The Activity of Human Aquaporin 1 as a cGMP-Gated Cation Channel Is Regulated by Tyrosine Phosphorylation in the Carboxyl-Terminal Domain

Ewan M. Campbell, Dawn N. Birdsell, and Andrea J. Yool

ABSTRACT

In addition to a constitutive water channel activity, several studies suggest Aquaporin-1 (AQP1) functions as a nonselective monovalent cation channel activated by intracellular cGMP, although variability in responsiveness between preparations has led to controversy in the field. Data here support the hypothesis that responsiveness of the AQP1 ionic conductance to cGMP is governed by tyrosine phosphorylation. Wild-type and mutant human AQP1 channels expressed in Xenopus laevis oocytes were characterized by two-electrode voltage clamp and optical osmotic swelling analyses. Quadruple mutation by site-directed mutagenesis of barrier hydrophobic residues (Val50, Leu54, Leu170, Leu174) to alanines in the central pore site increased permeability of tetraethylammonium ion. Introduction of cysteine at lysine 51 in the central pore (K51C) in a cysteine-less template created new sensitivity to block of the conductance by mercuric ion. Mutations of candidate consensus sites and pharmacological manipulation of serine and threonine phosphorylation did not alter cGMP-dependent responses; however, mutation of tyrosine Y253C or pharmacological dephosphorylation prevented ion channel activation. Modification of Y253C by covalent addition of a negatively charged group [2-sulfonatoethyl methanethiosulfonate sodium salt (MTSES)] rescued the cGMP-activated conductance response, an effect reversed by dithiothreitol. Results support the proposal that phosphorylation of tyrosine Tyr253 in the carboxyl terminal domain, confirmed by Western blot, acts as a master switch regulating responsiveness of AQP1 ion channels to cGMP, and the tetrameric central pore is the ion permeation pathway. These findings advance resolution of a standing controversy and expand our understanding of AQP1 as a multifunctional regulated channel.

Introduction

Aquaporins (AQPs) are members of the family of major intrinsic proteins (MIPs) found across all forms of life (Agre, 2004; Benga, 2009; Gomes et al., 2009). Vertebrate and invertebrate AQPs facilitate the rapid transport of water across cell membranes, with some subtypes transporting other small molecules and ions (Yool and Weinstein, 2002; Campbell et al., 2008; Gomes et al., 2009). Aquaporins function as tetramers of subunits that each have an individual monomeric pore that allows water molecules to move down osmotic and hydrostatic gradients (Preston et al., 1992) containing evolutionarily conserved Asn-Pro-Ala (NPA) signature motifs (Jung et al., 1994; de Groot and Grubmüller, 2001). In addition to its water channel activity, AQP1 has been shown to function as an ion channel when activated by cGMP (Yool et al., 1996). In substitution experiments, the activated AQP1 ion conductance was shown to be nonselective for monovalent cations with a relative permeability sequence of K⁺ < Cs⁺ > Na⁺ > TEA⁺, and showed no appreciable conduction of Cl⁻, protons, or divalent cations Ca²⁺ or Mg²⁺ (Yool et al., 1996). In response to cGMP application, AQP1 channels in excised oocyte patches showed large conductance channels with a unitary conductance of approximately 150 pS under physi-
logical saline conditions with slow on and off gating kinetics and modest voltage sensitivity (Anthony et al., 2000). Molecular dynamic simulation and electrophysiological analyses have supported the proposal that cations permeate AQP1 via the pore formed at the center of the tetrameric subunits and that a conserved intracellular loop between the fourth and fifth transmembrane domains is required for cGMP-dependent gating (Yu et al., 2006). Possible physiological relevance of the AQP1-mediated cationic conductance was supported by results from studies of net fluid transport in primary cultures of choroid plexus (Boassa et al., 2006). However, the ion channel activity of AQP1 has been considered controversial because of variability in the responses between different experimental models and preparations (Saparov et al., 2001; Tsunoda et al., 2004). We hypothesized that the differences between preparations reflected differences in intracellular regulatory pathways that govern AQP1 ion channel availability.

Phosphorylation state is known to govern gating behavior in many classes of channels, resulting, for example, in the switching of a potassium channel (KCNK2) between a voltage-gated and a leak mode of activity (Bockenhauer et al., 2001), transitions between modes of gating in L-type Ca channels (Hashambhoy et al., 2009), amplitude and kinetics of Kv1.3 current in HEK cells (Fadool et al., 1997), and many others (for reviews, see Catterall and Epstein, 1992; Levitan, 1994). Protein kinase C acting at threonine and serine consensus sites was shown to be a positive regulator of the AQP1-mediated ionic conductance but did not modulate the cyclic nucleotide-activated conductance (Zhang et al., 2007).

The purposes of this study were to assess the proposed tetrameric central pore as the pathway for ion permeation in AQP1 and to evaluate the roles of candidate phosphorylation sites for regulating the responsiveness of ionic conductance to cGMP stimulation. Human AQP1 wild-type and mutant channels expressed in *Xenopus laevis* oocytes were analyzed by site-directed mutagenesis, video imaging of swelling, electrophysiology, and pharmacology. Results here show that tyrosine phosphorylation in the carboxyl-terminal domain controls the availability of AQP1 ion channels to be activated by cGMP. We confirmed that threonine/serine phosphorylation does not affect the cGMP-mediated ionic conductance response, in agreement with results of prior work (Zhang et al., 2007). Results here further support the idea that the proposed central pore is the pathway for gated ion flux. Mutation of the hydrophobic barrier residues, identified by molecular dynamic modeling, altered the ionic current properties, causing inward rectification and a positive shift in the reversal potential. We generated a functional cysteine-less AQP1 template into which cysteine residues could be introduced into the carboxyl terminal and the central pore domains, and the effects on functional properties were probed by application of sulphydryl-reactive agents. Introduction of cysteine in the central pore domain created a gain-of-function block of the ionic conductance by mercury that was not seen in the cysteine-less AQP1 channel.

In summary, data here provide converging lines of evidence that the central pore is the cation channel in AQP1, and that tyrosine phosphorylation serves as one of the master switches that governs AQP1 ion channel responsiveness to cGMP. Phosphorylation of Tyr253 enhances cGMP-dependent AQP1 ion channel activity, and dephosphorylation prevents the ionic conductance response. Conditions that promoted tyrosine dephosphorylation effectively suppressed the ion channel activity to non–AQP1-expressing control levels, removing the ability to respond to cGMP, whereas conditions promoting tyrosine phosphorylation increased cGMP-dependent activity up to but not exceeding the levels seen in untreated AQP1-expressing oocytes.

The presence of hierarchical levels of regulation of AQP1 would explain the differences that have been reported in ion channel activity across various experimental preparations, resolving a standing question in the field about why an increase in cGMP level alone is not sufficient to guarantee AQP1 ion channel activation. Findings presented here move toward resolving an important controversy in the aquaporin field and further expanding our understanding of aquaporins as complex multifunctional channels.

Materials and Methods

Site-Directed Mutagenesis of AQP1 and cRNA Synthesis. cDNA for human AQP1 was provided by P. Agre (Johns Hopkins Bloomberg School of Public Health, Baltimore, MD (Preston et al., 1992); GenBank accession number NM_198098). Point mutations were introduced into hAQP1 in the *X. laevis* expression vector construct (pxBGev-AQP1) by polymerase chain reaction using the QuikChange site-directed mutagenesis kit (Agilent Technologies, Forest Hills, VIC, Australia) with custom-synthesized primers (Supplemental Table 1). Construct fidelity was established by replicate DNA sequencing of the full-length products. Wild-type and mutant AQP1 cDNAs were linearized with BamHI and cRNA transcribed with T3 RNA polymerase using the mMessage mMACHINE kit (Ambion, Austin, TX).

Oocyte Preparation. Unfertilized *X. laevis* oocytes were defolliculated with collagenase (type 1A, 1.5 mg/ml; Sigma-Aldrich, St. Louis, MO) and trypsin inhibitor (15 mg/ml) in OR-2 saline (82 mM NaCl, 2.5 mM KCl, 1 mM MgCl₂, and 5 mM HEPES) at 18°C for 1.5 h, washed in OR-2 saline solution, and maintained in ND96 saline (96 mM NaCl, 2 mM KCl, 1 mM MgCl₂, 1.8 mM CaCl₂, and 5 mM HEPES, pH 7.55) supplemented with 100 µg/ml penicillin and 100 U/ml streptomycin, and 10% (v/v) heat-inactivated horse serum. Oocytes were injected with 50 nl of water containing 1 ng of AQP1 wild-type or mutant cRNA and were incubated for 2 or more days at 18°C before swelling and electrophysiology. Non–AQP1-expressing control oocytes without cRNA injection were prepared in parallel from the same batches of oocytes and served as baseline water and ionic conductance properties for comparison with AQP1-expressing oocytes. All animal procedures were approved by the University of Adelaide Animal Ethics committee and performed in accord with the Australian Code of Practice for the Care and Use of Animals for Scientific Purposes.

Oocyte Swelling Assays. Immediately before quantitative swelling assays, oocytes were rinsed in isotonic ND96 saline (without serum or antibiotics) for 1 to 2 h at room temperature. AQP1-mediated water permeability was measured as the rate of swelling in 50% hypotonic saline (isotonic saline diluted with an equal volume of water). Inhibition by mercury was tested by preincubation of injected oocytes in isotonic saline containing 1 mM HgCl₂ for 15 min before swelling assays. Swelling rates were quantified by relative increases in volume, measured from oocyte cross-sectional area imaged by videomicroscopy (charge-coupled device camera; Cohu, San Diego, CA) at 0.5 frames/s over 30 s using National Institutes of Health ImageJ (http://rsweb.nih.gov/ij/), as described previously (Anthony et al., 2000; Boassa and Yool, 2003) and Prism (GraphPad Software Inc., San Diego, CA) software. Data for oocyte volume (V) were standardized to the initial volume (V₀) and plotted as a function of...
time and fit by linear regression to determine the slope value \((V/W) \cdot 10^{-5} \text{ seconds}^{-1}\).

Electrophysiology. For two-electrode voltage clamp, capillary glass electrodes (1–3 MΩ) were filled with 3 M KCl. Unless otherwise specified, all recordings were done in standard Na⁺ bath saline containing 100 mM NaCl, 2 mM KCl, 4.5 mM MgCl₂, and 5 mM HEPES, pH 7.3. cGMP was applied extracellularly using the membrane-permeable cGMP analog (Rp)-8-(para-chlorophenylthio)-cGMP (8-CPT-cGMP; 10 μM; Sigma-Aldrich) (Wei et al., 1998) or the nitric oxide donor sodium nitroprusside (4–10 mM; Sigma-Aldrich), which increases cGMP by activation of endogenous soluble guanylate cyclase (Boassa and Yool, 2003). For studies of reversal potential and rectification, extracellular NaCl in the bath saline was substituted with equimolar tetraethylammonium (TEA) chloride; all other components were as per standard Na⁺ bath saline. Agents were added to bath saline during the recording, and ion conductances were monitored throughout by voltage step protocols. Recordings were done with a GeneClamp amplifier and pClamp 8.0 and 9.0 software (Molecular Devices, Sunnyvale, CA). HgCl₂ was applied in the extracellular bath during the recording to a final concentration of 25 μM to assess effects on introduced cysteine residues. Injection of oocytes with the sulphydryl-reactive agent 2-sulfonatoethyl methanesulfonate sodium salt [(MTSES; Jomar Bioscience, Kensington, SA, Australia); 50 nl of 20 mM solution per oocyte yielded an estimated concentration in oocytes of 0.5 μM] was used to assess effects on introduced cysteine residues. Injection of oocytes with the sulphydryl-reactive agent 2-sulfonatoethyl methanesulfonate sodium salt [(MTSES; Jomar Bioscience, Kensington, SA, Australia); 50 nl of 20 mM solution per oocyte yielded an estimated concentration in oocytes of 0.5 μM] was used to assess effects on introduced cysteine residues.

Kinase and Phosphatase Pharmacological Agents. Oocytes expressing wild-type or mutant AQP1 channels were incubated in saline with or without the tyrosine kinase inhibitor 1-(1-dimethylthyl)-3-(1-naphthalenyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine (10 μM; Santa Cruz Biotechnology, Santa Cruz, CA) (Bishop et al., 1999), the tyrosine phosphatase inhibitor bisperoxo(1,10-phenanthroline)oxovanadate(1−), potassium salt (bpV; 100 μM; Santa Cruz Biotechnology) (Posner et al., 1994), the protein kinase G inhibitor (9S,10R,12R)-2,3,9,10,11,12-hexahydro-10-methoxy-2,9-dimethyl-1-oxo-9,12-epoxy-1H-diindolo[1,2,3-fig:1]{1,2,3-fig:1}-2,1-k[pyrrolo[3,4-fl[1,6]benzodiazone-10-carboxylic acid, methyl ester (1 μM; KT5823; Sigma-Aldrich) (Gadbois et al., 1994), or the phorbol ester regulator of protein kinase C phorbol 12-myristate 13-acetate (5 μM; PMA; Sigma-Aldrich) (Matthies et al., 1987) in isotonic saline solution without serum or antibiotics for 4 to 6 h before electrophysiological recording to evaluate the influence of phosphorylation state on AQP1 ion channel activation. At high doses (≥1.6 μM) as used here, PMA is an inhibitor of protein kinase C (He et al., 1995).

Data Compilation and Statistics. Results compiled from replicate experiments are presented as box plots or scatter plots to show the full range of data points. The box represents 50% of the data, the error bars indicate the full range, and the horizontal bar is the median value. Statistical significance was evaluated by one- or two-way ANOVA, followed by post hoc Bonferroni tests, with significance indicated as *p < 0.05, **p < 0.01, or ***p < 0.001.

Results

Human AQP1 was modified by site-directed mutagenesis to create constructs with alanine, serine, or cysteine substitutions. Figure 1A shows a representation of the tetrameric assembly of the AQP1 channel and a diagram illustrating the proposed central pore cation channel, the gating loop (loop D between the fourth and fifth transmembrane domains), and C-terminal residues that were targeted for site-directed mutageneses. A cysteine-less human AQP1 template that retained osmotic water and cGMP-dependent ion channel functions was generated by the mutation of cysteines at positions 87, 102, and 152 to alanine and at position 189 to serine. The cysteine-less template was then used for site-directed mutagenesis to allow selected cysteine residues to be introduced in the proposed central pore domain and carboxyl terminus. Mutations were located in the external vestibule of the proposed central pore of the tetramer (Lys51), at the four proposed hydrophobic barrier sites lining the central pore (Val50, Leu54, Leu170, Leu174), and at candidate phosphor-
ylation sites in intracellular loop D and the C terminus (Thr157, Ser236, Thr239, Tyr253). The double mutation in loop D (R159A, R160A) was previously shown to knock out the cGMP-dependent ion channel activity without impairing water channel activity (Yu et al., 2006). Coexpression of the mutants K51C and R159A + R160A, neither of which had an ion conductance when expressed alone, rescued the cGMP-induced ion channel activity. All of the AQP1 mutant constructs used in this study were expressed in oocytes and functioned as water channels, indicating that the constructs were assembled and incorporated into the plasma membranes of the oocytes. Introduced cysteines at selected residues in the Cys-less background were used as probe sites for application of the sulfhydryl-reactive agents mercuric ion and MTSES.

Effects of Site-Directed Mutations in the AQP1 Central Pore on Ionic Conductance Properties. Swelling assays were used to confirm the functional expression of wild-type and mutant AQP1 channels in the oocyte plasma membrane. Mean relative changes in volume of AQP1 wild type, cysteine-less template, and non–AQP1-expressing control oocytes, summarized from all data collected in a single representative swelling experiment with 50% hypotonic saline, showed reproducible responses with no appreciable difference between wild type and Cys-less AQP1 channels for osmotically driven water fluxes (Fig. 1B). Significant increases in relative volumes (standardized to the initial volumes of the same oocytes at time 0) were evident in comparison with non–AQP1-expressing control oocytes lacking aquaporins. The magnitude of the swelling response in the Cys-less AQP1 mutant was comparable with that of wild type for equivalent levels of cRNAs injected into the oocytes. Responses were quantified by optical imaging; swelling rates were determined as the slope of the linear fit of the initial phase (approximately 4–20 s) for standardized volume versus time. Compiled data in Fig. 1C show the swelling rates of AQP1 mutants with and without addition of mercury. The native cysteine residue Cys189 confers mercury sensitivity of osmotic water permeability in wild-type AQP1 (Preston et al., 1993); thus, as expected, swelling rates of oocytes expressing wild-type or the double arginine mutant (R159A, R160A), both of which have native Cys189, were inhibited by HgCl2. All AQP1 mutants used in these studies showed osmotic water fluxes at rates that were significantly higher than non–AQP1-expressing control oocytes. None of the mutants designed from the Cys-less AQP1 template showed mercury sensitivity in the swelling assays (Fig. 1C).

Effects of site-directed mutations in the central pore domain were analyzed by electrophysiological two-electrode clamp recordings to test for changes in the properties of the ionic conductance responses to cGMP. The mutation of four residues that were modeled as the hydrophobic barriers to ion permeation in the central pore region (Yu et al., 2006) influenced the current-voltage relationship of the AQP1 cGMP-stimulated ionic conductance (Fig. 2). Quadruple mutation of the four hydrophobic barrier residues (Val50, Leu54, Leu170, and Leu174) to alanines (referred to as “VLLL”) did not prevent cGMP-dependent activation of the ionic conductance (Fig. 2A) but did alter the properties of the response (Fig. 2B), inducing inward rectification and causing a small positive shift in the reversal potential measured in bath saline with NaCl substituted by isomolar TEA chloride. These results suggest that modification of the hydrophobic central residues increased the relative permeability of TEA in VLLL compared with wild type, providing evidence that the central pore is the ion channel permeation pathway in AQP1.

An introduced cysteine in the central pore created a gain-of-function block by mercury of the ionic conductance (Fig. 3). Wild-type and Cys-less AQP1 channels showed comparable activation of the cGMP-dependent ionic conductance. The introduction of a cysteine residue at Lys51, located in the outer vestibule of the AQP1 central pore, prevented activation of the ionic conductance response (Fig. 3A), both alone
and in the Cys-less AQP1 background. In agreement with prior work (Yu et al., 2006), the gating-loop double mutation R159A,R160A also disrupted ion channel activation. Coexpression of the two nonfunctional constructs, Cys-less K51C and R159A,R160A rescued cGMP-dependent ion channel activity and offered the opportunity to use the introduced cysteine at position 51 to test for an inhibitory effect of mercury. Although the water permeability of wild-type AQP1 (mediated by intrasubunit pores) is mercury-sensitive, the ionic conductance did not show an acute effect of mercury in the wild-type channel (Fig. 3, B and C). However, the presence of cysteine at position 51 induced a novel sensitivity to mercury, seen as a rapid block of the ionic conductance that was not evident for wild type or the cysteine-less AQP1 alone. Functional ion channels in the coexpression system were necessarily heteromeric subunit assemblies, because neither of the constructs showed an ionic conductance when expressed as a homomeric channel. These data suggest that the presence of cysteine at position 51 is not needed at all four subunits to make the ionic conductance susceptible to block by mercury, consistent with the proposed location of the ionic pore at an interface between subunits.

Effects of Site-Directed Mutations at Kinase Consensus Sites on the Effectiveness of cGMP in Activating the AQP1-Associated Ionic Conductance. Consensus sequences for threonine-serine kinases and tyrosine kinases were modified by site-directed mutagenesis and assessed for effects on cGMP-activated ionic conductance responses. Manipulation of the threonine-serine phosphorylation state caused no appreciable effect on the magnitude of cGMP-dependent activation of the ionic conductance response of AQP1 (Fig. 4). Mutations of candidate threonine and serine phosphorylation sites [Zhang et al. (2007) and predicted by NetPhosK 1.0 Server (http://www.cbs.dtu.dk/services/NetPhosK/) to alanine did not affect the magnitude of the cGMP-activated conductance response (Fig. 4A). Mean conductances were as follows: AQP1wt, 37 ± 0.3 S; T157A, 20 ± 0.3 S; T239A, 29 ± 0.3 S; S236A, 42 ± 0.2 S. Swelling assays for T157A, T239A, and S236A confirmed that water channel activities were not impaired by the mutations. T157A (n = 24) showed a swelling rate of 102 ± 3.5 μl/min (mean ± S.E.M.), and T239A (n = 20) showed a swelling rate of 110 ± 3.6 μl/min. S236A swelling rates were comparable with those of S236C (Fig. 1C). Pharmacological inhibition of protein kinase C and protein kinase G signaling pathways did not interfere with cGMP-induced activation of the AQP1 ion conductance (Fig. 4B). In contrast, the mutation of the candidate tyrosine phosphorylation site Tyr253 disrupted cGMP activation of the ionic conductance (Fig. 4C).

Western blot analysis confirmed that immunoprecipitated AQP1 protein was immunopositive for phosphorylated tyrosine. The signal was not detected in a C-terminal truncation mutant, which carried an introduced stop codon (K243Z) located 10 amino acids upstream (5') of the tyrosine phosphorylation site. The presence of higher molecular weight bands representing the glycosylated forms was consistent with plasma membrane localization of both the wild-type and K243Z truncation constructs (Fig. 4D) and furthermore was consistent with other data showing the presence of osmotic water permeability in K243Z-expressing oocytes (data not shown). The presence of faint bands for K243Z in PY11120 condition was likely to be trace residual label remaining after stripping of the anti-AQP1 antibody probe. In sum, these results showed that AQP1 protein is phosphorylated at Tyr253 and that mutation of this residue to cysteine interfered with ion channel activation by cGMP. The two interpretations of this outcome were that phosphorylation of Tyr253 allowed AQP1 to be available to be gated as an
ion-channel or, alternatively, that the introduced cysteines at 253 created disulfide bridges between C-terminal domains that prevented the ionic conductance response. Application of the reducing agent DTT did not release any latent conductance response in Y253C-expressing oocytes (data not shown), arguing against a role for C-terminal cysteine cross-bridging as the mechanism of inhibition.

Effects of C-Terminal Tyr253 Phosphorylation and Dephosphorylation on the Magnitude of AQP1 Ionic Conductance Responses. The role of phosphorylation in promoting ion channel activity was tested by pharmacological treatments (Fig. 5) and by using the introduced cysteine at 253 to probe effects of introducing a negatively charged group (Fig. 6). Pharmacological enhancement of the tyrosine phosphorylation state of the oocyte with a tyrosine phosphatase inhibitor (bpV) increased the responsiveness of AQP1-expressing oocytes to cGMP, whereas treatment promoting tyrosine dephosphorylation (tyrosine kinase inhibitor, naphthyl-1) potently suppressed the ionic conductance activation.

Fig. 4. Tyrosine phosphorylation but not serine/threonine phosphorylation regulates the magnitude of cGMP-dependent ion channel activation in AQP1. A, mutations of consensus threonine and serine phosphorylation sites to alanine in AQP1 showed no significant effect on the magnitude of the cGMP-activated ionic conductance responses. Asterisks indicate a significant difference between non–AQP1-expressing control and all other groups (p < 0.001). B, pharmacological inhibition of protein kinase C (with PMA) or protein kinase G (with KT5823) did not significantly alter the magnitude of the cGMP-activated ionic conductance responses. NS indicates no significant difference from untreated AQP1-expressing oocytes, p > 0.05. C, mutation of the four native cysteines in AQP1 (Cys-less construct) did not impair ion channel activation compared with wild type, but the additional mutation of a consensus tyrosine phosphorylation site at Tyr253 to cysteine in the otherwise Cys-less background impaired activation of the cGMP-dependent ionic conductance response to a level not different from non–AQP1-expressing control. D, Western blot analysis showed that immunoprecipitated AQP1 wild type and C-terminally truncated AQP1 protein subunits, pulled down with antibody to loop C, ran at expected sizes (28 kDa for wild type). Fainter bands above are glycosylated forms. Stripping and reprobing with anti-phosphotyrosine antibody PY11120 showed strong immunopositive labeling of wild type for phosphorylated tyrosine but no phosphotyrosine labeling in a construct with the C-terminal domain truncated by site-directed mutagenesis to create a stop codon at position 243. *, p < 0.05; **, p < 0.01; ***, p < 0.001.

Fig. 5. Pharmacological enhancement of the tyrosine phosphorylated state increases the AQP1 ionic conductance response. A, treatment with a tyrosine phosphatase inhibitor, bpV, increased the level of activation of the AQP1 ionic conductance response before application of exogenous cGMP agonist, yielding a range of response amplitudes up to but not exceeding levels seen in untreated AQP1 wild type after cGMP stimulation. Conversely, the tyrosine kinase inhibitor naphthyl-1 disrupted the ability of the AQP1 ionic conductance to be activated in response to cGMP. B, representative traces of the currents measured with a set of voltage steps before (initial) and after cGMP stimulation (final) in oocytes expressing AQP1 wild-type channels, with and without pretreatment with naphthyl or bpV.
Modification of residue 253 in the carboxyl terminal domain to mimic a phosphorylated state reversibly rescues the ionic conductance response. A, plots of current amplitude as a function of voltage illustrate the low initial conductance in wild type (circle) and the increased final response after activation by cGMP (triangle), which were unaffected by preincubation with intracellularly injected MTSES. The reducing agent DTT did not impair the ionic conductance response. B, pretreatment with MTSES in the Y253C mutant in an otherwise Cys-less background induced a chronically activated ionic conductance, which was reversed by DTT application. C, examples of traces illustrating the current-voltage data shown in A and B.

Fig. 6. Covalent modification of Y253C to mimic a phosphorylated state reversibly rescues the ionic conductance of AQP1 (Fig. 6). Ionic conductance properties of the AQP1 channel. Understanding the key role of tyrosine phosphorylation as one of the master switches governing AQP1 ion channel availability could reconcile different findings reported in the literature, which have included evidence both for and against AQP1 ion channel function (Anthony et al., 2000; Saparov et al., 2001; Tsunoda et al., 2004; Zhang et al., 2007).

Aquaporin ion channel activity is not unique to AQP1. Tyrosine phosphorylation is involved in regulation of the cationic conductance in the fly aquaporin-related channel Big Brain (Yanocho and Yool, 2002, 2004). Other members of the broad aquaporin family also have been characterized as ion channels (Yool and Stamer, 2004) including lens MIP channel AQP0 (Zampighi et al., 1985; Ehring and Hall, 1988; Ehring et al., 1990), Nodulin-26 (Weaver et al., 1994), and AQP6 (Yasui et al., 1999). An ion channel role for AQP1 was first proposed in 1996 (Yool et al., 1996). Several key properties of the AQP1 ion channel function (including cGMP dependence, a role for the C-terminal domain, and cationic selectivity) were confirmed independently (Saparov et al., 2001; Ehring et al., 1990) but the extremely low probability of ion channel opening in the reconstituted bilayer was deemed inconsistent with a physiological role. Subsequent work by the same group using AQP1 expressed in human embryonic kidney cells failed to note ionic current responses (Tsunoda et al., 2004). The cyclic-nucleotide activated ionic conductance response was observed independently for AQP1 in the X. laevis oocyte expression system, and the finding was extended to demonstrate a separate role for protein kinase C signaling (Zhang et al., 2007). The simplest explanation for the mixture of evidence both for and against AQP1 ion channel function is that levels of permissiveness for ion channel activation vary across preparations as a result of additional regulatory mechanisms not previously recognized.

Results here are the first to show that the responsiveness
of the AQP1 ionic conductance to cGMP is influenced by tyrosine phosphorylation at a carboxyl terminal consensus site. Pharmacological agents promoting the tyrosine-phosphorylated state increased channel activation, whereas dephosphorylation antagonized the ionic conductance response to cGMP. Replacement of Tyr253 with cysteine in a Cys-less background substantially impaired ion channel activation without preventing water channel activity. The impaired conductance response of cys-less Y253C was rescued by intracellularly injected MTSES, an agent that covalently modifies cysteine sulfhydryl to add a negatively charged moiety. Precedent for this approach was the use of MTSES to mimic phosphorylation for the reversible conversion of a potassium channel KCNK2 between leak channel and voltage-gated channel modes (Bockenhauer et al., 2001), reversed by DTT. The potentiating effect of MTSES on the AQP1 ion channel conductance described here similarly was reversed by extracellular application of DTT. Our data are consistent with the idea that phosphorylation of Tyr253 is required for AQP1 ion channels to be available for gating.

Further evidence for the role of tyrosine phosphorylation in creating a permissive state is seen in the effects of bpV treatment, which resulted in a broad, almost bimodal, distribution of initial conductances. One possible mechanism for the observation that approximately half of the AQP1-expressing oocytes have strongly activated initial ionic conductances after bpV (without applied cGMP) is that tyrosine phosphorylation might increase cGMP sensitivity, perhaps enabling endogenous levels of cGMP to become sufficient for ionic conductance activation. This idea is consistent with previous work showing that some batches of X. laevis oocytes expressing AQP1 have an ionic current in the absence of applied cGMP, described as “spontaneous activation” and blocked by the broad spectrum kinase inhibitor H7 (Anthony et al., 2000; Bain et al., 2007).

Crystal structural analyses (Sui et al., 2001) and the differential effects of pharmacological agents on water versus ion permeability (Saparov et al., 2001; Yool et al., 2002) argue against conductance of ions through the individual intrasubunit water pores; however, the central pore at the 4-fold axis of symmetry has been proposed as a candidate ion pathway in the subset of aquaporins that have ion channel activity (Fu et al., 2000; Yool and Weinstein, 2002; Yool, 2007). Theoretical modeling illustrated Na+ permeation through the central pore, identified four hydrophobic residues in the outer and inner central pore as barriers to hydration and ion permeation, and identified loop D as a candidate gating domain (Yu et al., 2006). New lines of evidence for the central pore as the ion channel in AQP1, as presented here, are the following: 1) modification of the four candidate barrier residues by mutation to alanines resulted in alteration of rectification and ionic selectivity properties of the ionic conductance; 2) coexpression of two nonconducing mutants, one with mutation in the central pore and a second with mutations in the gating loop domain, restored cGMP-induced ion channel activity, consistent with the idea that the ion pore is at a location where multiple subunits interact; and 3) engineering a cysteine in the central pore created a new binding site for mercury at K51C that blocked the ion channel conductance.

In sum, these data support the concept that the central tetrameric pore is the ion channel in AQP1, and that its functionality is regulated by intracellular signaling involving tyrosine phosphorylation. Based on the high levels of expression of AQP1 channels in many tissues, a multilayered regulatory system for controlling ion channel function is logical. Even when only a small proportion of the total population of AQP1 water channels (1 in 50,000) is available to act as gated ion channels, theoretical considerations in kidney proximal tubule have suggested it is possible to expect physiologically meaningful contributions to net Na+ absorption and fluid fluxes (Yool and Weinstein, 2002). Additional studies are needed to address the physiological roles of the proposed dual channel function of AQP1 in transport of fluids and solutes, with potentially important implications for cellular and subcellular control of fluid flux and volume regulation.

Authorship Contributions

Participated in research design: Campbell, Birdsell, and Yool.
Conducted experiments: Campbell, Birdsell, and Yool.
Performed data analysis: Campbell and Yool.
Wrote or contributed to the writing of the manuscript: Campbell and Yool.

References

Benga G (2009) Water channel proteins (later called aquaporins) and relatives: past, present, and future. JRBML Life 61:12–133.
Matthies HJ, Palfrey HC, Hirling LD, and Miller RJ (1987) Down regulation of...

Address correspondence to: Andrea Yool, School of Medical Sciences, University of Adelaide, Adelaide SA 5005 Australia. E-mail: andrea.yool@adelaide.edu.au

