used to generate 2000 structures from rigid body docking, then semiflexible refinement and water refinement was performed to obtain the top 200 structures.

Results

Production of Recombinant 15N-TRTX-Pc1a. Recombinant 15N-TRTX-Pc1a was produced previously using a Dro sophila melanogaster expression system (Escoubas et al., 2000), but we explored the possibility of using E. coli as a more cost- and time-effective method. Venom toxins generally pose a challenge for recombinant expression because of the presence of multiple disulfide bonds, which cannot be formed within the cytoplasm of most cells as a result of the reducing environment (Tedford et al., 2001). To obviate this problem, we used an IPTG-inducible construct (Fig. 1A) that allowed an MBP-toxin fusion protein to be exported to the E. coli periplasm, where the cell’s disulfide-bond processing machinery is located (Tedford et al., 2001). A TEV protease cleavage site between the MBP and toxin coding regions allowed simple removal of the MBP tag.

Using this system, 15N-TRTX-Pc1a was the major cellular protein produced after IPTG induction (Fig. 1B), and the toxin could be purified to >98% homogeneity (as judged by SDS-polyacrylamide gel electrophoresis, HPLC, and MS) using a combination of nickel affinity chromatography and rpHPLC (Fig. 1C). This bacterial expression system produces ~6 mg of correctly folded 15N-TRTX-Pc1a per liter of culture, a significant improvement over the 0.5 mg/liter obtained using the previously published D. melanogaster expression system (Escoubas et al., 2003). The recombinant toxin blocked ASIC1a currents in X. laevis oocytes with an IC\textsubscript{50} of 0.42 ±
0.05 nM (Fig. 2, A and B), which compares well with the previously published value of 0.9 nM (Escoubas et al., 2000). As reported previously for the native toxin, recombinant \(\pi \)-TRTX-Pc1a had no inhibitory effect on ASIC1b, ASIC2a, and ASIC3 currents in \textit{X. laevis} oocytes at concentrations up to 30 nM (data not shown).

Determination of a High-Resolution Solution Structure of \(\pi \)-TRTX-Pc1a. The development of an efficient bacterial expression system allowed us to produce uniformly \(^{13} \text{C}/^{15} \text{N} \)-labeled \(\pi \)-TRTX-Pc1a for structure determination using heteronuclear NMR. \(^{1} \text{H}, ^{15} \text{N}, ^{13} \text{C}_{\alpha}, ^{13} \text{C}_{\beta}, \) and \(^{13} \text{C} \) resonance assignments for the toxin were obtained from analysis of amide-proton strips in 3D HNCACB, CBCA-(CO)NH, and HNCO spectra. Side-chain \(^{1} \text{H} \) and \(^{13} \text{C} \) chemical shifts were obtained primarily from 3D H(CC)(CO)NH-TOCSY and H(CC)(CO)NH-TOCSY spectra, respectively. However, some side-chain \(^{1} \text{H} \) resonances that could not be unambiguously assigned from these spectra were assigned using a four-dimensional HCC(CO)NH-TOCSY experiment, which has the advantage of providing side-chain \(^{1} \text{H} \)\(^{13} \text{C} \) connectivities (Mobli et al., 2010). A fully assigned \(^{1} \text{H}/^{15} \text{N} \) HSQC spectrum of \(\pi \)-TRTX-Pc1a is shown in Supplemental Fig. S1, and complete chemical shift assignments have been deposited in BioMagResBank (accession number 16468; http://www.bmrb.wisc.edu/).

Multiple hydrogen bonds involving backbone amide protons were identified from a long-range HNCO experiment, which has the advantage over hydrogen-deuterium exchange experiments of unambiguously identifying the hydrogen-bond acceptor. Figure 3 shows a selected region from the long-range HNCO spectrum in which several hydrogen bonds can be directly observed.

CYANA was used for automated NOESY assignment and

Fig. 2. Electrophysiological characterization of recombinant \(\pi \)-TRTX-Pc1a. A, current traces showing concentration-dependent inhibition of ASIC1a channels expressed in \textit{X. laevis} oocytes by \(\pi \)-TRTX-Pc1a. ASIC1a currents were elicited by a pH drop from 7.45 to 6.0 (toxin applied for approximately 50 s between pH stimulations). B, logarithmic plot of the concentration-dependence of ASIC1a block by \(\pi \)-TRTX-Pc1a yielded an IC\(_{50}\) value of 0.42 \(\pm \) 0.05 nM. Each data point represents the mean \(\pm \) S.E.M. of three to four independent experiments. C, logarithmic plot of the concentration-dependence of ASIC1a block by point mutants of \(\pi \)-TRTX-Pc1a. IC\(_{50}\) values (mean \(\pm \) S.E.M.) are given in the key.

Fig. 3. Selected region from a long-range HNCO experiment. Hydrogen bonds are evident between the backbone amide protons of residues Ile4, Trp7, Cys18, and Glu22, and the backbone carbonyl oxygens of residues Asp16, Cys33, Ile4, and Val34, respectively. The peak in the upper right with a carbonyl carbon chemical shift of \(\sim 173 \) ppm is from the Cys3-Ile4 peptide bond (i.e., it is not indicative of a hydrogen bond).
structure calculation. Three hundred structures were calculated from random starting conformations, then the 25 conformers with highest stereochemical quality as judged by MolProbity (Davis et al., 2007) were selected to represent the solution structure of \(\pi \)-TRTX-Pc1a. Coordinates for the final ensemble of structures are available from the Protein Data Bank (code 2KNI).

Table 1 compares the precision and stereochemical quality of the \(\pi \)-TRTX-Pc1a structure determined in the current study with the previously published structure determined using only homonuclear NMR data (PDB code 1LMM). The average MolProbity score of 1.69 places the new ensemble of 25 structures in the 89th percentile relative to all other structures ranked by MolProbity, whereas the original ensemble ranks in the 4th percentile with an average MolProbity score of 3.85. The higher overall stereochemical quality of the new ensemble stems from a much lower clashscore (a measure of bad close contacts), higher Ramachandran plot quality, and more favorable side-chain rotamers (summarized in Table 1).

The new \(\pi \)-TRTX-Pc1a structure (Fig. 4A) is more precisely determined than the original ensemble [backbone root-mean-square deviation of 0.25 \(\pm \) 0.05 Å over residues Asp2–Lys36 compared with 1.00 \(\pm \) 0.21 Å for the previous ensemble (Escoubas et al., 2003)] because of the higher density of experimental restraints used in the structure calculations (summarized in Table 1). As demonstrated previously (Escoubas et al., 2003), the structure contains an inhibitor cystine knot motif (Pallaghy et al., 1994) in which the Cys17–Cys33 disulfide bond pierces a 14-residue ring formed by the other two disulfides and the intervening sections of the polypeptide backbone (Fig. 4C). Thus, \(\pi \)-TRTX-Pc1a comprises four intercystine loops (numbered 1–4 in Fig. 4A) bounded by N- and C-terminal “tails.” The dominant secondary structure

- **TABLE 1**
- **Statistical comparison of \(\pi \)-TRTX-Pc1a structures**

<table>
<thead>
<tr>
<th>Metric</th>
<th>2KNI</th>
<th>1LMM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interproton distance restraints</td>
<td>175</td>
<td>195</td>
</tr>
<tr>
<td>Intraresidue</td>
<td>152</td>
<td>111</td>
</tr>
<tr>
<td>Medium range (i–j < 5)</td>
<td>68</td>
<td>24</td>
</tr>
<tr>
<td>Long range (i–j ≥ 5)</td>
<td>151</td>
<td>44</td>
</tr>
<tr>
<td>Hydrogen-bond restraints</td>
<td>20</td>
<td>12</td>
</tr>
<tr>
<td>Disulfide-bond restraints</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Dihedral-angle restraints ((\phi, \psi, \chi_1))</td>
<td>69</td>
<td>21</td>
</tr>
<tr>
<td>Total number of restraints per residue</td>
<td>15.7</td>
<td>10.4</td>
</tr>
<tr>
<td>Root-mean-square deviation to mean</td>
<td></td>
<td></td>
</tr>
<tr>
<td>coordinate structure, Å</td>
<td>0.25 ± 0.05</td>
<td>1.00 ± 0.21</td>
</tr>
<tr>
<td>Stereochemical quality</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residues in most favored Ramachandran region, %</td>
<td>83.9 ± 2.4</td>
<td>66.3 ± 4.6</td>
</tr>
<tr>
<td>Ramachandran outliers, %</td>
<td>0 ± 0</td>
<td>12.3 ± 4.1</td>
</tr>
<tr>
<td>Unfavorable sidechain rotamers, %</td>
<td>4.9 ± 1.8</td>
<td>34.7 ± 6.2</td>
</tr>
<tr>
<td>Clashscore, all atoms</td>
<td>0 ± 0</td>
<td>21.9 ± 7.8</td>
</tr>
<tr>
<td>Overall MolProbity score</td>
<td>1.69 ± 0.16</td>
<td>3.85 ± 0.15</td>
</tr>
</tbody>
</table>

* Two restraints were used per hydrogen bond.
ability of Trp24 and Arg27 to Ala caused a profound diminution in the ability contacts with the channel. In contrast, mutation of both ASIC1a and probably makes few, if any, energetically favor-
resulting in an versions of developed bacterial expression system to produce recombinant experimentally test this hypothesis by using the newly de-
duced whether the mutations altered the functional effects steady-state desensitization to more alkaline pH, we inves-
tions tested promoted an alkaline shift in steady-state desensitization of rASIC1a to lower proton concentrations Data are expressed as the mean ± S.E.M. calculated from measurements on four ce.

<table>
<thead>
<tr>
<th>π-TRTX-Pc1a</th>
<th>pH_{50}</th>
<th>Activation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absence of toxin (control)</td>
<td>7.33 ± 0.01</td>
<td>6.32 ± 0.01</td>
</tr>
<tr>
<td>Wild-type toxin</td>
<td>7.53 ± 0.02*</td>
<td></td>
</tr>
<tr>
<td>π-TRTX-Pc1a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H14A</td>
<td>7.46 ± 0.02*</td>
<td></td>
</tr>
<tr>
<td>W24A</td>
<td>7.54 ± 0.02*</td>
<td></td>
</tr>
<tr>
<td>K25A</td>
<td>7.55 ± 0.01*</td>
<td></td>
</tr>
<tr>
<td>R26A</td>
<td>7.42 ± 0.01*</td>
<td>6.72 ± 0.05*</td>
</tr>
<tr>
<td>R27A</td>
<td>7.52 ± 0.01*</td>
<td></td>
</tr>
</tbody>
</table>

* p < 0.01 compared with control pH_{50} (unpaired t test).
* p < 0.05 compared with pH_{50} in the presence of wild-type toxin (unpaired t test).

Fig. 5. Schematic of the ensemble of π-TRTX-Pc1a structures highlighting the side chains of residues in the functionally critical β-hairpin loop (loop 4). The β-strands and β_{3_1}-helix are shown in blue and green, respectively. The side chain of Glu31 has been omitted for the sake of clarity. Loop 4 side chains and the N and C termini are labeled.

Table 2: Mutant versions of π-TRTX-Pc1a promote a shift in the steady-state desensitization of rASIC1a to lower proton concentrations. Data are expressed as the mean ± S.E.M. calculated from measurements on four cells.

Definition of Pharmacophore Residues. The marked electrostatic anisotropy of π-TRTX-Pc1a, in which a strong dipole moment emerges from the highly basic patch of Arg and Lys residues at the tip of loop 4 (residues 24 to 32), led to the suggestion that this hairpin loop is the functional surface of π-TRTX-Pc1a, the dipole moment being used to orient the toxin in the electric field of the ASIC1a channel (Escoubas et al., 2003). Subsequent docking studies have lent credence to this proposal (Pietra, 2009; Qadri et al., 2009). We decided to experimentally test this hypothesis by using the newly developed bacterial expression system to produce recombinant versions of π-TRTX-Pc1a in which residues in the β-hairpin loop were mutated to alanine. Specifically, we tested the ability of W24A, K25A, R26A, and R27A mutants to block toxin in the electric field of the ASIC1a channel (Escoubas et al., 2003), and this hypothesis seemed to be con-
Based on the initial structure determination, Lys25 was predicted to be involved in the interaction with ASIC1a (Escoubas et al., 2003), and this hypothesis seemed to be con-
firmed by two published models of the toxin-ASIC1a complex (Pietra, 2009; Qadri et al., 2009). We were surprised to find that the K25A mutant was almost equipotent with the wild-type toxin in blocking ASIC1a (IC_{50} of 1.19 versus 0.44 nM for wild-type toxin) (Fig. 2C). Thus, we conclude that Lys25 is not essential for the interaction of π-TRTX-Pc1a with ASIC1a and probably makes few, if any, energetically favorable contacts with the channel. In contrast, mutation of both Trp24 and Arg27 to Ala caused a profound diminution in the ability of π-TRTX-Pc1a to block ASIC1a, both mutations resulting in an ~150-fold increase in the IC_{50} (Fig. 2C). We conclude that both residues are critical for the interaction of π-TRTX-Pc1a with ASIC1a. Curiously, the R26A mutant was completely ineffective at blocking ASIC1a but, at high concentrations (>100 nM), it behaved as a positive modulator, increasing the size of the ASIC1a currents beyond control stimulations. We therefore conclude that Arg26 forms part of the π-TRTX-Pc1a pharmacophore. The H14A mutant was equipotent with wild-type toxin in blocking ASIC1a (IC_{50} of 0.25 versus 0.44 nM for wild-type toxin; Fig. 2C), suggesting that the toxin pharmacophore is restricted to residues in the β-hairpin loop.

Because π-TRTX-Pc1a inhibits ASIC1a by shifting its steady-state desensitization to more alkaline pH, we investi-
tants tested promoted an alkaline shift in steady-state desensitization similar to that caused by the wild-type peptide (see Table 2 and Supplemental Fig. 2). These results suggest that the observed changes in efficacy are probably due to a change in toxin binding affinity as opposed to an altered effect on channel gating. As expected, the R26A mutant did not cause a substantial alkaline shift in the SSD curve, but it did shift the pH-dependence of activation to more alkaline values.

Structure and Dynamics of the Channel-Binding Loop. Because the mutagenesis studies described above revealed that the pharmacophore of π-TRTX-Pc1a is most likely confined to the β-hairpin loop, we were particularly interested in the orientation of side chains within this loop, because they were poorly defined in the original ensemble of structures (Escoubas et al., 2003). Although markedly more precise than the previous structure, most side chains in this loop (with the exception of Phe30) are still poorly defined in
the new ensemble (Fig. 5). There are two likely explanations for the poor definition of these side chains compared with the remainder of the peptide: 1) a lower density of distance restraints, not because of intrinsic structural disorder, but due to ambiguous NOEs resulting from overlapping chemical shifts for protons in the side chains of Lys25, Arg26, Arg27, and Arg28 or 2) enhanced side-chain dynamics. A number of observations made during the process of compiling sequence-specific resonance assignments support the latter hypothesis. Resonances from residues within loop 4, in particular those of Lys25, were often broad or not present in various spectra, suggestive of interconversion between two or more conformations. For example, there was a complete absence of side-chain 13C-1H correlations for Lys25 in the 13C-edited NOESY-HSQC spectrum, and no correlations for the C_n of Lys25 and Glu31.

Given the critical importance of loop 4 for the interaction between π-TRTX-Pc1a and ASIC1a, we chose complementary experimental and computational approaches to probe the dynamics of this loop relative to other regions of the toxin. We first performed 5-ns MD simulations of the motion of π-TRTX-Pc1a in water. The order parameters (S^2) from the MD simulations were then calculated using windows of 100, 200, or 500 ps (windows significantly smaller than the estimated rotational correlation time of the peptide) and averaged over the course of 5 ns. All analyses showed consistent results regardless of time window used. Thus, for simplicity, results are only shown for analysis of the 100-ps windows (Fig. 6).

As expected from the new ensemble of structures, the N and C termini of the toxin have the lowest order parameters, and these regions are presumed to be extremely flexible in solution. There were only two other regions with $S^2 < 0.7$ [residues 15 to 16 in loop 2 and residues 25 to 30 in loop 4 (see Fig. 6)], a result that is consistent with the disorder associated with loop 4 side chains in the calculated ensemble of structures.

We next examined the backbone dynamics of π-TRTX-Pc1a using NMR spin relaxation and relaxation dispersion measurements and compared this with the dynamics predicted by MD simulations. The order parameter S^2, which is indicative of motions on the picosecond-to-nanosecond time scale, and the chemical/conformational exchange rate R_{ex} which is indicative of motions on the low microsecond time scale, were determined from model-free analysis of the 1H longitudinal relaxation rate (R_1), transverse relaxation rate (R_2), and steady state (1H-1N NOE data (see Supplemental Fig. S3). For most residues, the S^2 values calculated from the MD simulations and NMR relaxation data are in good agreement (see comparison in Fig. 6). The NMR data revealed picosecond-to-nanosecond scale motions for most residues in π-TRTX-Pc1a, with particularly low S^2 values for residues at the N and C termini as well as residue 14 in loop 2 and residues 26 to 27 in loop 4 (Fig. 7A, top; see also Supplemental Table S2). In addition, the spin relaxation experiments yielded significant R_{ex} values for most residues in loop 4, indicative of motion on the low microsecond time scale (Fig. 7A, bottom).

To confirm the suspected motion in loop 4 over the μ-ms timescale, we performed R_2 relaxation dispersion experiments, which are better suited than spin relaxation experiments for examining motion on this timescale. Analysis of the relaxation dispersion data revealed significant motion on the microsecond-to-millisecond timescale in loop 2 (residues 8 and 12) and loop 4 (residues 25 and 30) (Fig. 7B; see also Supplemental Table S3). We therefore conclude, as summarized schematically in Fig. 7C, that before binding ASIC1a, the pharmacophore-containing loop 4 of π-TRTX-Pc1a undergoes significant motion over a wide range of time scales. This motion clearly limits the utility of rigid-body docking approaches for modeling the π-TRTX-Pc1a:ASIC1a complex.

Modeling the π-TRTX-Pc1a:ASIC1a Interaction. To perform restraints-based docking of π-TRTX-Pc1a and ASIC1a, we initially built a homology model of rat ASIC1a. Although models of human ASIC1a were used in previous docking studies (Pietra, 2009; Qadri et al., 2009), we chose instead to use rASIC1a, because the experimentally derived docking restraints were derived from two-electrode voltage-clamp experiments on this channel and because π-TRTX-Pc1a binds less avidly to human ASIC1a (data not shown).

The ECD of rASIC1a was modeled from the 1.9-Å resolution structure of a nonfunctional cASIC1 construct in which most of the cytoplasmic regions of the channel had been removed (Jasti et al., 2007), leading to a nonphysiological orientation for the TM helices (Gonzalez et al., 2009). Thus, the TM regions were instead modeled from a lower resolution struc-
ture of a functional cASIC1 construct in which inclusion of more cytoplasmic regions led to a different orientation of the TM helices that is considered more representative of the in vivo state of the channel based on comparisons with the corresponding region of the P2X₇ receptor (Gonzalez et al., 2009). The structure of the ECD in the rASIC1a model was very similar to that in the high-resolution cASIC1 structure (root-mean-square deviation of 0.5–0.7 Å over 416–420 residues, depending on the chain), which is not surprising given the high level of sequence identity between the two channels (90%). The stereochemical quality of the rASIC1a model is comparable with that of the cASIC1 templates (see Supplemental Table S1).

Blind docking of our refined π-TRTX-Pc1a structure onto the homology model of rASIC1a confirmed that the toxin binds to the acidic pocket of the channel as shown previously (Pietra, 2009; Qadri et al., 2009). To refine the molecular details of this interaction, ambiguous interaction restraints derived from the mutagenesis studies were then used to drive the docking of π-TRTX-Pc1a onto the model of rASIC1a using HADDOCK. Residues Trp24, Arg26, and Arg27 of π-TRTX-Pc1a were defined as “active” AIRs on the basis of mutagenesis experiments. In addition, the backbone and side chains of toxin residues 24 to 29 were allowed to be flexible during the final stages of docking because of the significant molecular motion observed for these residues in NMR relaxation dispersion experiments and MD simulations.

Very few studies have examined which residues on ASIC1a are required for interaction with π-TRTX-Pc1a. However, a point mutant of Asp349 near the center of the proton-binding pocket was previously shown to decrease inhibition of ASIC1a by π-TRTX-Pc1a (Salinas et al., 2006). This residue is adjacent to residues 167 to 185 on the neighboring subunit, which were shown to be critical for binding of π-TRTX-Pc1a (Chen et al., 2006). Thus, to define a set of active AIRs on the channel, a point in the center of the acidic pocket was chosen and all residues within a 10-Å radius of this site with more than 30% solvent accessibility in the rASIC1a model were defined as AIRs (see Supplemental Fig. S4). All active residues on the channel were allowed to be semiflexible during docking.

In all of the top 200 water-refined solutions, π-TRTX-Pc1a docked to the same region of the channel, with loop 4 at the “tip” of the triangular-shaped toxin sandwiched in the acidic pocket between adjacent subunits (Fig. 8A). Furthermore, the various poses differ only by rotations around the functional tip of the toxin relative to the lowest energy structure (Fig. 8B). Despite this rotation, the key functional residues in loop 4 (particularly Trp24–Arg28) localize to the same site on the channel and overlay remarkably well. Thus, for the sake of clarity, the following discussion will focus on the top 10 solutions from the lowest energy cluster (i.e., the cluster with the lowest HADDOCK scores) (Fig. 8C).

The mean buried interface area in the top 10 structures (2000 ± 40 Å²) was slightly higher than the average buried surface area of 1600 ± 400 Å² for all protein-protein complexes in the PDB (Dominguez et al., 2003). Table 3 summarizes the observed hydrogen bond and nonbonded interactions in the top 10 poses, and the key interactions are shown schematically in Fig. 9. The interaction between the toxin and the channel is dominated by ionic interactions and, as anticipated, each of the three residues in loop 4 that cause a major reduction in π-TRTX-Pc1a activity when mutated to Ala (i.e., Trp24, Arg26, and Arg27) make significant contributions. The positively charged guanidino group of Arg26 forms an ion pair with the carboxyl group of Asp237, whereas the side chain amide proton of Arg26 forms a hydrogen bond with the carboxyl group of Glu235 (Fig. 9B). The guanidino group of Arg27 makes ionic interactions with the carboxyl groups of both Glu242 on subunit A of the channel and...
Asp407 on subunit C (Fig. 9C). The sidechain amide group of Trp24 forms a hydrogen bond with the side-chain carboxyl group of Asp349 (Fig. 9A). This latter interaction presumably explains why mutation of Asp349 decreases the ability of \(\pi\)-TRTX-Pc1a to inhibit ASIC1a (Salinas et al., 2006).

It was previously shown that \(\pi\)-TRTX-Pc1a modulation of human ASIC1a is completely abolished by a F352L mutation (Sherwood et al., 2009). However, even though the corresponding Phe350 residue in rASIC1a was included as an active restraint in the HADDOCK docking, we never observed an interaction between this channel residue and the toxin. The side chain of this residue points away from the acidic pocket in both the crystal structure of cASIC1 and the homology model of rASIC1a and is therefore not in a position to interact with the toxin. Moreover, the F352L mutation in human ASIC1a causes an acidic shift in the pH dependence of channel activation (Sherwood et al., 2009), suggesting that the channel conformation/gating mechanism is perturbed. Thus, we propose that mutation of Phe352 to Leu abrogates the binding of \(\pi\)-TRTX-Pc1a to human ASIC1a because it perturbs the conformation of the helix in which it resides, thus altering the spatial disposition of the adjacent Asp349 and Pro346 residues that are required for interaction with toxin residue Trp24.

Although the interactions between Trp24, Arg26, and Arg27 and residues on the channel are conserved in all low-energy clusters in the final docking solutions, the side chain of Lys25 has no consistent interaction with the channel. Although Lys25 interacts with channel residues Asp349 and Glu353 in the lowest-energy cluster, in most clusters it points away from the channel toward the solvent (see Supplemental Fig. S5). This is consistent with our data showing that mutation of Lys25 to Ala does not reduce the ability of \(\pi\)-TRTX-Pc1a to inhibit ASIC1a.

It is noteworthy that Trp24, Arg26, and Arg27 mostly interact with the same subunit of the channel (defined as subunit A in the current model). In contrast, although Arg28 was not included as an active AIR, the side chain of this toxin residue forms an ion pair with the carboxylate group of Glu219 on the adjacent subunit of the channel (subunit C in Table 3

<table>
<thead>
<tr>
<th>Toxin Residue</th>
<th>Hydrogen Bonds (<2.5 Å)</th>
<th>Nonbonded Contacts (<3.9 Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Chain A</td>
<td>Chain C</td>
</tr>
<tr>
<td>Val11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trp24</td>
<td>ASP349 (5/10)</td>
<td></td>
</tr>
<tr>
<td>Lys25</td>
<td>ASP349 (10/10)</td>
<td>GLU353 (7/10)</td>
</tr>
<tr>
<td>Arg26</td>
<td>ASP237 (9/10)</td>
<td>THR236 (9/10) ASP237 (6/10)</td>
</tr>
<tr>
<td>Arg27</td>
<td>GLU242 (9/10)</td>
<td>ASP407 (5/10)</td>
</tr>
<tr>
<td>Arg28</td>
<td>GLU235 (9/10)</td>
<td>GLU219 (10/10) GLN270 (6/10)</td>
</tr>
<tr>
<td>Ser29</td>
<td>GLU235 (10/10)</td>
<td>GLN391 (10/10) HIS173 (7/10)</td>
</tr>
<tr>
<td>Glu31</td>
<td>LYS354 (10/10)</td>
<td></td>
</tr>
<tr>
<td>Lys36</td>
<td>GLU342 (7/10)</td>
<td></td>
</tr>
<tr>
<td>Thr37</td>
<td>GLU342 (10/10)</td>
<td></td>
</tr>
<tr>
<td>Lys39</td>
<td>GLU338 (10/10) GLU342 (10/10)</td>
<td></td>
</tr>
<tr>
<td>Thr40</td>
<td>GLU338 (10/10)</td>
<td>GLU338 (5/10)</td>
</tr>
</tbody>
</table>
the current model) (Fig. 9D), implicating Arg28 as part of the toxin pharmacophore. We consequently predict that mutagenesis of Arg28 to virtually any other residue, with the possible exception of His and Lys, will impair toxin binding and activity. Other loop 4 residues that were identified from the docking as likely to be important for the interaction include Ser29 and Glu31 (Table 3; Fig. 9, E and F). C-terminal residues Lys36, Thr37, Lys39, and Thr40 also make favorable contacts with the channel (summarized in Table 3 and Fig. 9, G and H).

Numerous residues from the adjacent subunit C interact with the toxin (see Table 3). Most of these residues are conserved across all ASIC subtypes, His173 and Ala178 being the notable exceptions (Fig. 9I). His173 seems to play a major role in the interaction with ASIC channels by interacting with the toxin residues Ser29 and Glu31 (Table 3; Fig. 9, E and F). Other loop 4 residues (Arg27, Arg28, and Ser29) make multiple intermolecular contacts with any other residue in subunit C. Because His173 and Ala178 are present only in ASIC1a, we propose that they play a key role in determining the ability of the toxin to specifically block homomeric ASIC1a channels but not other homomeric or heteromeric ASIC channels.

Discussion

The tarantula toxin rTRTX-Pc1a is the most potent and selective blocker of ASIC1a discovered to date. It has a unique mechanism of action, shifting the steady-state desensitization of ASIC1a to more alkaline pH and rendering the channel inactive at physiological proton concentrations (Chen et al., 2005). Because ASIC1a is now recognized as a novel and broad ranging therapeutic target, understanding the molecular basis of its interaction with the toxin is crucial for the rational design of ASIC1a blockers.

To this end, we developed an efficient bacterial system for production of recombinant rTRTX-Pc1a that allowed us to 1) determine a higher quality structure of the toxin, 2) examine its solution dynamics, and 3) use a panel of point mutants to define key components of the toxin pharmacophore. Although the new structure of rTRTX-Pc1a is very precise and of high stereochemical quality, it seemed to show disorder in the β-hairpin loop (loop 4) containing key pharmacophore residues. We used a combination of MD simulations, NMR spin relaxation experiments, and NMR relaxation dispersion measurements to show that there is significant motion in the pharmacophore loop over a wide range of time scales (picoseconds to microseconds; see Figs. 6 and 7), supporting the apparent lack of precision for loop 4 residues in the NMR-derived toxin structure. Although the side chains of these residues are likely to be more rigid when the toxin binds to ASIC1a, it is critical that their intrinsic flexibility is taken into account in docking studies to prevent the formation of a structurally nonphysiological complex. Although a structure of rTRTX-Pc1a bound to ASIC1a would be undoubtedly beneficial for rational structure-based design of mimetics that mimic the action of the toxin, understanding the conformational states that the peptide can access may also aid the design of mimetics.

Defining the rTRTX-Pc1a Pharmacophore. We used a panel of point mutants to demonstrate that Trp24, Arg26,
and Arg27 in loop 4 are critical for the ability of \(\pi\text{-TRTX-Pc1a}\) to inhibit ASIC1a. It was initially surprising that mutation of Lys25, which is located in the middle of this positively charged loop, had no effect on the ability of the toxin to inhibit ASIC1a. However, close inspection of the new toxin structure reveals that the side chain of Lys25 lies on the face of the \(\beta\)-hairpin loop opposite that of the side chains of Trp24, Arg26, and Arg27 (Fig. 5). Moreover, in many of the final docking poses obtained for the \(\pi\text{-TRTX-Pc1a}\)–ASIC1a complex, this residue points away from the channel, thus providing an explanation for its lack of involvement in toxin activity.

Modeling the \(\pi\text{-TRTX-Pc1a}\)–ASIC1a Interaction.

There were several key differences between the ASIC1a model used in the current study and those used in previous docking studies (Pietra, 2009; Qadri et al., 2009). First, we used rat rather than human ASIC1a, because \(\pi\text{-TRTX-Pc1a}\) binds more avidly to the rat channel (data not shown), and the majority of structure-activity relationship studies examining the interaction between \(\pi\text{-TRTX-Pc1a}\) and ASIC1a, including those reported here, used the rat channel. Second, we incorporated explicit flexibility for interacting residues at the toxin-channel interface based on our experimental data showing that the toxin pharmacophore is dynamic. Third, we were able to incorporate physiologically relevant protonation states for key ionizable residues in our model. Pietra (2009) used REDUCE (http://kinemage.biochem.duke.edu/software/reduce.php) for automatic protonation of His and Asp residues, whereas Qadri et al. (2009) did not describe the protonation states used in their model. The p\(K_a\) of His, Asp, and Glu residues in ASIC1a were recently determined using a Poisson-Boltzmann continuum approach and homology models of hASIC1a (Liechti et al., 2010), and we used these values to yield the appropriate protonation states for these residues at pH 7.

We used HADDOCK for docking because it enabled the incorporation of ambiguous interaction restraints derived from mutagenesis data and movement of pharmacophore residues at the interaction interface during the simulated annealing process. The latter feature was considered critical because the intrinsic flexibility of the toxin pharmacophore that was revealed in the current study precludes the use of rigid body docking. Consistent with previous docking studies (Pietra, 2009; Qadri et al., 2009), \(\pi\text{-TRTX-Pc1a}\) was found to bind to the acidic pocket of ASIC1a (i.e., one of the sites responsible for activation of the channel by protons at acidic pH). Previous mutagenesis studies led to the conclusion that domains 3 and 5 of ASIC1a (i.e., residues 157–185 and 272–369, respectively) are intimately involved in binding \(\pi\text{-TRTX-Pc1a}\) (Salinas et al., 2006), and the majority of channel residues at the interaction interface in our docking model fall within these two domains.

In addition, residues from neighboring subunits were also included in the interaction, and several of these residues (i.e., His173 and Ala178; see Fig. 9I) are present only in ASIC1a; this might explain, at least in part, why \(\pi\text{-TRTX-Pc1a}\) inhibits only homomeric ASIC1a channels. However, it is important to note that \(\pi\text{-TRTX-Pc1a}\) is believed to bind more tightly to the desensitized state of ASIC1a, whereas the potentiating effect of \(\pi\text{-TRTX-Pc1a}\) on ASIC1b is probably due to the toxin binding to the open (conducting) state of the channel. Because the open state of ASIC1 may have a substantially different conformation to the desensitized state, it is difficult to draw definitive conclusions from the current study about the interaction surface on ASIC1b that is recognized by \(\pi\text{-TRTX-Pc1a}\).

Consistent with the results from our mutagenesis experiments, the toxin residues that make the largest number of interactions with the channel in the top 10 docking solutions (i.e., Trp24, Arg26, and Arg27) are those that have the largest impact on toxin function when mutated to Ala. In contrast, the side chain of Lys25 had no consistent interaction with the channel, in agreement with our data demonstrating that the K25A mutation does not reduce the ability of \(\pi\text{-TRTX-Pc1a}\) to inhibit ASIC1a.

A major contributor to the molecular events underlying the sensitivity of ASIC1a to acidic pH is the disruption of carboxyl-carboxylate pairs in the acidic pocket caused by the binding of protons (Jasti et al., 2007; Gründner and Chen, 2010). We found that \(\pi\text{-TRTX-Pc1a}\) docks into the acidic pocket of the channel and that arginine residues from the toxin mimic the action of protons by interacting directly with several of the anionic residues in these carboxyl-carboxylate pairs, including Asp237 and Asp349. Because of the subnanomolar affinity of \(\pi\text{-TRTX-Pc1a}\) for this site on the channel, we propose that the toxin effectively mimics the persistent activation by protons that leads to steady-state desensitization of ASIC1a when the extracellular pH is incrementally decreased (Sherwood and Askwith, 2009). This is consistent with the observation that \(\pi\text{-TRTX-Pc1a}\) shifts the steady-state desensitization of ASIC1a to higher pH and renders the channel inactive under normal physiological conditions (pH 7.3–7.4) (Chen et al., 2006).

In summary, our model of the ASIC1a–\(\pi\text{-TRTX-Pc1a}\) complex, which has been derived using a variety of complementary experimental approaches, is consistent with all currently available experimental data on the ASIC1a–\(\pi\text{-TRTX-Pc1a}\) interaction. This model greatly improves our understanding of the molecular details of this important interaction, and it should facilitate the development of novel therapeutics that mimic the action of \(\pi\text{-TRTX-Pc1a}\).

Acknowledgments

Clones of rat ASIC1a, ASIC2a, and ASIC3 were a kind gift from Prof. John Wood (University College London) and rat ASIC1b was kindly provided by Prof. Stefan Gründner (University of Würzburg).

Authorship Contributions

Participated in research design: Saez, Chassagnon, Mark, Gooley, Rash, and King.

Conducted experiments: Saez, Mobli, Bieri, Chassagnon, Malde, Gamsjaeger, and Rash.

Performed data analysis: Saez, Mobli, Bieri, Chassagnon, Malde, Gamsjaeger, Mark, Gooley, Rash, and King.

Wrote or contributed to the writing of the manuscript: Saez, Mobli, Bieri, Chassagnon, Malde, Gamsjaeger, Mark, Gooley, Rash, and King.

References

Carnally SM, Dev HS, Stewart AP, Barrera NP, Van Bemmelen MX, Schild L, Henderson RM, and Edwardson JM (2008) Direct visualization of the trimeric...