Valproic Acid Increases Formation of Reactive Oxygen Species and Induces Apoptosis in Postimplantation Embryos: A Role for Oxidative Stress in Valproic Acid-Induced Neural Tube Defects

Emily W. Y. Tung and Louise M. Winn

Department of Biomedical and Molecular Sciences, Graduate Program in Pharmacology and Toxicology (E.W.Y.T., L.M.W.), and School of Environmental Studies, Queen’s University, Kingston, Ontario, Canada (L.M.W.)

Received March 19, 2011; accepted August 25, 2011

ABSTRACT

Exposure to the anticonvulsant valproic acid (VPA) during the first trimester of pregnancy is associated with an increased risk of congenital malformations including heart defects, craniofacial abnormalities, skeletal and limb defects, and, most frequently, neural tube defects (NTDs). The mechanisms by which VPA induces teratogenic effects are not fully understood, although previous studies support a role for oxidative stress. To investigate the effects of VPA on early development, a whole-embryo culture model was used to evaluate the protective effects of antioxidants, measure intracellular reactive oxygen species (ROS) levels, and assess markers of oxidative damage and apoptosis. Furthermore, in vivo teratological evaluations of antioxidant protection were also completed. VPA (0.60 mM in embryo culture, 400 mg/kg in vivo) induced significant decreases in embryonic growth and increases in ROS, and increased formation of reactive oxygen species (ROS) levels, and assess markers of oxidative damage and apoptosis. Furthermore, in vivo teratological evaluations of antioxidant protection were also completed. VPA (0.60 mM in embryo culture, 400 mg/kg in vivo) induced significant decreases in embryonic growth and increases in NTDs. Of the antioxidants tested, catalase provided partial protection against VPA-mediated reductions in morphological and developmental growth parameters in both whole-embryo culture and in vivo systems. VPA exposure resulted in an increase in ROS staining in the head region, as assessed by whole-mount staining with 5-((and)-6)-chloromethyl-2′,7′-dichlorodihydrofluorescein diacetate. Markers of embryonic oxidative damage including 8-hydroxyguanosine, 4-hydroxypropanenal adducts, and 3-nitrotyrosine were not affected by VPA treatment. Increased ROS levels were correlated with increased staining for apoptotic markers, as assessed by Western blotting and immunohistochemistry. Addition of catalase to the medium attenuated VPA-induced increases in ROS formation and apoptosis. These studies identify regions of the embryo susceptible to ROS and apoptosis induced by VPA, thus establishing a possible molecular pathway by which VPA exerts teratogenicity.

Introduction

Valproic acid (VPA) is a known human teratogen that causes a cluster of birth defects described by the term “fetal valproate syndrome” and includes developmental anomalies such as cleft palate, atrial septal defects, polydactyly, craniosynostosis, hypospadias, and, most frequently, spina bifida (Jentink et al., 2010). Spina bifida is a neural tube defect (NTD) that results from failure of the caudal neural tube to close during organogenesis and may lead to sensory and motor deficiencies in areas caudal to the site of the defect (Copp et al., 2003). Another NTD, exencephaly, refers to failure of the cranial neuropore to close and is presented in fetuses after maternal VPA exposure in a murine model (Ornoy, 2009). In addition to congenital malformations, VPA exposure during pregnancy is associated with decreased cognitive function 3 years after birth (Meador et al., 2009a). VPA is currently used in the treatment of a wide variety of neurological disorders including migraines, bipolar disorder, and epilepsy (Evers, 2008; Bowden, 2009). Although VPA use in women of childbearing age has declined slowly over the last decade (Ackers et al., 2009; Meador et al., 2009b), it remains one of the most frequently prescribed and effective antiepileptics.
leptic drugs available, thus creating a clinical dilemma when less teratogenic substitutions are not available or suitable for treatment (Duncan, 2007). Despite the widespread use of VPA, the mechanisms by which it causes teratogenicity are not fully understood.

Oxidative stress has been implicated in the mechanisms of teratogenesis of several compounds including phenytoin, benzo[a]pyrene, hydroxyurea, and 5-bromo-2′-deoxyuridine (Winn and Wells, 1995, 1996; Sahambi and Hales, 2006; Yan and Hales, 2006). Excessive reactive oxygen species (ROS) production can cause direct damage to cellular macromolecules such as DNA, protein, and lipids and can alter normal signaling pathways through activation of redox-sensitive transcription factors (Wells et al., 2009). Detoxification of ROS can be achieved through enzymatic and nonenzymatic antioxidant mechanisms. Although the embryo is equipped with enzymatic antioxidant defense mechanisms, several studies have demonstrated that the expressions of superoxide dismutase (SOD), catalase, and glutathione peroxidase are lower during early embryonic development compared with maternal levels (el-Hage and Singh, 1990; Winn and Wells, 1999; Zaken et al., 2000). Because early embryonic antioxidant systems are immature and at considerably lower levels than in adults, the developing embryo may be more susceptible to ROS-initiated damage.

Indeed, several studies provide evidence suggesting a role for oxidative stress in VPA-induced teratogenesis. In a whole-embryo culture model, VPA was shown to increase oxidized to reduced GSH ratios, and decrease total GSH content in embryo homogenates. These effects were reversed by pretreatment with vitamin C (Zhang et al., 2009). In vivo studies have demonstrated that vitamin E pretreatment prevents VPA-induced NTDs in mice (Al Deeb et al., 2000). Furthermore, in vitro studies have shown that VPA increases ROS formation and inhibits cardiomyocyte differentiation, and these VPA-induced alterations were prevented by antioxidant pretreatment (Na et al., 2003). Although these studies indirectly suggest that excessive ROS production during organogenesis may be initiating a teratogenic effect after VPA exposure, direct measurements of ROS production and oxidative damage have not been assessed in VPA-treated embryos.

The current study was designed to further characterize the contribution of oxidative stress in VPA-induced teratogenesis. A murine whole-embryo culture model was used to examine whether and which antioxidants protect against VPA-induced embryotoxicity. Furthermore, we measured and localized ROS formation, oxidative damage, and apoptotic markers. Finally, a teratology study was completed to investigate the in vivo effects of antioxidant supplementation on VPA-induced teratogenesis.

Materials and Methods

Experimental Animals. Female virgin CD-1 mice (Charles River Laboratories, St. Constant, QC, Canada) aged 4 to 6 weeks were maintained in a temperature-controlled room with a 12-h light/dark cycle. Standard rodent chow (Purina Rodent Chow; Ralston Purina International, Strathroy, ON, Canada) and tap water were provided.

Standard rodent chow (Purina Rodent Chow; Ralston Purina International, Strathroy, ON, Canada) and tap water were provided. Females with a vaginal plug the following morning were separated from the colony, housed together, and designated as gestational day (GD) 1. All practices were in accordance with the guidelines of the Canadian Council on Animal Care, and experimental procedures were approved by the Queen’s University Animal Care Committee.

Whole-Embryo Culture. On GD 9.0, pregnant dams were sacrificed by cervical dislocation, and embryos were explanted by the method of New (1976). In brief, uteri were removed from dams, rinsed in phosphate-buffered saline (PBS), and dissected to expose the individual implantation sites. The outer layers of Reichert’s membrane, trophoblast, and parietal endoderm were removed, leaving the yolk sac, amnion, and ectoplacental cone intact. Explanted embryos at similar developmental stages (four to six somites) were cultured individually in 1.3 ml of pregassed (5% CO₂ in air) embryo culture media consisting of 90% male rat serum (Cocalico Biologicals Inc., Reamstown, PA) and 10% Hank’s balanced salt solution (Sigma-Aldrich Canada Ltd., Oakville, ON, Canada). Embryos were cultured for 24 h at 37°C, rotating at 30 rpm.

For the dose-response study, embryos were cultured with one of the following concentrations of VPA (Sigma-Aldrich Canada Ltd.): 0, 0.075, 0.15, 0.30, 0.60, or 1.2 mM. In the antioxidant studies, embryos were cultured in the presence of polyethylene glycol (PEG)-conjugated catalase (400 U/ml), PEG-conjugated superoxide dismutase (25, 50, or 150 U/ml), N-acetylcysteine (NAC) (0.5, 1, or 5 mM), or 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox) (50, 100, or 300 μM), with or without 0.60 mM VPA.

At the end of the culture period, embryos were removed from the media, rinsed in PBS, freed from membranes (amnion and yolk sac), and examined by an established developmental scoring system (Van Maele-Fabry et al., 1990). Embryos were assessed for viability by the presence of a heartbeat, and only viable embryos were included in the results. The following developmental parameters were measured: dorsal-ventral flexure (embryo turning), anterior neuropore closure, and somite development. Morphological parameters assessed were yolk sac diameter and crown-rump length. Yolk sac diameter was measured at the widest position perpendicular to the ectoplacental cone. Crown-rump length was measured in embryos that had turned.

Animal Treatment and Teratological Assessment. For teratology studies, eight litters of control dams, seven litters of PEG-catalase-treated dams, nine litters of VPA-treated dams, and nine litters of PEG-catalase-pretreated VPA dams were used to assess catalase protection against VPA-induced teratogenesis. PEG-catalase was dissolved in PBS and injected at a dose of 10 kU/kg i.p. on GD 8.5. Dams were then injected with 400 mg/kg VPA or its vehicle (0.9% saline) subcutaneously on GD 9. On GD 19, one day before spontaneous delivery, dams were sacrificed by cervical dislocation. Fetuses were collected, weighed, measured, and kept in an incubator at 37°C for 1 h to assess for viability. Live and dead fetuses were recorded and examined for external malformations.

Whole-Embryo Fluorescent Staining for ROS. Embryonic ROS levels were measured in cultured embryos as described previously with the following modifications (Zhao and Reece, 2005). Embryos were removed from media after 24 h, cleared from membranes, and incubated with 5-(and-6)-chloromethyl-2,7′-dichlorodihydrofluorescein diacetate (CM-H₂DCFDA) (5 μM) in serum-free Iscove’s modified Dulbecco’s medium for 1 h. After incubation with CM-H₂DCFDA, embryos were washed with PBS and examined immediately under a confocal microscope. Scanning parameters were set up using a VPA-treated embryo, and all embryos were examined with the same parameters. Quantification of fluorescent staining was determined by measuring fluorescence intensity of three area regions of the embryonic structure and then determining the mean fluorescence intensity. Image analysis was performed blinded.

Protein Extraction and Western Blotting. Two to three embryos were pooled after 24 h of culture for each n value for Western blotting. Embryos were sonicated on ice in radioimmunoprecipitation buffer (50 mM Tris-HCl, 150 mM NaCl, 0.2% (w/v) NP-40, and 1.0 mM EDTA). Protein concentrations were determined using the Bio-Rad protein assay. Protein samples (20 μg) were separated on 8...
or 15% polyacrylamide gels followed by transfer to polyvinylidene difluoride membranes and then incubated with the following primary antibodies overnight: anti-4-hydroxynonenal Michael adducts (dilution 1:2000 in 2% milk in TBST; Calbiochem, San Diego, CA), anti-3-nitrotyrosine (1:500 in 2% milk in TBST; Millipore, Billerica, MA), anti-cleaved caspase-3 (1:500 in 2% milk in TBST; Cell Signaling Technology, Danvers, MA), and anti-cleaved PARP (1:500 in 3% milk in TBST) (Cell Signaling Technology). Membranes were then washed and incubated with appropriate secondary antibodies and developed using an enhanced chemiluminescence detection kit (PerkinElmer Life and Analytical Sciences, Waltham, MA). Differences in protein loading were controlled by stripping and reprobing (Prism 4.0; GraphPad Software Inc., San Diego, CA). Binomial data were assessed by χ² test. P < 0.05 was designated as statistically significant.

Results

Effect of VPA on Mouse Embryo Development in Whole-Embryo Culture. To verify the teratogenic profile of VPA in a whole-embryo culture system, embryos with four to six somites were extracted from dams on GD 9.0 and cultured in the presence of 0, 0.075, 0.15, 0.30, 0.60, or 1.2 mM VPA for 24 h. A dose-dependent decrease was observed in most developmental and morphological parameters assessed (Fig. 1). Significant decreases in yolk sac diameter were observed at 0.60 and 1.2 mM. In addition, crown-rump length was significantly decreased at 0.15 and 0.60 mM, although this parameter was only measured in two embryos that had turned at 1.2 mM. The total somite number was significantly decreased in embryos exposed to 0.60 and 1.2 mM VPA. Developmental parameters assessed were dorsal-ventral flexure (embryo turning) and anterior neuropore closure. A significant decrease in embryo turning was observed at 0.075 mM, and this decrease occurred in a dose-dependent manner. Treatment with 0.60 and 1.2 mM VPA lowered the number of embryos with closed anterior neuropore after the 24-h culture period.

Embryoprotective Effects of Catalase on VPA-Induced Embryotoxicity in Whole-Embryo Culture. To determine whether antioxidant coculture could protect...
against VPA-induced embryotoxicity, embryos were cultured in the presence of PEG-catalase (400 U/ml), PEG-SOD (25, 50, or 150 U/ml), NAC (0.5, 1, or 5 mM), or Trolox (50, 100, or 300 μM), with or without 0.60 mM VPA. PEG-catalase (400 U/ml) supplementation eliminated VPA-induced decreases in yolk sac diameter and somite number (Fig. 2). In addition, embryo turning and anterior neuropore closure were restored in embryos exposed to both PEG-catalase and VPA. PEG-SOD, NAC, and Trolox did not prevent embryotoxicity induced by VPA at any dose tested (Table 1).

Embryoprotective Effects of Catalase on VPA-Induced Teratogenesis In Vivo. To assess whether PEG-catalase could protect against VPA-induced teratogenesis in vivo, pregnant mice were injected with 10 kU/kg PEG-catalase 16 h before dosing with a teratogenic dose of VPA (400 mg/kg). PEG-catalase and/or VPA treatment did not significantly alter litter size among treatment groups (mean litter sizes were 13.13 ± 0.44, 11.71 ± 0.92, 13.22 ± 0.68, and 11.67 ± 0.58 for control, PEG-catalase, VPA, and PEG-catalase/VPA-treated groups, respectively). In addition, PEG-cat-

TABLE 1

<table>
<thead>
<tr>
<th>Treatment</th>
<th>mm</th>
<th>mm</th>
<th>%</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>2.67 ± 0.34</td>
<td>2.29 ± 0.33</td>
<td>20.1 ± 2.1</td>
<td>100 ± 0</td>
</tr>
<tr>
<td>0.60 mM VPA</td>
<td>2.36 ± 0.34*</td>
<td>2.24 ± 0.21</td>
<td>18.3 ± 1.9*</td>
<td>43.5 ± 3.9*</td>
</tr>
<tr>
<td>+ 400 U/ml PEG-catalase</td>
<td>2.63 ± 0.37</td>
<td>2.23 ± 0.23</td>
<td>18.9 ± 1.6*</td>
<td>82.3 ± 5.2*</td>
</tr>
<tr>
<td>+ 25 U/ml SOD</td>
<td>2.46 ± 0.34</td>
<td>2.17 ± 0.24</td>
<td>18.7 ± 2.5</td>
<td>63.6 ± 14.5*</td>
</tr>
<tr>
<td>+ 50 U/ml SOD</td>
<td>2.53 ± 0.26</td>
<td>2.23 ± 0.24</td>
<td>19.7 ± 1.3</td>
<td>60.0 ± 15.5*</td>
</tr>
<tr>
<td>+ 150 U/ml SOD</td>
<td>2.42 ± 0.40</td>
<td>2.27 ± 0.21</td>
<td>18.2 ± 2.3</td>
<td>53.8 ± 13.8*</td>
</tr>
<tr>
<td>+ 0.5 mM NAC</td>
<td>2.29 ± 0.29</td>
<td>2.32 ± 0.04</td>
<td>18.5 ± 3.0</td>
<td>41.7 ± 14.2*</td>
</tr>
<tr>
<td>+ 1 mM NAC</td>
<td>2.16 ± 0.29</td>
<td>2.10 ± 0.16</td>
<td>17.9 ± 2.0</td>
<td>36.4 ± 14.5*</td>
</tr>
<tr>
<td>+ 5 mM NAC</td>
<td>2.39 ± 0.23</td>
<td>2.16 ± 0.17</td>
<td>19.3 ± 1.9</td>
<td>55.6 ± 16.8*</td>
</tr>
<tr>
<td>+ 50 μM Trolox</td>
<td>2.18 ± 0.55</td>
<td>2.35 ± 0.06</td>
<td>17.1 ± 3.1*</td>
<td>33.3 ± 13.6*</td>
</tr>
<tr>
<td>+ 100 μM Trolox</td>
<td>2.41 ± 0.37</td>
<td>2.22 ± 0.19</td>
<td>17.9 ± 2.1*</td>
<td>46.2 ± 13.8*</td>
</tr>
<tr>
<td>+ 300 μM Trolox</td>
<td>2.22 ± 0.37</td>
<td>2.04 ± 0.05</td>
<td>17.9 ± 2.3</td>
<td>50.0 ± 15.8*</td>
</tr>
</tbody>
</table>

* Indicates significant difference from control (vehicle)-treated embryos.
† Significant difference from 0.60 mM VPA-treated embryos. All other treatment groups were not statistically different from 0.60 mM VPA embryos in all parameters assessed.

Fig. 2. Embryoprotection by catalase in whole-embryo culture. Embryos were cultured for 24 h in the presence of vehicle, PEG-catalase (CAT) (400 U/ml), 0.60 mM VPA, or PEG-catalase (400 U/ml) and 0.60 mM VPA. The number of embryos is given in parentheses. *, significant difference from vehicle-treated and PEG-catalase-treated embryos (p < 0.05); †, significant difference from the PEG-catalase/0.60 mM VPA treatment group (p < 0.05). Vehicle-treated controls were not statistically different from embryos treated with VPA and PEG-catalase.
alase and/or VPA administration did not significantly affect resorption rates (1.93 ± 1.27, 8.38 ± 2.89, 5.41 ± 3.04, and 7.35 ± 3.75 for control, PEG-catalase, VPA, and PEG-catalase/VPA-treated groups, respectively). VPA alone caused a significant decrease in fetal viability because of increased fetal death in each litter; in addition, fetal weight and length were significantly decreased by VPA treatment. VPA also significantly increased the number of fetuses presenting with open eye and exencephaly (Fig. 3). Pretreatment with 10 kU/kg PEG-catalase prevented the VPA-induced decrease in fetal weight and decreased the percentage of fetuses presenting with NTDs. PEG-catalase pretreatment did not have an effect on fetal viability, length, or the incidence of open eye compared with those in the VPA treatment group.

Catalase Prevents VPA-Induced ROS Formation. Because catalase was shown to protect against VPA-induced malformations in whole-embryo culture and in vivo, intracellular ROS levels in mouse embryos were measured by whole-mount immunofluorescent staining with CM-H$_2$DCFDA in cultured embryos. A significant increase in fluorescent staining was observed in VPA-treated (0.60 mM) mouse embryo heads compared with control embryo heads (Fig. 4). This increase was attenuated by addition of PEG-catalase (400 U/ml) to the media. Significant changes in fluorescent staining in the heart and somites were not observed.

VPA Does Not Alter Markers of Oxidative Damage in Embryos. Western blotting and immunohistochemistry were used to assess markers of oxidative damage in embryos after 24 h of culture. VPA did not alter levels of 4-hydroxynonenal Michael adducts or 3-nitrotyrosine (markers of lipid peroxidation and protein nitration, respectively) as assessed by Western blotting (Fig. 5). Immunohistochemistry performed for 4-hydroxynonenal adducts and 3-nitrotyrosine showed diffuse cytoplasmic localization in the neuroepithelium of both control and VPA-treated embryos, as indicated by DAB (brown) staining. Staining for 8-hydroxyguanosine, a marker of oxidative DNA damage, did not reveal any apparent differences between control and VPA-treated embryos in the anterior neural tube.

Catalase Protects against VPA-Induced Apoptosis. Western blotting and immunohistochemistry were used to assess alterations in cleaved caspase-3 and cleaved PARP levels in embryos after 24 h of culture. VPA (0.60 mM) significantly increased the expression of both cleaved caspase-3 and cleaved PARP compared with that in control embryos (Fig. 6). Coculture with PEG-catalase (400 U/ml) attenuated VPA-induced increases in cleaved caspase-3 and PARP protein expression. Immunohistochemistry showed staining for cleaved caspase-3 and cleaved PARP in discrete regions in the neuroepithelium of the anterior neural tube of control embryos. Increased substrate staining (brown) was observed along the anterior neuroepithelium as well as in the somites of VPA-treated embryos. PEG-catalase and VPA cotreated embryos showed staining patterns similar to those of control embryos.

![Fig. 3. Prevention of VPA-induced teratogenesis in vivo by catalase. PEG-catalase (CAT) (10 kU/kg) was administered to pregnant dams 16 h before dosing with VPA (400 mg/kg) on GD 9.0. The number of litters is given in parentheses. Results are expressed as a percentage per litter (viability, open eye, and exencephaly) or mean per litter (fetal weight and length). *: significance from vehicle-treated and PEG-catalase-treated dams (p < 0.05). +: significant difference from PEG-catalase/VPA-treated litters (p < 0.05).](image-url)
Discussion

Studies have previously demonstrated that antioxidant pretreatment or supplementation protects against embryotoxicity induced by VPA (Al Deeb et al., 2000; Zhang et al., 2009). We expand upon these findings in a whole-embryo culture model using several antioxidants to further distinguish the molecular mechanisms by which VPA causes teratogenesis. First, a dose-dependent decrease was observed in developmental and morphological parameters including yolk sac diameter, somite number, embryo turning, and anterior neuropore closure in embryos culture with VPA. This increase in growth retardation and malformed embryos is consistent with previously published data examining VPA-induced embryotoxicity in a whole-embryo culture system (Andrews et al., 1997). The antioxidants used in the current study were selected on the basis of previous reports that have shown to be approximately 3 to 7% of maternal levels (Ornoy, 2009). Nonetheless, our embryo culture model using several antioxidants to further distinguish the molecular mechanisms by which VPA causes teratogenesis and identify hydrogen peroxide as a specific mediator of NTDs.

To further verify the protective effects of catalase against VPA-initiated malformations, an in vivo teratological study was completed. Treating mice with PEG-catalase at a dose that increases embryonic catalase activity before a teratogenic dose of VPA resulted in protection against VPA-induced reductions in fetal weight and VPA-induced NTDs (Winn and Wells, 1999). Of interest, catalase did not protect against the incidence of open eye or decrease in fetal length caused by VPA. Whereas our results suggest that catalase has a specific effect on neural tube closure, further studies will be required to determine the significance of ROS on molecular and structural changes during neurulation. It is possible that VPA exerts specific embryonic effects via different mechanisms, and NTDs are particularly sensitive to increases in ROS (Ornoy, 2009). Nonetheless, our embryo culture and in vivo studies verify a role for ROS in VPA-initiated teratogenesis and identify hydrogen peroxide as a specific mediator of NTDs.

Catalase catalyzes the decomposition of hydrogen peroxide to water and molecular oxygen. Although hydrogen peroxide itself is a weak oxidant, it can freely cross cellular membranes and, in the presence of transition metals, can be reduced to the highly reactive hydroxyl radical via the Fenton reaction (Fantel, 1996). Embryonic catalase activity has been shown to be approximately 3 to 7% of maternal levels and remains consistently low from GD 9 to GD12, indicating that organogenesis may be a period when embryos are par-

![Fig. 4. VPA increases production of reactive oxygen species in whole-embryo culture. Whole mount staining for CM-H2DCFDA after 24 h of culture resulted in significant increases in fluorescent staining in VPA-treated (0.60 mM) embryonic heads that was attenuated by PEG-catalase (CAT) (400 U/ml) coculture (A). Fluorescent values measured in control embryos were not statistically different from those for embryos exposed to both PEG-catalase and VPA. Differences were not observed for CM-H2DCFDA staining in hearts (B) and somites (C). i and ii, control; iii and iv, PEG-catalase; v and vi, exencephalic embryo treated with VPA; vii and viii, PEG-catalase and VPA. The number of embryos is given in parentheses. *+, significant difference from vehicle-treated embryos is given in parentheses. *+, significant difference from vehicle-treated embryos (p < 0.05). +, significant difference from PEG-catalase/VPA-treated embryos (p < 0.05). Photos of embryonic heads were taken at 10× magnification.](Image 94x640 to 232x717)
pically susceptible to damage by hydrogen peroxide (Abramov and Wells, 2011). Of interest, the same study also demonstrated in embryos cultured with the ROS-initiating teratogen phenytoin that embryos with failed anterior neuropore closure and embryos that failed to turn have significantly decreased levels of catalase activity compared with those in embryos that developed normally. This finding supports the results of our present study, suggesting that hydrogen peroxide plays a specific role in mediating some aspects of VPA-induced embryotoxicity.

To directly measure ROS formation and localize increases in ROS, whole-mount immunofluorescence was performed with CM-H$_2$DCFDA, a dye sensitive to various ROS including hydrogen peroxide, hydroxyl radicals, peroxyl radicals, and peroxynitrite anions. In the present study, we observed a significant increase in fluorescent staining in the heads of mouse embryos that were exposed to 0.60 mM VPA, compared with controls, and these increased ROS levels were attenuated by coculture with catalase. Previous studies have demonstrated that VPA may be inducing its teratogenic effects via increased ROS formation; however, to our knowledge, we are the first to directly localize increased staining with CM-H$_2$DCFDA, a dye sensitive to various ROS including hydrogen peroxide, hydroxyl radicals, peroxyl radicals, and peroxynitrite anions. In the present study, we observed a significant increase in fluorescent staining in the heads of mouse embryos that were exposed to 0.60 mM VPA, compared with controls, and these increased ROS levels were attenuated by coculture with catalase. Previous studies have demonstrated that VPA may be inducing its teratogenic effects via increased ROS formation; however, to our knowledge, we are the first to directly localize increased staining for ROS after VPA exposure within the whole embryo. Many teratogens have been shown to enhance ROS formation via different mechanisms; for instance, some can undergo redox cycling whereas others are metabolized to a reactive intermediate (Juchau et al., 1992). VPA is extensively metabolized. VPA-induced hepatotoxicity has been attributed to metabolism of the parent compound to the highly reactive metabolites 4-ene VPA and E-2,4-diene VPA by CYP2C9 and CYP2C19 (Chang and Abbott, 2006). Although levels of these cytochrome P450s are low in embryos during organogenesis, other enzymes such as prostaglandin H synthases and lipoxygenases are present in high levels in the developing embryo (Winn and Wells, 1996). These enzymes have previously been shown to bioactivate other teratogenic agents such as phenytoin and benzo[a]pyrene to reactive intermediates, thereby increasing ROS production (Winn and Wells, 1996). Thus, it is possible that VPA is metabolized by prostaglandin H synthase and lipoxygenase to generate reactive metabolites in the embryo. Therefore, VPA-induced increases in ROS production combined with immature embryonic antioxidant defense systems may together contribute to the generation of a teratogenic effect.

Because increases in ROS were observed, we predicted that markers of oxidative damage would be increased by VPA exposure and reduced by catalase supplementation. The markers of oxidative damage assessed in this study were selected on the basis of data that previously demonstrated their contribution to teratogenesis and to cover a broad range of macromolecular damage (Winn and Wells, 1995; Beckers-Trapp et al., 2006; Yan and Hales, 2006). Differences in 4-hydroxynonenal adduct, 3-nitrotyrosine formation, or 8-hydroxyguanosine were not observed in any treatment group. Despite observing a significant increase in ROS formation, it is possible that the levels of ROS generated by VPA were not high enough to cause direct oxidative damage to cellular macromolecules. Early organogenesis occurs in a relatively hypoxic environment, where moderate changes in ROS production can cause alterations in cellular proliferation, differentiation, and cell fate through changes in cell signaling (Dennery, 2007). Of interest, ROS-mediated alterations in
signaling pathways are attributed to the less reactive and membrane-diffusible hydrogen peroxide, which selectively oxidizes cysteine residues on proteins, consequently altering its function and downstream signal transduction pathways (Wells et al., 2009). In addition, VPA can alter cell signaling through gene expression changes mediated through histone deacetylase inhibition (Phiel et al., 2001). VPA is a direct inhibitor of class I and II HDACs, and several laboratories including ours have shown that embryonic histone acetylation levels are increased after exposure to VPA (Menegola et al., 2005; Tung and Winn, 2010). Furthermore, studies have supported a role for HDAC inhibition as a mechanism of teratogenesis because analogs of VPA that lack HDAC inhibitory activity are less teratogenic (Gurvich et al., 2005). Gene microarray studies have also demonstrated that VPA targets genes regulated by HDAC, including *Mt1* and *Mt2*, both of which are ROS-sensitive (Jergil et al., 2009). In addition, HDAC inhibitors have been shown to increase ROS production and induce apoptosis in several cancer cell lines (Carew et al., 2008). Therefore, alterations in gene expression and/or increases in ROS formation mediated by HDAC inhibition during development may induce teratogenesis.

Our current study also demonstrated that VPA exposure resulted in increased expression of markers of apoptosis, cleaved caspase-3 and cleaved PARP, that was attenuated by catalase supplementation. Immunohistochemistry revealed that staining was particularly increased in the neuroepithelium of exencephalic embryos treated with VPA, as well as the somites (iii and iv); however, VPA-catalase coculture prevented VPA-induced staining of cleaved caspase-3 (v and vi). Increased staining was observed in the neuroepithelium of exencephalic embryos treated with both PEG-catalase and VPA compared with controls. Similar staining patterns were observed for cleaved PARP compared with those for cleaved caspase 3. i and ii, control embryonic head and somites; iii and iv, VPA-treated exencephalic embryonic head and somites; v and vi, PEG-catalase and VPA treated-head and somites). n = 3 for all Western blotting treatment groups. *+, significant difference from vehicle-treated and PEG-catalase-treated embryos (p < 0.05). †, significant difference from PEG-catalase/VPA-treated embryos (p < 0.05). † indicates cranial neuroepithelium. Embryonic head pictures were taken at 100× magnification. Photos of somites are at 200× magnification.
sive cell death in the cranial neurop epithelium can disrupt anterior neural tube closure by leaving the embryo with an inadequate number of cells to undergo proper closure, resulting in exencephaly. Increased apoptosis in the neuroepithelium caused by VPA-induced increases in ROS production and alterations in embryonic signaling may be the underlying causes of NTDs in this model.

In summary, we have shown that VPA causes an increase in embryonic ROS production and an increase in apoptosis that was attenuated by catalase supplementation. The incidence of embryonic and fetal defects induced by VPA was prevented by catalase in both whole-embryo culture and in vivo models. The results of this study strongly support the hypothesis that ROS, specifically hydrogen peroxide, play an important role in mediating VPA-induced teratogenesis. Because markers of oxidative damage were not altered by VPA exposure, we now postulate that VPA may be mediating teratogenesis by alterations in redox-sensitive signaling pathways. The identification of this molecular pathway furthers our understanding of the mechanisms of VPA-mediated teratogenesis and will aid in development of prevention strategies.

Acknowledgments

We thank John DaCosta for assistance with tissue processing and embedding. We also thank Jaina Meens, Jeff Mewburn, and Matt Gordon for efforts and expertise in optimizing and imaging the embryos in the whole-mount immunofluorescence study.

Authorship Contributions

Participated in research design: Tung and Winn.

Conducted experiments: Tung.

Performed data analysis: Tung.

Wrote or contributed to the writing of the manuscript: Tung and Winn.

References

Acknowledgments

We thank John DaCosta for assistance with tissue processing and embedding. We also thank Jaina Meens, Jeff Mewburn, and Matt Gordon for efforts and expertise in optimizing and imaging the embryos in the whole-mount immunofluorescence study.

Authorship Contributions

Participated in research design: Tung and Winn.

Conducted experiments: Tung.

Performed data analysis: Tung.

Wrote or contributed to the writing of the manuscript: Tung and Winn.

References

Acknowledgments

We thank John DaCosta for assistance with tissue processing and embedding. We also thank Jaina Meens, Jeff Mewburn, and Matt Gordon for efforts and expertise in optimizing and imaging the embryos in the whole-mount immunofluorescence study.

Authorship Contributions

Participated in research design: Tung and Winn.

Conducted experiments: Tung.

Performed data analysis: Tung.

Wrote or contributed to the writing of the manuscript: Tung and Winn.

References

Acknowledgments

We thank John DaCosta for assistance with tissue processing and embedding. We also thank Jaina Meens, Jeff Mewburn, and Matt Gordon for efforts and expertise in optimizing and imaging the embryos in the whole-mount immunofluorescence study.