α7β2 Nicotinic Acetylcholine Receptors Assemble, Function, and Are Activated Primarily via Their α7-α7 Interfaces

Teresa A. Murray, Daniel Bertrand, Roger L. Papke, Andrew A. George, Rigo Pantoja, Rahul Srinivasan, Qiang Liu, Jie Wu, Paul Whiteaker, Henry A. Lester, and Ronald J. Lukas

Barrow Neurological Institute, Phoenix, Arizona (T.A.M., A.A.G., Q.L., J.W., P.W., R.J.L.); Biomedical Engineering Department, Louisiana Tech University, Ruston, Louisiana (T.A.M.); Division of Biology, California Institute of Technology, Pasadena, California (R.P., R.S., H.A.L.); Department of Neuroscience, Centre Médical Universitaire, and HitScreen Sàrl, Geneva, Switzerland (D.B.); and Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, Florida (R.L.P.)

Received June 12, 2011; accepted October 28, 2011

ABSTRACT

We investigated assembly and function of nicotinic acetylcholine receptors (nAChRs) composed of α7 and β2 subunits. We measured optical and electrophysiological properties of wild-type and mutant subunits expressed in cell lines and *Xenopus laevis* oocytes. Laser scanning confocal microscopy indicated that fluorescently tagged α7 and β2 subunits colocalize. Förster resonance energy transfer between fluorescently tagged subunits strongly suggested that α7 and β2 subunits coassemble. Total internal reflection fluorescence microscopy revealed that assemblies localized to filopodia-like processes of SH-EP1 cells. Gain-of-function α7 and β2 subunits confirmed that these subunits coassemble within functional receptors. Moreover, α7β2 nAChRs composed of wild-type subunits or fluorescently tagged subunits had pharmacological properties similar to those of α7 nAChRs, although amplitudes of α7β2 nAChR-mediated, agonist-evoked currents were generally ~2-fold lower than those for α7 nAChRs. It is noteworthy that α7β2 nAChRs displayed sensitivity to low concentrations of the antagonist dihydro-β-erythroidine that was not observed for α7 nAChRs at comparable concentrations. In addition, cysteine mutants revealed that the α7-β2 subunit interface does not bind ligand in a functionally productive manner, partly explaining lower α7β2 nAChR current amplitudes and challenges in identifying the function of native α7β2 nAChRs. On the basis of our findings, we have constructed a model predicting receptor function that is based on stoichiometry and position of β2 subunits within the α7β2 nAChRs.

Introduction

Nicotinic acetylcholine receptors (nAChRs) are members of the ligand-gated ion channel superfamily of neurotransmitter receptors. They exist as a collection of subtypes, each composed as a pentamer of homologous protein subunits. Each nAChR subtype has characteristic ion selectivity, channel gating kinetics, ligand recognition features, and cellular/subcellular distribution. Several predominant mammalian nAChR subtypes (α1β1γδε, α4β2*, α7 homopentamers) have been studied extensively, revealing involvement in functions such as neuromuscular signaling, mood, memory, attention, and...
addiction, and pathologic conditions (as reviewed in Le Novère et al., 2002). Deneris et al. (1988) reported the discovery of the β2 subunit and suggested that diverse nACHRs could result from coassembly with different α subunits. Indeed, reports since have shown that β2 coassemblies with α2-α4 and/or α6, each yielding distinct functional characteristics (Marks et al., 1999; Drenan et al., 2008). Ligand binding domains are thought to reside at specific interfaces between positive faces of α subunits and apposed, negative faces of neighboring subunits; work continues to identify which interfaces are functional (Luettje and Patrick, 1991), desensitization (Bohler et al., 2001), sensitivity to inhibitors, and permeability (Francis and Papke, 1996).

Most receptors are heteromeric; however, evidence suggests that α7 subunits predominantly form homopentameric α7 nACHRs when naturally or heterologously expressed (Couturier et al., 1990). Additional evidence suggests that other nACHR subunits can combine with α7 to form heteromeric, α7* nACHRs (where * indicates other α nACHR subunit assembly partners) when transiently expressed in Xenopus laevis oocytes (Palma et al., 1999; Khiroug et al., 2002) or naturally expressed in nonmammalian systems such as embryonic chick neurons (Gotti et al., 1994) and chick brain (Anand et al., 1993). Furthermore, some evidence supports heteromeric mammalian α7* nACHRs expression. For example, Žarei et al. (1999) found that although α7 and β2 subunits in cultured hippocampal neurons had distinctive patterns of localization, partial overlapping distribution on cell soma suggested heteromeric receptors could exist. Later, Khiroug et al. (2002) communoprecipitated α7 and β2 subunits from cotransfected TSA201 cells, demonstrating the potential for coassembly in mammalian cells. Subsequently, Azam et al. (2003) found that several subpopulations of neurons in rat brain coexpress α7 and β2 subunit mRNAs but not α4 mRNA, the most common β2 subunit assembly partner, further supporting the possibility of mammalian α7β2 nACHRs. Most recently, Liu et al. (2009) identified a unique class of functional nACHRs in cholinergic neurons of the rodent medial septum-diagonal band (MS/DB) that appear to contain both α7 and β2 subunits using wild-type and β2 subunit knockout mice. Moreover, they discovered that these receptors were inhibited by pathologically relevant levels of amyloid β1–42 (Aβ) peptide, suggesting that they may be important in the pathogenesis of Alzheimer’s disease.

The current study exploited fluorescently tagged nACHR α7 and β2 subunits to characterize α7β2 nACHR formation, functional mutants to investigate α7 and β2 subunits coassembly, wild-type subunits to probe pharmacological differences between α7 and α7β2, and cysteine mutants to identify functional binding sites.

Materials and Methods

cDNA Construction and cRNA Preparation

Mouse cDNA Constructs. cDNA constructs have been described previously for mouse nACHR α7 subunits and yellow fluorescent protein (YFP)-tagged α7 subunits (α7Y; Murray et al., 2009); for cyan fluorescent protein (CFP)- or YFP-tagged mouse nACHR β2 subunits (β2C and β2Y, respectively) and YFP-tagged mouse nACHR α4 subunits (α4Y; Nashmi et al., 2003); and for YFP-tagged glutamate-gated chloride channel (GlucI) α subunits (GCoY) and CFP-tagged β subunits (GCβ; Slimko and Lester, 2003). The nACHR β2 subunit-mCherry fusion protein (β2Ch) was made as described previously (Nashmi et al., 2003) except with mCherry inserted as the FP. For all nACHR subunit-βFP constructs, the FP sequence was inserted into the sequence coding for the nACHR subunit’s large, intracellular/cyttoplasmic, C2 loop between M3 and M4. This loop is not thought to be involved in channel gating and/or ligand recognition; and the insertion site was chosen to avoid disrupting predicted consensus sequences for phosphorylation, trafficking or other potentially important sites (Nashmi et al., 2003; Murray et al., 2009). The β2C construct was excised from the vector pC1-neo with EcoRI and inserted into the vector pcDNA3.1-zeo. RIC-3 cDNA was generously provided by Dr. Millet Treinin (Hebrew University, Jerusalem, Israel) through Dr. William Green (University of Chicago, Chicago, IL).

Construction and Subcloning of a CFP-Tagged nACHR α7 Subunit cDNA. Primers were designed to amplify the CFP gene, including an upstream c-Myc tag, using the β2C construct (Nashmi et al., 2003) as a template. The forward and reverse primer sequences were 5′-CGT GTG TGG TCG TCT TTT GCG CGT GCA GAA GCT GAT CTC AG-3′ and 5′-CGT GCT CAT GAT TGG TTG GGG ACT TGT ACA GCT CGT CCA TGC-3′, respectively. These primers added overhangs complementary to the mouse nACHR α7 subunits cDNA on either side of the fluorescent tag insertion site at the same sequence position at which YFP was inserted into α7Y (Murray et al., 2009). A second polymerase chain reaction was performed with this CFP construct and the mouse α7 subunit cDNA in pcDNA3.1-hygro (the latter serving as the destination vector in a 5:1 mass ratio of construct to vector).

Mouse cDNA and cRNA Preparation for Oocyte Injection. The cDNAs of mouse wild-type α7 (mα7) and α7-yellow fluorescent protein (mα7-YFP; originally denoted α7 and α7Y, respectively; Murray et al., 2009) were subcloned into the vector pGEMHE, wild-type β2 (mβ2) cDNA was provided by Jerry Stitzel (University of Colorado, Boulder, CO), and the β2 gain-of-function mutant (β2β99*) was provided by Bhagirathi Dash (Barrow Neurological Institute, Phoenix, AZ) and generated using a QuikChange kit (Stratagene, La Jolla, CA). β2 subunit constructs were also subcloned into the pGEMHE vector. After linearizing plasmids with Nhel (2 h at 37°C) and treatment with proteinase K (30 min at 50°C), cRNAs were transcribed using mMessage mMachine T7 kit (Applied Biosystems/Ambion, Austin, TX). Reactions were treated with TURBO DNase (1 U for 15 min at 37°C), and cRNAs were purified using the RNasy Clean-up kit (QIAGEN, Valencia, CA). cRNAs were confirmed on a 1% agarose gel and stored at −80°C.

Human nACHR Cysteine Mutants and Clones. The wild-type human nACHR clones were provided by Dr. Jon Lindstrom (University of Pennsylvania, Philadelphia, PA). Mutations to cDNA clones were introduced using the QuikChange kit (Stratagene) according to the manufacturer’s instructions. The mutations were confirmed with automated fluorescent sequencing. After linearization and purification of cloned cDNAs, RNA transcripts were prepared in vitro using the appropriate mMessage Machine kit (Ambion, Inc.).

Subunit Expression

Cell Culture, Creation of Stably Transfected SH-EP1 Cell Lines, and Transient Transfections. SH-EP1 human epithelial cells were stably transfected to heterologously express FP-tagged nACHR subunit(s) or were used for transient transfections, as described previously (Murray et al., 2009). Previous studies have shown that SH-EP1 cells are native nACHR-null, making them potentially good hosts for heterologous expression of nACHRs, as has been demonstrated (Wu et al., 2006; Murray et al., 2009). For stably transfected cell lines, final concentrations of antibiotics were hygromycin B (170 µg/ml; Calbiochem, San Diego, CA) for α7Y and α7C, G418 (480 µg/ml; A.G. Scientific, San Diego, CA) for α4Y, or phleomycin (Zoecon; 260 µg/ml; Invitrogen Corp., Carlsbad, CA) for β2C.
SH-EP1 cells expressing α7Y or α7C alone, α7Y with β2C, or α4Y with β2C were from stably transfected cell lines. Transient transfection was used to generate cells expressing other nAChR subunits, GluCl subunits, and/or RIC-3. In preliminary experiments for transfection of RIC-3, we found that comparatively low amounts of cDNA (100–300 ng) gave maximal surface expression of nicotinic receptors. Higher and lower amounts of cDNA seemed to decrease surface expression and were not used; Alexander et al. (2010) independently found similar results. Cells requiring transient transfections for microscopy were seeded 24 h before transfection. Fluorescence development –12 h after transfection and began declining after 48 h; therefore, transiently transfected cells were studied within 16 to 48 h after transfection.

Oocyte Preparation and Mouse RNA Injection. Female X. laevis (Xenopus I, Ann Arbor, MI) were anesthetized by 0.2% 3-amino-benzoic acid ethyl ester (MS-222; Sigma-Aldrich, St. Louis MO). The ovarian lobes were surgically removed from the frog and placed in calcium-free OR2 incubation solution consisting of 92.5 mM NaCl, 2.5 mM KCl, 1 mM MgCl₂, 1 mM Na₂HPO₄, 5 mM HEPES, 50 μm penicillin, and 50 μg/ml streptomycin, pH 7.5. The lobes were cut into small pieces and digested with 0.75 U/ml Liberase Thermolysin medium (Roche Pharmaceuticals, Nutley, NJ) with constant stirring at room temperature for 1 h. The dispersed oocytes were thoroughly rinsed with the above solution containing 1 mM CaCl₂. Stage VI oocytes were selected and incubated at 13°C.

Microinjections for RNA injection were pulled from filamented borosilicate glass (Drummond Scientific, Broomall, PA) on a horizontal puller (P87; Sutter Instruments, Novato, CA), and the tips were broken with an outer diameter ± 40 μm (resistance, 2–6 MΩ). A Nanoject microinjection system (Drummond Scientific) was used to inject 20 to 60 nl containing –1 ng of RNA.

Human nAChR Wild-Type and L9′T Reporter Subunit Expression. To assess properties of human α7 subunits alone or in combination with wild-type or mutated human nAChR β2 subunits, a total of 2 ng of CDNAs encoding α7 and β2 subunits was injected (10 nl) into the nucleus of X. laevis oocytes using an automated injection device (RoboInject, Multichannel Systems, MCS GmbH, Reutlingen, Germany; Hogg et al., 2008). Human nAChR α7 and β2 subunit cDNA constructs were kindly provided, respectively, by Dr. Christian Pfehrer (University of Zurich, Zurich, Switzerland) and Prof. Dr. Ortrud K. Steinlein (Ludwig-Maximilians-University of Munich, Munich, Germany). L9′T mutant α7 and β2 subunits were generated by standard, single nucleotide substitution using commercially available kits. After injection, cells were maintained for 2 or more days in a sterile Barth solution containing 88 mM NaCl, 1 mM KCl, 2.4 mM NaHCO₃, 10 mM HEPES, 0.82 mM MgSO₄·7H₂O, 0.33 mM Ca(NO₃)₂·4H₂O, and 0.41 mM CaCl₂·6H₂O, at pH 7.4, and supplemented with 100 unit/ml penicillin and 100 μg/ml streptomycin.

Expression of Cysteine Mutants in X. laevis Oocytes. Methods of oocyte harvesting, preparation, and injection have been described previously (Williams et al., 2011). In brief, stage 5 oocytes were injected with 50 nl (5–20 ng) each of the appropriate RNAs. Recordings were made 2 to 7 days after injection.

Microscopy

Laser Scanning Confocal Microscopy. A Nikon C1 LSCM (Nikon Instruments Inc., Melville, NY), with a spectral imaging system was used to acquire fluorescence spectra (λ stacks, 5 nm per detector, 32 detectors) in live cells containing fluorogenically tagged proteins, as described previously (Drenan et al., 2008) using a 6.72-μm pixel dwell time and a 60-μm pinhole diameter. Linear unmixing was used offline, as previously described, to separate the overlapping fluorescence spectra. Unmixed images were pseudocolored, the dark level was adjusted to reduce background noise, and saturation was adjusted for YFP and CFP in the same amount for each image set and then merged to determine colocalization (Nikon EZ-C1 Viewer; the γ control was not adjusted).

Förster Resonance Energy Transfer Microscopy. FRET detection was accomplished by the acceptor photobleaching method, as described previously (Nashmi et al., 2003; Drenan et al., 2008). In brief, when a YFP-tagged protein is interacting with a CFP-tagged protein, such as is the case with subunit coassembly, incremental photodestruction (photobleaching) of YFP by strong laser light results in a stepwise decrease in the intensity of YFP fluorescence with a concurrent increase in the intensity of CFP fluorescence. Linear unmixing was used to separate the overlapping emission spectra of CFP and YFP before calculating FRET efficiency. FRET efficiency (E) was calculated as follows:

\[E = \left(1 - \frac{I_{DA}}{I_{DA}}\right) \times 100\% \]

where \(I_{DA} \) represents the donor intensity in the presence of the acceptor before bleaching the acceptor, and \(I_{D} \) is the theoretical intensity of the donor without the acceptor. Prebleach intensities were normalized to 100%. To minimize effects of collateral donor bleaching, the acceptor was not completely bleached. Instead, \(I_{D} \) was extrapolated from a linear fit to a scatter plot of the fractional change in normalized donor intensity versus the normalized acceptor intensity (e.g., Fig. 2, B).

Total Internal Reflection Fluorescence Microscopy. Cellular autofluorescence was minimized by removing cell culture medium and replacing it with extracellular imaging solution and imaging using an Olympus TIRF system, as described previously (Drenan et al., 2008). For determination of colocalization, the single Optosplit image, which recorded the mCherry and YFP channel images side by side, was partitioned into two separate images using the Cairn Image Splitter plug-in for Image J (http://rsbweb.nih.gov/ij/). These were then merged to reveal colocalized subunits in the same manner as LSCM images, described above.

Electrophysiology

Human nAChR Wild-Type and L9′T Mutant Subunits Expressed in Oocytes. All recordings were performed at 18°C and cells were superfused with OR2 medium containing 82.5 mM NaCl, 2.5 mM KCl, 5 mM HEPES, 1.8 mM CaCl₂·2H₂O, and 1 mM MgCl₂·6H₂O, pH 7.4. Cells were impaled using a two-electrode voltage-clamp system with a HiClamp (Multi Channel Systems, Reutlingen, Germany) automated recording system. Electrodes were filled with 3 M KCl. Cells were held at –100 mV throughout the experiments. Data were digitized at least at 100 Hz, captured on a PC, and analyzed using MATLAB (The Mathworks, Inc., Natick, MA). Cells were treated for at least 3 h with the calcium chelating agent BAPTA-acetoxymethyl ester to suppress the possible contamination by calcium activated chloride currents. Measurements for each agonist were carried out in sibling oocytes to improve the consistency of receptor expression.

To explore the possible assembly of β2 subunits within the α7 receptor complex, the gain-of-function mutation L9′T, initially reported as L247T in the chick α7 (Reval et al., 1991) was used as a reporter mutation. In some experiments, the 1:1 ratio of cDNA encoding for α7 and β2 subunits was modified (as indicated on Fig. 5) to increase the level of expression of β2 subunits; consequently, its probability of insertion into functional receptors. All compounds were freshly prepared on the day of each experiment.

Cysteine Mutants. Experiments were conducted using Opus Xpress 6000A (Molecular Devices, Union City, CA) as described by Stokes et al. (2004). Flow rates were set at 2 ml/min for experiments with α7 receptors and 4 ml/min for other subtypes. Methanethiosulfonate ethylammonium (MTSEA) was purchased from Toronto Research Chemicals Inc. (North York, ON, Canada). All other chemicals for electrophysiology were obtained from Sigma-Aldrich (St. Louis, MO). Fresh ACh and sulfhydryl reagent stock solutions were made daily in Ringer’s solution and diluted.

Each oocyte received two control applications of ACh (300 μM), followed by incubation with MTSEA, and then application of ACh. The peak amplitude and the net charge (Papke and Porter-Papke, 2002) of responses were normalized to the preceding ACh control responses, compensating for the varied levels of channel expression between oocytes. Although the absolute magnitude of the evoked current responses increased over time, the normalized values of the responses did not vary significantly over time.
The time interval between repeated applications of 300 μM ACh was 3 min. Although desensitization of α7-mediated responses is rapid during an agonist application, it is also very rapidly reversed once agonist is washed from the chamber (Williams et al., 2011). There was no progressive desensitization, and the magnitude of ACh-evoked controls was consistent throughout the experiments unless sulphhydryl reagents were applied to receptors containing L119C mutant α7 receptor subunits.

Fluorescently Tagged Mouse nAChR Subunits Expressed in SH-EP1 Cells. Patch-clamp whole-cell current recording, coupled with computer-controlled two-barrel application and removal of agonists was used, as described previously (Wu et al., 2006). In brief, the decline in choline-induced current after the course of agonist was analyzed for decay time constant (τ = 0.693/k for decay rate constant k), peak current (Ip), and steady-state current (Ig), using fits to the single (or double) exponential expression I = (Ig - Ig) e^{-kt} + Ig, where t is the intermediate level of current and k is rate constant for the two decay processes. Concentration-response profiles were fit to the Hill equation using Prism 3.0 (GraphPad Software, Inc., San Diego, CA). Choline and methyllycaconitine (MLA) were supplied by Sigma-Aldrich.

Mouse nAChR Subunits Expressed in Oocytes. Ten days after injection, oocytes expressing nAChR subunits were voltage-clamped at −70 mV with an Axoclamp 900A amplifier (Molecular Devices, Sunnyvale, CA).Recordings were sampled at 10 kHz (low-pass Bessel filter), 40 Hz, high-pass filter, direct current), and the resulting traces were saved to disk (Clampex version 10.2; Molecular Devices). Oocytes with leak currents (Ileak) > 60 nA were immediately excluded from recordings. Dose-response relationships were determined by measuring the current induced by a range of acetylcholine concentrations (10 μM–10 mM; half-log units). Data were analyzed using one-way analysis of variance and Tukey’s multiple comparison test for testing for comparing the means of three or more treatment groups or nonlinear comparisons for dose-response relationships (Prism).

Data Analysis. Unless otherwise noted, pairwise t tests were used to compare mean values using the assumption of normality and equal variance. Significance was established at p < 0.05. Summary data are reported as the mean ± S.E.M.

Results

Fluorescently Labeled Subunits Used to Probe α7 and β2 Coassembly

Confocal Microscopy Shows Colocalization of FP-Tagged α7Y and β2C Subunits. LSCM was employed to determine whether coassembled α7Y and β2C subunits colocalize in mammalian cells. To facilitate this study, α7 subunits with a YFP fusion (α7Y) and β2 subunits with a CFP fusion (β2C) were heterologously and stably expressed in the native nAChR-null SH-EP1 human cell line (α7Yβ2C cells). Control SH-EP1 cell lines also were created that stably expressed α7Y alone (α7Y cells; Murray et al., 2009) or nAChR α4-YP and β2-CFP fusion subunits (α4Yβ2C cells). LSCM images were acquired over the spectral range of CFP and YFP emission (λ stacks). Emission spectra were separated using a linear unmixing algorithm providing separate grayscale images of each FP.

LSCM λ stacks acquired for all three cell lines, α7Yβ2C (Fig. 1, A and B), α7Y (C), and α4Yβ2C (D and E), revealed a reticulated pattern of subunit-associated fluorescence throughout much of the cytosolic region. This pattern strongly resembled the distribution of FP used to visualize the membranes of the endoplasmic reticulum (ER) (Grailhe et al., 2004) suggesting prominent ER localization of all three types of nAChR subunits. As expected, α4Y and β2C were colocalized. Likewise, α7Y and β2C colocalized (Supplemental Fig. S1).

FRET Demonstrates Coassembly of FP-Tagged nAChR α7 and β2 Subunits. To determine whether coassembled α7Y and β2C also were coassembled, FRET studies were conducted. Detection of FRET between FP-tagged α7 and β2 subunits would provide strong evidence of coassembly. Given that nAChR α4 and β2 subunits coassemble into heteropentameric receptors, and that we have shown FRET between fluorescently labeled subunits (Nashmi et al., 2003), the α4Yβ2C cell line was used as a positive control for FRET. As expected, FRET between CFP and YFP was observed in α4Yβ2C cells. It is noteworthy that FRET was also observed in α7Yβ2C cells and the reciprocally labeled α7Cβ2Y cells, revealing coassembly of FP-tagged α7 and β2 subunits (α7FP and β2FP, respectively). Moreover, FRET occurred at a level that implied that α7FP and β2FP subunits coassembled with efficiency comparable with that for α4Y and β2C subunits (Table 1).

Results from representative α4Yβ2C and α7Yβ2C cells show recovery of fluorescence intensity from the donor fluorophore, CFP, after photobleaching of the acceptor, YFP (Fig. 2). The y-axis (A and C) represents the normalized mean intensity of the FP (initial intensity before photobleaching set to 100%), and the x-axis is the bleach step where zero denotes the time before photobleaching. Each of the representative plots shows that CFP intensity increased as it was progressively dequenched by

![Fig. 1. LSCM confocal λ stack and TIRF images of cells illustrating distributions of fluorescently tagged nAChR subunits. Unmixed λ stack images of cells stably expressing one or more nAChR subunits (pseudocolored), as follows: β2C (A) and α7Y (B) (A and B in the same α7Yβ2C cell); α7Y (C) (in an α7Y cell); and β2C (D) and α4Y (E) (D and E in the same α4Yβ2C cell). A reticulated distribution of fluorescence was observed throughout the intracellular region, consistent with the distribution of the endoplasmic reticulum membrane (Grailhe et al., 2004). F to H, representative TIRF microscopy images (pseudocolored) of cell expressing α7Y (F, green) and β2Cherry (G, red) were merged to show colocalization (H, yellow) in the cell body as well as distal filopodia (box). Insets in F to H are enlarged views of boxed regions. Scale bars A to E, 10 μm; F to H, 5 μm.](image-url)
the stepwise photodestruction of YFP. To compare the relative levels of coassembled subunits, FRET efficiency (the efficiency of energy transfer from CFP to YFP: \(E = \frac{1 - (I_{YFP}/I_{0})}{} \times 100\% \)) was calculated. \(E \) was determined for each cell tested using scatter plots (as in Fig. 2, B and D) of the increase in CFP (recovery) versus the decrease in YFP intensity (bleaching) to extrapolate \(I_0 \). Both scatter plots had positive slopes, again indicating FRET (Nashmi et al., 2003) between FP-tagged \(\beta 2 \) subunits and either YFP-tagged \(\alpha 4 \) or \(\alpha 7 \) subunits. FRET was also observed in \(\alpha 7C/\beta 2Y \) cells in which the \(\alpha 7 \) and \(\beta 2 \) subunits were reciprocally labeled (Table 1).

To rule out FRET from casual contact between FP-tagged subunits, FP-tagged GluCl subunits (Slimko and Lester, 2003) were used for negative control experiments. nAChR subunits usually do not coassemble with GluCl subunits, even though all of these subunits are members of the Cys-loop receptor family (Lester et al., 2004). For each GluCl subunit, the FP was fused into the intracellular domain (Slimko and Lester, 2003) analogous to the C2 loop FP fusions in our FP-tagged nAChR subunits. The YFP-tagged GluCl \(\alpha \) subunit (GCoY) was transiently coexpressed with the nAChR \(\beta 2 \) fusion protein, providing one set of negative controls (representative \(\beta 2C-GCoC \) cell, Fig. 2, E and F). For a second negative control, a CFP-tagged GluCl \(\beta \) subunit (GC\(\beta C \)) was transiently coexpressed in the \(\alpha 7Y \) cell line (\(\alpha 7Y/GC\beta C \) cells; Table 1). A third negative control involved transient coexpression of GCoY in the \(\alpha 7C/C2C \) cell line (\(\alpha 7C-GCoC \) cells; Table 1). As expected, FRET did not occur in any of the negative control cells. To rule out the possibility that the lack of FRET was due to FP insertions in GluCl subunits hindering subunit coassembly, GCoY and GC\(\beta C \) were transiently coexpressed (Nashmi et al., 2003; Drenan et al., 2008) in SH-EP1 cells. FRET occurred in GCoC-GC\(\beta C \) cells (Fig. 2, G and H) with \(E \) similar to values for \(\alpha 7Y2C \) and \(\alpha 4Y2C \) subunits (Table 1), indicating that the GluCl subunit-FP fusions did not impede the potential for coassembly. Thus, the FRET we observed between FP-tagged \(\alpha 7 \) and \(\beta 2 \) nAChR subunits resulted from specific coassembly.

As stated above, \(E \) provides a means to compare the efficiency of coassembly from the pool of FP-tagged subunits. Mean values of \(E \) were calculated for each combination of donor and acceptor dye.

![Fig. 2. FRET between YFP- and CFP-labeled nAChR subunits. A and B, FRET between YFP and CFP in a representative, positive control, \(\alpha 4Y2C \) cell indicated coassembly of \(\alpha 4Y \) and \(\beta 2C \) subunits in heteromeric receptors, as expected. A, increase in fluorescence intensity of CFP (A) and decrease in YFP fluorescence intensity (B) as YFP was photobleached and CFP was dequenched (\(\gamma \)-axis; 100% represents the normalized intensity before photobleaching). The \(\gamma \)-axis designates the bleach step with zero indicating the initial intensity measurement for each fluorophore before photobleaching. B, scatter plot of the increase in CFP intensity (recovery; \(\gamma \)-axis) versus the decrease in YFP intensity (bleaching; \(\gamma \)-axis) expressed as percentage change from the initial value of 100%. The slope was used to calculate \(I_0 \), the intensity of CFP in the absence of the acceptor, which was then used to determine FRET efficiency (\(E = \frac{1 - (I_{YFP}/I_{0})}{} \times 100\% \)). C and D, FRET in a representative \(\alpha 7Y2C \) cell was observed between the two FP-tagged subunits, \(\alpha 7Y \) and \(\beta 2C \), indicating coassembly as heteromeric nAChRs. C, CFP (A) fluorescence intensity increased as YFP (B) was photobleached (axes as in A). D, scatter plot used to determine \(I_0 \) (axes as in B). E to I, negative and positive controls using GluCl channel subunits. E and F, negative control cells were cotransfected with a fluorescently tagged nAChR subunit (\(\alpha 7Y \), \(\alpha 7C \), or \(\beta 2C \)) and a fluorescently tagged glutamate-gated chloride channel subunit (GCoY or GC\(\beta C \)). E, representative plot of fluorescence intensity (\(\gamma \)-axis as in A) as a function of photobleaching step (\(\gamma \)-axis) for a negative control cell expressing \(\beta 2C \) and GCoY, which do not coassemble. As YFP (B) was bleached, CFP (A) fluorescence intensity did not increase, indicating that FRET did not occur and thus that the two subunits did not coassemble (i.e., no significant FRET results from casual contact between un assembled, mismatched FP-labeled subunits). F, plot of changes in CFP fluorescence intensity increase (\(\gamma \)-axis as in B) as a function of YFP fluorescence intensity decrease (\(\gamma \)-axis). The small, negative slope yields a negative value for FRET efficiency, consistent with only modest photobleaching of CFP during photodestruction of YFP. G and H, FRET occurs between GCoY and GC\(\beta C \) subunits in a representative, positive control cell. G, CFP (A) dequenching occurred as YFP (B) was photobleached (\(\gamma \)-axis as in A), indicating coassembly of GCoY and GC\(\beta C \) subunits. H, there is a positive correlation (positive slope) between the percentage increase in CFP fluorescence (\(\gamma \)-axis as in B) as YFP fluorescence decreases that is due to photobleaching, indicating FRET between GCoY and GC\(\beta C \) subunits and confirming that FP insertions did not prevent coassembly.

Table 1: Mean FRET efficiency

<table>
<thead>
<tr>
<th>Cell ID</th>
<th>Subunit Combination</th>
<th>Mean (E) ± S.E.M.</th>
<th>(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha 7Y2C)</td>
<td>(\alpha 7Y)-YFP, (\beta 2C)-CFP</td>
<td>23.3 ± 1.8</td>
<td>8</td>
</tr>
<tr>
<td>(\alpha 7C2Y)</td>
<td>(\alpha 7C)-CFP, (\beta 2C)-YFP</td>
<td>34.6 ± 3.5</td>
<td>12</td>
</tr>
<tr>
<td>(\alpha 4Y2C)</td>
<td>(\alpha 4Y)-YFP, (\beta 2C)-CFP</td>
<td>27.9 ± 1.6</td>
<td>16</td>
</tr>
<tr>
<td>(\alpha 7Y-GC\beta C)</td>
<td>(\alpha 7Y)-YFP, GC(\beta)-CFP</td>
<td>-2.7 ± 2.3</td>
<td>7</td>
</tr>
<tr>
<td>(\alpha 7C-GCoY)</td>
<td>(\alpha 7C)-CFP, GCoY-CFP</td>
<td>-4.9 ± 2.2</td>
<td>5</td>
</tr>
<tr>
<td>(\beta 2C-GCoY)</td>
<td>(\beta 2C)-CFP, GCoY-CFP</td>
<td>-1.5 ± 2.2</td>
<td>9</td>
</tr>
<tr>
<td>GCoY-GC(\beta C)</td>
<td>GCoY-YFP, GC(\beta)-CFP</td>
<td>24.5 ± 3.0</td>
<td>6</td>
</tr>
</tbody>
</table>
subunits described above (summarized in Table 1). Values of E for positive control cell lines α4β2C and GCαY-GBβC were consistent with published reports on coassembly propensity for compatible Cys-loop receptor subunits (Nashmi et al., 2003; Drenan et al., 2008). Consistent with a lack of FRET, mean E values for all three negative control subunit combinations were indistinguishable from zero.

In stark contrast to subunits that do not coassemble, E values for α7Yβ2C cells and α7Cβ2Y cells were 23.3 ± 1.8 and 34.6 ± 3.5, respectively, which suggest relatively efficient coassembly of the two FP-subunits. In addition, this directionality further supports coassembly, because if FRET could occur from casual contact, it would result in similar efficiencies. Moreover, differences between the mean E values for complementarily labeled α7Yβ2C cells and α7Cβ2Y cells were significant (p = 0.02) suggesting that the higher mean E for α7Cβ2Y cells was due to a greater proportion of subunits tagged with the acceptor YFP. This is consistent with the idea that a greater number of β2 subunits may have been present in α7β2 assemblies. Thus, not only do FP-tagged α7 and β2 subunits coassemble with efficiency similar to that of FP-tagged α4 and β2 subunits in SH-EP1 cells, but the differences in E between the two reciprocally labeled FP-subunit combinations may reveal β2 subunit-predominant coassembly with α7, at least in our cell line.

TIRF Microscopy Reveals that FP-Tagged α7 and β2 Subunits Are Coassembled in Cell Surface Regions. TIRF microscopy was used to determine whether coassembled FP-tagged α7 and β2 subunits localized to the plasma membrane of SH-EP1 cells. TIRF, as used in these studies, captures fluorescence emissions emanating from an evanescent wave that extends within ~100 nm above the coverslip. This region includes the plasma membrane of cells adhering to the coverslip as well as the intracellular region near the plasma membrane. Thus, FP-tagged nAChR subunits appearing in the images might be expressed in the plasma membrane, where they could contribute to function. On the other hand, they may be located in intracellular regions near the membrane, where they would not so contribute. To minimize ambiguity, long, narrow membrane protrusions devoid of ER were used to identify regions of the plasma membrane. These included distal regions of filopodia-like structures and smaller micropodia-like protrusions (Grailhe et al., 2004) that were not directly located under the cell body. These processes were rendered visible by localization of FP-tagged subunits (Fig. 1, F and G). We traced regions of interest (ROI) around these structures for comparing levels of expression in the plasma membrane region versus the cell body.

To obtain a measurement for comparing levels of plasma membrane expression between cells, the adjusted mean intensity (mean intensity minus background) of an ROI was normalized to the adjusted mean intensity of its cell body (Grailhe et al., 2004). Using this normalized fluorescence intensity (Iₙ), we compared plasma membrane expression levels of FP-tagged subunits labeled with YFP or with mCherry FP. Our TIRF system was unable to excite CFP, so we were not able to calculate the Iₙ for subunits labeled with CFP. We measured the Iₙ of α7Y, α4Y, and/or β2-mCherry FP (β2Ch) in cells expressing α7Y alone, α7Y with β2FP (β2C or β2Ch), or α4Y with β2C. Coexpression of β2FP did not affect relative levels of α7Y observed in the plasma membrane because no significant difference was found between the Iₙ for YFP fluorescence in cells expressing α7Y and β2FP versus α7Y alone. For YFP, Iₙ was 0.44 ± 0.02 (mean ± S.E.M., n = 86) for ROIs of cells expressing α7Y alone and 0.40 ± 0.05 (n = 41) for those in cells expressing α7Y and β2FP (p = 0.38). On the other hand, plasma membrane localization was significantly higher for α4Y coexpressed with β2C (for YFP, Iₙ was 0.79 ± 0.05, n = 55) than for α7Y, regardless of whether α7Y was singly expressed or coexpressed with β2FP (p < 0.0001 each).

For cells coexpressing α7Y and β2Ch, both FPVs could be visualized using our TIRF system. The Iₙ derived from mCherry FP was calculated for the same plasma membrane ROIs used for measuring Iₙ of α7Y. No significant difference was found between the Iₙ values derived from α7Y and β2Ch (p = 0.86, n = 28). Thus, both α7Y and β2Ch were expressed in plasma membrane processes in the same proportion relative to their expression in the cell body. Furthermore, the mean intensity of YFP in the cell body region derived from α7Y subunits did not change when β2FP subunits were coexpressed (p = 0.90), suggesting that the expression level of α7 subunits was not altered by coexpression of β2 subunits. Moreover, both subunits were colocalized. Pseudocolored images of a cell with filopodia (Fig. 1, F and G) show the YFP channel (green; F) and the mCherry FP channel (red; G) overlaid to reveal α7Y and β2Ch colocalization in both the ER-like region of the cell body (yellow; H) and also in filopodia (inset; H). Colocalization in the plasma membrane region implied that α7Y and β2Ch coassembled as pentameric proteins (Keller et al., 2001).

The chaperone protein RIC-3 has been reported to facilitate expression of functional α7 nAChRs (Halevi et al., 2003). We transfected α7Yβ2C, α7Y and α7C cells with RIC-3 cDNA to study the effect of the chaperone on plasma membrane localization and function of heteropentameric receptors formed by these two subunits. It is noteworthy that in two separate experiments, localization of fluorescence in membrane processes resembling filopodia could not be detected in α7Yβ2Ch cells coexpressing RIC-3. In contrast, no such reduction in fluorescence in plasma membrane processes was observed in α7Y cells coexpressing RIC-3. Upon examination of TIRF images of α7Yβ2Ch/RIC-3 cells (n = 16), only one membrane process in one cell had fluorescence above background levels. A few cells exhibited fluorescence corresponding to α7Y and β2Ch in structures resembling micropodia beneath cell bodies. However, these structures were in cell body regions that had mean fluorescence intensities for YFP and mCherry FP at levels similar to α7Yβ2Ch cells without RIC-3. Thus, the possibility that they reflected ER expression made these structures ambiguous indicators of cell surface localization, and they could not be used to measure such. Mean fluorescence intensities from α7Y and β2Ch in the cell body region of α7Yβ2Ch cells versus α7Yβ2Ch/RIC-3 cells were not statistically different from each other (p = 0.56 and 0.34 for α7Y and β2Ch, respectively). Furthermore, the two subunits were colocalized in the cell body region regardless of RIC-3 coexpression. This suggests that synthesis and coassembly of the intracellular tagged subunits was not significantly altered by RIC-3 coexpression, yet trafficking to filopodia-like processes was sharply reduced. Altered trafficking was not unexpected because varied effects on nAChR traf-
ficking with RIC-3 coexpression have been reported (Halevi et al., 2003; Lansdell et al., 2005).

Subunit Coassembly and Receptor Pharmacology Probed with Mutant Subunits

Gain of Function α7 and β2 Subunits Coassemble into Functional Receptors. As another means to examine the assembly of β2 into α7 nAChR complexes, we took advantage of the gain-of-function L9'T mutants as pharmacological reporters. Previous work has shown that mutation of the Leu9 residue into a Thr causes profound modification of human α7 nAChR properties (Revah et al., 1991; Bertrand et al., 1992). The pleiotropic modifications brought by this mutation include the loss of desensitization and conversion of some competitive antagonists into agonists (Bertrand et al., 1992). Typical effects caused by the L9'T mutation include agonist activity by the competitive inhibitor, dihydro-β-erythroidine (DHβE) at α7L9'T nAChRs, yet DHβE has no effect at wild-type α7 nAChRs (Fig. 3A). Coexpression of α7L9'T with β2 subunits in oocytes yielded a significant reduction of the DHβE agonistic activity (Fig. 3, A and B). Moreover, and as expected if β2 subunits are incorporated into the receptor, recovery of DHβE agonism was observed upon coexpression of α7L9'T with β2L9'T subunits.

In addition, a gain-of-function mutation for mouse β2 subunits (mβ2V9'S) was expressed in oocytes with mα7-YFP subunits (derived from the α7Y construct used in the FRET and TIRF experiments). Several significant differences in ACh-evoked current were noted when mα7-YFP subunits were coexpressed with mβ2V9'S subunits compared with mα7-YFP subunits expressed alone. When expressed at a 1:10 ratio of mα7-YFP to mβ2V9'S subunits, ACh concentration-response curves shifted to the right (Fig. 4A), and EC50 values increased (Supplemental Table S2). On the other hand, no

Fig. 3. Incorporation of β2 subunits into the α7 nAChR complex. Human wild-type and gain-of-function mutant subunits expressed in X. laevis oocytes. A, typical whole-cell current response time courses observed in oocytes expressing wild-type α7, α7L9'T, α7L9'T + β2, or α7L9'T + β2L9'T subunits (1:1 injection ratio for coexpression). B, peak inward currents measured in a series of cells (n = 4) in response to ACh and DHβE. Currents were normalized versus ACh. DHβE has no agonistic effect for wild-type α7 nAChRs, yet it does evoke current from α7L9'T nAChRs. Both effects are as expected. It is noteworthy that expression of the β2 subunit causes a significant reduction of the DHβE-evoked current. Conversely, expression of the β2L9'T subunit rescues the agonist effect of DHβE.
differences in ACh concentration-response curves and EC50 values were noted when ma7-YFP subunits were expressed at a 1:3 ratio with mb2V9S subunits relative to when ma7-YFP subunits were expressed alone. In addition, coexpression of ma7-YFP with mb2V9S subunits at 1:3 and 1:10 injection ratios resulted in significant increases in peak current amplitudes compared with those seen upon coexpression of ma7-YFP with wild-type mb2 subunits at both injection ratios (Fig. 4C). Likewise, when ma7-YFP and mb2V9S subunits were coexpressed, the total (integrated) charge in response to higher concentrations of ACh was significantly higher than when ma7-YFP subunits were expressed alone (Fig. 4B). This effect was greater when ma7-YFP and mb2V9S subunits were coinjected at a 1:10 ratio (p < 0.001) than at a 1:3 ratio (p < 0.05). Coexpression of wild-type ma7 with mb2 or mb2V9S subunits produced similar responses to those noted above (Supplemental Fig. S4; Supplemental Table S2). In addition, coexpression of mb2V9S with ma7-YFP subunits at either ratio markedly decreased the rate of deactivation (p < 0.05 and p < 0.001 for a 1:3 and 1:10 expression ratio, respectively). (n = 6–8 oocytes per group.).
β2 Subunit Incorporation into nAChRs also Containing α7 Subunits Results in a Reduction of Evoked Current Amplitudes without Substantial Alterations in Ligand Concentration-Response Curves. A reduction in agonist-evoked current amplitudes of up to ~2-fold was observed when human β2 subunits were coexpressed with α7 subunits (1:1 ratio) in oocytes. This occurred for several compounds, including choline, carbachol, and epibatidine, but not for ACh or the α7-selective agonist N-((3R)-1-azabicyclo[2.2.2]oct-3-yl-4-chlorobenzamide (PNU-282987) (Table 2, Normalized I_{max}). In addition, we observed a significant reduction in ACh-evoked current amplitudes when α7-YFP subunits were coexpressed with wild-type mβ2 subunits at a 1:10 ratio (p < 0.01) compared with when α7-YFP subunits were expressed alone. When there was a 1:3 ratio for expression of α7-YFP:mβ2 subunits, a trend toward lower current was noted, but no significant difference was found after adjustment for multiple comparisons (Fig. 4C). Likewise, a 2-fold reduction in peak whole-cell current elicited by choline was also noted in SH-EP1 cells expressing fluorescently tagged mouse α7β2C nAChRs compared with when α7 or α7Y nAChRs were expressed (Table 3; Supplemental Fig. S2).

Most surprising were the comparable and sometimes nearly identical concentration-response curves and EC_{50} values for α7 subunit expression alone versus α7 and β2 subunit coexpression. These similarities persisted over the range of subunit species type and expression systems we employed, and they were irrespective of whether or not the subunit was fluorescently labeled. For example, concentration-response curves for choline-evoked current were markedly similar for SH-EP1 cells expressing mouse α7 nAChRs, α7Y nAChRs, or α7Yβ2C nAChRs (Supplemental Fig. S3A). Yet, there were differences in the Hill slopes, which were 1.63 ± 0.13, 1.41 ± 0.09, and 1.15 ± 0.13 (mean ± S.E.M., n = 7) for α7/RIC-3, α7Y/RIC-3, and α7Yβ2C/RIC-3 cells, respectively. However, the only significant difference was between α7Yβ2C/RIC-3 and α7Yβ2C/RIC-3 cells (p = 0.020). Likewise, concentration-response curves for inhibition of choline-induced current by MLA were nearly matched for the three cell lines (Supplemental Fig. S3B). Hill slopes for α7/RIC-3, α7Y/RIC-3, and α7Yβ2C/RIC-3 cells were 0.96 ± 0.09, 1.05 ± 0.09, and 1.48 ± 0.12 (mean ± S.E.M., n = 7), respectively. Both α7/RIC-3 and α7Y/RIC-3 cells had significantly lower slopes than α7Yβ2C/RIC-3 cells (p = 0.005 and 0.015, respectively). Likewise, for mouse subunits expressed in oocytes, choline concentration-response curves were comparable whether or not α7β2 subunits were coexpressed in oocytes at a 1:1 ratio, no significant differences were observed for the apparent sensitivities to ACh, choline, or carbachol (Table 2, EC_{50}), whereas there was a decrease in sensitivity to epibatidine and PNU-282987. However, as shown in Fig. 5A, coexpression with the β2 subunit at a 1:10 ratio (α7β2) caused no apparent differences in the concentration-response relationship for the positive allosteric modulator PNU-120596. Furthermore, only a small difference was observed in sensitivity to the competitive inhibitor MLA in oocytes expressing α7 subunits alone or in combination with β2 subunits (Fig. 5B). Overall, these data show several, striking similarities in sensitivities to common pharmacological agents between cells expressing α7 subunits alone or expressing both α7 and

Table 2

Responses to agonists

<table>
<thead>
<tr>
<th>Agonist and Subunit(s)</th>
<th>n</th>
<th>Normalized I_{max} Mean</th>
<th>Normalized I_{max} S.E.M.</th>
<th>p</th>
<th>EC_{50} Mean</th>
<th>EC_{50} S.E.M.</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetylcholine (1280 μM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α7</td>
<td>6</td>
<td>1.00</td>
<td>1.22</td>
<td>0.72</td>
<td>140.67</td>
<td>7.22</td>
<td>0.87</td>
</tr>
<tr>
<td>α7β2</td>
<td>7</td>
<td>0.86</td>
<td>0.75</td>
<td></td>
<td>136.71</td>
<td>5.82</td>
<td></td>
</tr>
<tr>
<td>Choline (1280 μM)</td>
<td>18</td>
<td>1.00</td>
<td>0.13</td>
<td>0.02</td>
<td>1.77</td>
<td>0.23</td>
<td>0.42</td>
</tr>
<tr>
<td>α7β2</td>
<td>12</td>
<td>0.55</td>
<td>0.05</td>
<td></td>
<td>2.00</td>
<td>0.18</td>
<td></td>
</tr>
<tr>
<td>Carbachol (3200 μM)</td>
<td>13</td>
<td>1.00</td>
<td>0.46</td>
<td>0.04</td>
<td>339.69</td>
<td>6.77</td>
<td>0.57</td>
</tr>
<tr>
<td>α7β2</td>
<td>21</td>
<td>0.63</td>
<td>0.12</td>
<td></td>
<td>361.76</td>
<td>6.40</td>
<td></td>
</tr>
<tr>
<td>Epibatidine (10 μM)</td>
<td>9</td>
<td>1.00</td>
<td>0.15</td>
<td>0.002</td>
<td>1.17</td>
<td>0.18</td>
<td>0.01</td>
</tr>
<tr>
<td>α7β2</td>
<td>8</td>
<td>0.47</td>
<td>0.20</td>
<td></td>
<td>2.25</td>
<td>0.27</td>
<td></td>
</tr>
<tr>
<td>PNU-282987 (40 μM)</td>
<td>7</td>
<td>1.00</td>
<td>0.17</td>
<td>0.17</td>
<td>2.11</td>
<td>0.12</td>
<td>< 0.001</td>
</tr>
<tr>
<td>α7β2</td>
<td>6</td>
<td>1.12</td>
<td>0.31</td>
<td></td>
<td>4.37</td>
<td>0.21</td>
<td></td>
</tr>
</tbody>
</table>

* Agonist concentrations used to measure I_{max}.

Table 3

Whole-cell current in SH-EP1 cells

<table>
<thead>
<tr>
<th>Cell Line Description</th>
<th>Peak Current μA</th>
</tr>
</thead>
<tbody>
<tr>
<td>α7</td>
<td>205 ± 26</td>
</tr>
<tr>
<td>α7/RIC-3</td>
<td>510 ± 48</td>
</tr>
<tr>
<td>α7Y</td>
<td>178 ± 19</td>
</tr>
<tr>
<td>α7Y/RIC-3</td>
<td>498 ± 54</td>
</tr>
<tr>
<td>α7Yβ2C</td>
<td>108 ± 23</td>
</tr>
<tr>
<td>α7Yβ2C/RIC-3</td>
<td>220 ± 29</td>
</tr>
</tbody>
</table>

Whole-cell mean peak current in response to 10 mM choline (mean ± S.E.M.; n = 7 cells each). Cells were transfected with mouse subunits, with or without transfection of RIC-3.
β2 subunits. Only a few compounds exhibited relatively modest differences between homomeric versus heteromeric α7 receptors. In contrast, a clear difference in the inhibition of ACh-evoked current by the antagonist DHβE was observed between α7 and α7β2 receptors.

Incorporation of β2 Subunits into α7 nAChRs Results in Sensitivity to Low Concentrations of DHβE. DHβE, a competitive antagonist, is known to discriminate between the α4β2 and α7 nAChRs with a difference in IC₅₀ of 0.1 versus 20 μM for these two receptors, respectively (Chavez-Noriega et al., 1997). In addition, Liu et al. (2009) employed DHβE to probe pharmacological differences between cells containing α7 nAChRs in the ventral segmental area and cells in the MS/DB expressing putative α7β2-containing receptors in which the latter displayed a ~500-fold higher sensitivity to inhibition of choline-induced current by DHβE (IC₅₀ = 0.17 μM). We reasoned that if α7 and β2 subunits were coassembled into functional receptors, these heteromeric receptors would also display similar sensitivity to DHβE inhibition. Experiments were carried out in sibling oocytes injected either with α7 or with α7 and β2 in a 1:1 ratio; to minimize experimental differences, the α7 concentration was identical and measurements were effectuated on the same day with the same solutions.

In agreement with published data on α4β2, exposure to DHβE caused inhibition of ACh-induced current (200 μM, 5 s) in a dose-dependent manner. Although DHβE inhibited both the α7 and α7β2 nAChRs, a difference was observed in the low concentration range (Fig. 6). Although the concentration-inhibition curve at the α7 nAChRs displayed a smooth profile, and data were readily fitted by a single Hill equation with an IC₅₀ at 4.58 ± 0.4 μM and nᵢₜ of 1.2 ± 0.1 (n = 7), data obtained with α7β2 were best fitted using a dual Hill equation with an IC₅₀ of 0.09 ± 0.04 μM and nᵢₜ of 0.9 ± 0.16 for the high-affinity component and an IC₅₀ of 5.91 ± 0.8 and nᵢₜ of 1.7 ± 0.2 (n = 7) for the low-affinity component. The high-affinity component represented a fraction of 23 ± 4% of the overall current. Responses were normalized to unity for the current evoked in the absence of antagonist and the mean current was 1.8 ± 0.2 μA in cells expressing α7 receptors and 1.03 ± 0.25 μA for cells expressing α7β2 receptors.

In contrast, the degree of inhibition of ACh-evoked current by DHβE in the present study was much less than inhibition of choline-evoked current by DHβE in rodent MS/DB cells expressing putative α7β2 nAChRs (Liu et al., 2009). However, when Liu et al. (2009) coexpressed rat α7 and β2 subunits in oocytes, they also reported less inhibition (Supplemental Figures). A reduction in inhibition by DHβE is consistent with an admixture of (α7)₅ and (α7)₄β(β2)₁ nAChRs. Because both groups observed a reduction in efficacy when subunits were expressed in oocytes, compared with natively expressed receptors, this suggests that native cellular mechanisms in the rodent MS/DB favored coassembly of heteromeric receptors and that these mechanisms are lacking in oocytes. The additional reduction in the effect of DHβE in the present study versus the responses in oocytes reported by Liu et al. (2009) may be attributed to differences in agonists, oocytes, and species of receptor subunits.

Probe of Binding Sites Using Cysteine Mutants. To determine whether the α7-β2 subunit interfaces contribute functional binding sites for ACh, we coexpressed human α7 and β2 subunits with our previously described (Papke et al., 2011) cysteine mutant in one subunit or the other (L119C in α7 and L121C in β2). We previously showed that when these mutations are present in the complementary face of an agonist binding site, exposure to a cationic sulphydryl reagent, such as MTSEA, results in a covalent modification that prevents the application of ACh or other agonists from activating the receptors. We injected RNA at a 1:4 ratio of α7 to β2 subunits, both with and without coinjection of RIC-3.

Two initial control responses to 300 μM ACh were obtained from all cells, and the average peak current and net charge of these responses were used to normalize the data for each cell. Consistent with our other observations, the main effect of β2 subunit coexpression was an overall reduction in ACh-evoked currents compared with our typical responses with α7 subunits injected alone. This effect was somewhat less in the cells coinjected with RIC-3. After measuring the preapplication...
tion control responses, cells were treated with 2 mM MTSEA for 5 min and then stimulated again with 300 μM ACh. The post treatment responses were compared with the control ACh responses immediately preceding the MTSEA. There were no significant effects of MTSEA treatment on either peak current or net charge responses of cells coinjected with α7 subunits and β21,121C mutant subunits (Fig. 7; p values ranged from 0.25 to 0.61, n values were 12 for cells without RIC-3, and 13 for cells injected with RIC-3).

Selective knockout of the binding sites involving β2 subunits (β21,121C mutant) revealed that α7-β2 subunit interfaces do not bind ACh in a manner that leads to channel activation. This implies that only receptors with adjacent α7-α7 subunits could bind agonists productively. Receptors with a single α7-α7 interface might respond; receptors with several such interfaces would probably respond more readily (Williams et al., 2011).

Discussion

Our principal findings are that FP-tagged nAChR α7 and β2 subunits coassemble and are trafficked to the plasma membrane, where they function, and that coexpression of β2 with α7 subunits causes a significant decrease in agonist-evoked whole-cell current amplitudes. It is noteworthy that this decrease occurs without affecting the concentration-response characteristics of some common agonists and antagonists, which may partially explain why it has been so difficult to unambiguously identify α7β2 nAChRs in vivo. Moreover, and for the first time, we show that the α7-β2 interface does not bind ligand in a functionally productive manner. This presumably leaves only the α7-α7 interface(s) to translate binding of agonist into channel opening, thus explaining both the lower peak current responses for α7β2 nAChRs relative to α7 nAChRs and the similar ligand sensitivities for α7 nAChRs and α7β2 nAChRs observed in our study.

FRET and TIRF Microscopy of Fluorescently Tagged Subunits Reveals Coassembly of α7 and β2 Subunits and Plasma Membrane Localization

FRET Reveals FP-Tagged nAChR α7 and β2 Subunits Coassemble in Mammalian Cells. Fluorescently tagged mouse α7 and β2 subunits (α7FP and β2FP, respectively) were expressed in mammalian SH-EP1 cells. LSCM confirmed that α7FP and β2FP subunits colocalize, and FRET experiments revealed that they coassemble with efficiency resembling that of α4 and β2 subunits, known to form functional α4β2 nAChRs. It is noteworthy that the FRET efficiency for α7C-β2Y coassembly was significantly higher (34.6%) than for the reciprocally labeled α7Y-β2C coassembly (23.3%). This mirrors findings from α4FP and β2FP coassembly (E = 34 and 24% for α4C-β2Y and α4Y-β2C, respectively; Khakh et al., 2005), suggesting that receptors contained more β2 than α4 subunits. Thus, it is likely that more β2 subunits than α7 subunits were incorporated into receptors in our SH-EP1 cell line. Although varied stoichiometries probably existed in our system (Carbone et al., 2009), specific stoichiometries may exist in vivo. Furthermore, these ratios are functionally relevant. For example, (α4)1(β2)3 nAChRs show higher sensitivity to agonist activation than (α4)3(β2)1 nAChRs (Nelson et al., 2003).

Colocalization of, and efficient intracellular FRET between, α7FP and β2FP implies that an appreciable fraction of the subunits in the ER were coassembled, consistent with prior studies concerning other nAChR subtypes (Grailhe et al., 2004; Drenan et al., 2008). FRET could have been from partially assembled receptors in the ER, but there was no significant difference between E in intracellular regions and
and 5-HT3A receptors, another Cys-loop receptor, localize to dendrites where expressed, although further studies would be required to test this hypothesis.

Functional Incorporation of the β2 Subunit into the Receptor Complex. To further examine the putative incorporation of the β2 subunit into α7 receptor complexes, we took advantage of the gain-of-function L9/T mutation as a reporter. Rather than having antagonist activity as it does at wild-type α7 nAChRs, DHβE has partial agonist activity at gain-of-function mutant α7L9/T receptors. The magnitude of the response to DHβE is reduced upon coexpression with wild-type β3 subunits, consistent with α7L9'T-β3 subunit coassembly and reduction of the number of the gain-of-function subunits in the pentamer (Palma et al., 1999). Here, we find that DHβE has agonist action only when α7 and/or β2 subunits harbor the L9'T mutation. Inhibition by DHβE was observed upon coexpression of α7L9'T and β2 but not for coexpression of α7L9'T and β2L9'T subunits, which indicates that heteromeric α7β2 nAChRs are indeed formed.

Likewise, coexpression of the mouse gain-of-function mβ2^{V9-S} subunit with ma7 or ma7-YFP subunits significantly altered agonist responses compared with coexpression with wild-type mβ2 subunits confirming β2 subunit incorporation into functional receptors (Fig. 4; Supplemental Fig. S4; Supplemental Table S2). In addition, by varying the injection ratio of α7 to β2 subunits, we showed a trend toward lower peak current with an increase in β2 subunit expression. This further suggests that β2 subunits incorporate into α7 nAChRs and that they may not contribute to functional binding sites.

Coexpression of the β2 Subunit Does Not Modify α7 nAChR Pharmacology for Most Agents. Because it is well documented that the functionally relevant ACh binding site lies at the interface between the principal α(++)-face(α) and complementary α(−)-face of specific nAChR subunits, it could be expected that β2 subunit incorporation into functional α7 receptor complexes would yield a receptor with a distinct pharmacological profile having both α7-β2 and α7-α7 subunit interfaces. Experiments carried out with a series of agonists, the competitive antagonist MLA, and a positive allosteric modulator, however, indicate that β2 subunit incorporation hardly modifies α7 nAChR properties, with the notable exception of lower agonist-induced peak current. In addition, for choline activation, Hill slopes were lower for α7β2 receptors but only when β2 was in excess in oocytes (α7/β2 of 1:10), and for SH-EP1 cells, which, on the basis of our FRET data, also had a higher ratio of β2 to α7 in receptors. This supports the contention that the α7-β2 interface does not bind choline. Also notable was the inhibition of ACh-evoked current for α7β2 nAChRs by low concentrations of DHβE, which Liu et al. (2009) also observed in putative α7β2 nAChRs in rodent MS/DB. However, the degree of inhibition was lower for receptors expressed in oocytes, in both the present study and in Liu et al. (2009), which is consistent with a subpopulation of (α7)₃ nAChRs. This suggests that cellular mechanisms in MS/DB cells direct α7-β2

Fig. 7. A, representative traces from oocytes coexpressing either wild-type human α7 and human β2L121C subunits (upper traces) or human α7L119C and wild-type human β2 subunits (lower traces). Cells were initially stimulated with 300 μM ACh and then incubated in 2 mM MTSEA for 5 min before the second application of 300 μM ACh. B, the effect of MTSEA treatment on the average peak current and net charge injected with a 4-fold excess of MTSEA for 5 min before the second application of 300 μM ACh. Data were normalized to the 300 μM ACh responses obtained from the same cells before MTSEA treatment. All cells were injected with a 4-fold excess of β2 (wild type or mutant) subunit RNA relative to α7 (wild type or mutant) subunit RNA.

in the plasma membrane, which presumably harbors only fully assembled nAChRs (data not shown). These findings are consistent with present concepts that coassembly occurs intracellularly.

TIRF Microscopy Reveals Plasma Membrane Colocalization of FP-Tagged α7 and β2 Subunits. We show for the first time that β2FP and α7FP subunits colocalize in plasma-membrane-rich filopodia-like projections (Fig. 1H), which is consistent with nAChR trafficking to the plasma membrane (Keller et al., 2001). Furthermore, I₅₀ of α7Y and α7Yβ2C nAChR-expressing cells was similar, suggesting that β2FP subunits did not alter α7 subunit localization to filopodia-like processes.

Filopodia, which are common on central nervous system neurons and thought to be precursors of dendritic spines, can receive synapses (Dunaevsky et al., 1999). Moreover, α7 nAChRs localize to filopodia of cultured hippocampal neurons (Xu et al., 2006). In addition, FP-labeled α4β2 nAChRs and 5-HT_{1A} receptors, another Cys-loop receptor, localize to filopodia-like protrusions when expressed in N2a cells (Drennan et al., 2008) and HEK-293 cells (Grailhe et al., 2004), respectively, and localize in dendrites when expressed in primary, midbrain neurons (Nashmi et al., 2003) and cultured hippocampal neurons (Grailhe et al., 2004), respectively. Given the similarities, α7β2 nAChRs might reasonably be expected to localize to neuronal filopodia and dendrites where expressed, although further studies would be required to test this hypothesis.
coassembly. Future work may elucidate such mechanisms and reveal whether predominant stoichiometries exist.

Cysteine Mutant Reveals That the α7-β2 Interface Does Not Bind Ligand in a Functionally Relevant Manner. Previous work (Papke et al., 2011) identified a leucine (Leu119 in α7, Leu121 in β2) in the complementary face of the agonist binding domain as a potential gatekeeper, able to exclude agonist binding after covalent modification with a cationic sulphydryl reagent, such as MTSEA. Sulphydryl modification of a cysteine at this site was equally effective at eliminating the agonist-evoked responses of homomeric α7L119C receptors and heteromeric α4β2L121C receptors. In contrast, the agonist-evoked responses of receptors with mutations of the homologous residues in subunits contributing only to the primary face of agonist binding sites (e.g., α7C119C), or in obligatory structural subunits such as β3 or α5, were insensitive to sulphydryl modification. Likewise, although our several lines of evidence indicate that β2 can coassemble with α7 into functional receptors, the insensitivity of α7β2L121C receptors to MTSEA indicates that the β2 subunits are not recruited into functional ACh binding sites. This suggests that functional agonist sites in α7β2 heteromers are restricted to the limited number of α7-α7 subunit interfaces. With multiple β2 subunits incorporated into each pentamer, as our data suggest, this would result in a large reduction in the number of potential agonist binding sites, with perhaps no more than a single binding site in each functional receptor. This is consistent with our recent finding (Williams et al., 2011) that under conditions of saturating agonist concentrations, single functional agonist binding sites are sufficient to produce activation of both muscle-type and α7 nAChRs. Indeed, the current evoked by ACh in the present study was modestly reduced when we injected mouse α7 and β2 cRNA in a 1:3 ratio, and it was further reduced for the 1:10 ratio, yet not extinguished. A mixture of stoichiometries and arrangements such as we present in Fig. 8 could account for the graded response we observed.

Prior work (Khiroug et al., 2002; Azam et al., 2003; Liu et al., 2009) suggests that α7β2 nAChRs may be expressed in mammalian brain. The present work confirms that mammalian α7 and β2 subunits form functional receptors and that subunit stoichiometry and arrangement play a role in activating current. On the basis of the lower agonist-evoked current we observed for α7β2 nAChRs, coassembly of β2 into α7nAChRs in vivo may be a mechanism of functional down-regulation. Future heterologous coexpression might provide fruitful models for investigating the effect of drugs and endogenous mechanisms on subunit stoichiometry (Nelson et al., 2003) and further probing α7β2 nAChR sensitivity to amyloid-β (Liu et al., 2009).

Acknowledgments

We thank Dr. Millet Treinin for the gift of the RIC-3 construct, either directly or through Dr. William Green. We thank Dr. Jon Lindstrom for providing the wild-type human nAChR clones for use in constructing the cysteine mutants and Clare Stokes (University of Florida, Gainesville, FL) for creating the cysteine α7 and β2 mutants. We thank Jason Maxwell (Barrow Neurological Institute, Phoenix, AZ) for assistance in producing stably transfected SH-EP1 cell lines and Bhagirathi Dash for creating the gain-of-function mouse β2 construct from a mouse β2 construct kindly provided by Jerry Stützel. We thank Dr. Christian Fuhrer and Prof. Dr. Ortrud K. Steinlein for providing the human α7 and β2, respectively, and Tanguy Araud and Isabelle Favre (Department of Neuroscience, Centre Médical Universitaire, Geneva, Switzerland) for creating the human α7L9T and β2L9T mutants, respectively. In addition, we thank Tanguy Araud, Sonia Bertrand, and Claudette Duret (Department of Neuroscience, Centre Médical Universitaire) and Estelle Neveu (HiQScreen, Geneva, Switzerland) for performing electrophysiological recordings.

Authorship Contributions

Participants in research design: Murray, Bertrand, Papke, George, Pantoja, Srinivasan, Liu, Wu, Whiteaker, Lester, and Lukas.
Conducted experiments: Murray, Bertrand, Papke, George, and Liu.
α7β2 nAChRs assemble and function, and are activated primarily via their α7-α7 interfaces

Teresa A. Murray, Daniel Bertrand, Roger L. Papke, Andrew A George, Rigo Pantoja, Rahul Srinivasan, Qiang Liu, Jie Wu, Paul Whiteaker, Henry A. Lester, Ronald J. Lukas

Colocalization of fluorescently tagged subunits in SH-EP1 cells

Pseudocolored images of fluorescence emanating from fluorescently tagged α7Y and β2C subunits (Fig. S1A left and center, respectively) were merged to reveal extensive colocalization, as indicated by the yellow color (Fig. S1A right). LSCM also showed extensive expression of FP-tagged mouse α7 and β2 subunits in the intracellular region, in a reticulated pattern possibly corresponding to ER (Grailhe et al., 2004), with lesser localization in the plasma membrane region. These findings are consistent with previous observations. For example, Hill et al. (1993) reported that relatively few β2 subunits were localized to neuronal synapses and that an excess amount was associated with ER membranes and cytoplasmic transport vesicles. Likewise, pronounced intracellular localization with lower cell surface levels of α7 subunits has been previously reported (Toulmé et al., 2006; Murray et al., 2009). Similar patterns have also been observed for nAChR α3 and β4 subunits in HEK cells and cultured hippocampal cells (Grailhe et al., 2004) and for α4, β2, α6, and β3 subunits in N2a mouse neuroblastoma cells (Drenan et al., 2008). Additionally, singly transfected cells expressing β2C subunits exhibited a similar reticulated pattern of intracellular expression with occasional instances of higher perinuclear localization (Fig. S1B). Furthermore, coexpression of β2C and α7Y did not alter the reticulated pattern for either subunit (Fig 1C and Fig. S1). This is consistent with the TIRF data that suggests overall expression levels of α7Y did not change with coexpression of β2C subunits. Interestingly, higher perinuclear localization of β2C subunits was not observed upon coexpression of α7Y subunits.

Figure S1. A Unmixed λ stack laser scanning confocal image of a α7Yβ2C cell. YFP fluorescence derived from α7Y was pseudocolored green (left) and that derived from CFP was pseudocolored red (center) to show β2C distribution (right). The merged images (right) illustrate that α7 and β2 subunits colocalized (yellow) intracellularly in a reticulated pattern consistent with ER distribution. This is suggestive of colocalization in the ER. B Singly transfected SH-EP1 cell expressing β2C shows a similar reticulated pattern of expression. Scale bar denotes 5 μm.
Figure S2. Representative traces for whole-cell current responses (pA) evoked by application of 10 mM choline (horizontal bars signify duration of agonist application; sec) for cells held at -60 mV for cells expressing the indicated nAChR subunits: A and D - α7; B and E - α7Y; C and F - α7Yβ2C; subunit(s) alone (A, B, C) or in the presence of coexpressed RIC-3 (D, E, F). For each nAChR subtype, cells coexpressing RIC-3 consistently displayed ~two-fold greater whole cell currents than cells expressing that subtype alone.

To further characterize functional responses of these receptors, concentration-response studies were conducted using SH-EP1 cell lines transfected to coexpress RIC-3. Concentration-response curves for normalized inward currents induced by choline (Fig. S3, left) in α7/RIC-3 cells and α7Y/RIC-3 cells were nearly identical. Furthermore, their EC₅₀ values (Table 4) were consistent with previous reports (Murray et al., 2009), and they also were comparable to those for α7Yβ2C/RIC-3 cells. However, the Hill slope for α7Yβ2C/RIC-3 cells was significantly lower than that of α7/RIC-3 cells (p=0.020). The difference between α7Yβ2C/RIC-3 and α7Y/RIC-3 cells was not significant (p=0.127). Concentration-response curves and the IC₅₀ values for inhibition of functional responses to 10 mM choline after two min pre-exposure to the relatively selective α7 nAChR antagonist, methyllycaconitine (MLA; Alkondon et al., 1992) were also very similar for the three cell lines (Fig. S3, right; Table S1). These markedly similar dose-response relationships for choline are consistent with our results revealing comparable curves for the ACh dose-response relationship for human and mouse α7 and α7β2 receptors expressed in oocytes (Figs. 4-5). Likewise, the response to inhibition of choline-evoked current by MLA was similar to what we observed in oocytes in which ACh current was inhibited in a dose-dependent manner by MLA (Fig. 5). Yet, the Hill slope for α7Yβ2C/RIC-3 cells significantly larger for both α7/RIC-3 and α7Y/RIC-3 cells (p=0.005 and 0.015, respectively).
Figure S3. Concentration-response relations. Normalized whole cell peak current (y-axis; pA) elicited by choline versus log molar choline concentration (x-axis, log molar; A) or elicited by 10 mM choline after a two min preincubation with the indicated concentration of MLA (x-axis, log molar; B) for SH-EP1 cells expressing α7 (■), α7Y (○), or α7Yβ2C (▲) subunits, all transfected to express RIC-3. Log molar EC$_{50}$ values (± SEM; n=7 each) for choline were -2.58 ± 0.13, -2.52 ± 0.09, and -2.51 ± 0.07 for α7, α7Y, and α7Yβ2C cells, respectively, and log molar IC$_{50}$ values for MLA were -9.24 ± 0.11, -9.08 ± 0.15, and -9.13 ± 0.14 for α7, α7Y, and α7Yβ2C cells, respectively.

Table S1. Whole-cell current responses to choline and inhibition by MLA

<table>
<thead>
<tr>
<th>Cell ID</th>
<th>EC$_{50}$ (95% CI, mM)a</th>
<th>Hill Slopeb Choline</th>
<th>IC$_{50}$ (95% CI, nM)c</th>
<th>Hill Sloped MLA</th>
</tr>
</thead>
<tbody>
<tr>
<td>α7/RIC-3</td>
<td>2.62 (1.14-6.02)</td>
<td>1.63 ± 0.13</td>
<td>0.57 ± (0.25-1.29)</td>
<td>0.96 ± 0.09</td>
</tr>
<tr>
<td>α7Y/RIC-3</td>
<td>3.02 (1.67-5.43)</td>
<td>1.41 ± 0.09</td>
<td>0.84 ± (0.29-2.44)</td>
<td>1.05 ± 0.09</td>
</tr>
<tr>
<td>α7Yβ2C/RIC-3</td>
<td>3.20 (1.93-4.47)</td>
<td>1.15 ± 0.13</td>
<td>0.75 (0.27-2.07)</td>
<td>1.48 ± 0.12</td>
</tr>
</tbody>
</table>

a Mean EC$_{50}$ for choline response (mM; mean (95% confidence interval (CI); n = 7 cells each). b Hill coefficient for choline agonism (mean ± SEM; n = 7 cells). c Mean IC$_{50}$ for inhibition of choline response by 2-min pre-exposure to MLA (nM; mean (95% confidence interval (CI); n = 6 cells each). d Hill coefficient for MLA inhibition of current response to 10 mM choline (mean ± SEM; n = 6 cells).
Figure S4. Effects of coexpression of mβ2 or mβ2^{V9'S} gain-of-function mutant subunits on responses to ACh (wild type mα7 to β2 injection ratios were 1:3 and 1:10). **A.** Relationship of normalized current to dose of ACh. **B.** Integrated current (total current) in response to ACh dose. The differences in response between mα7 expressed alone and mα7 expressed with mβ2^{V9'S} were statistically significant for expression at both 1:3 and 1:10 ratios (p < 0.05 and p < 0.001, respectively). (n = 7-11 oocytes per group).

Table S2. Concentration-response relation for ACh

<table>
<thead>
<tr>
<th>Subunit(s)</th>
<th>Injection Ratio</th>
<th>Log EC_{50} (M)</th>
<th>95% C.I.</th>
<th>R²</th>
<th>Hill Slope</th>
<th>95% C.I.</th>
</tr>
</thead>
<tbody>
<tr>
<td>mα7-YFP</td>
<td></td>
<td>-3.425</td>
<td>-3.625 to -3.225</td>
<td>0.973</td>
<td>1.121</td>
<td>0.608 to 1.634</td>
</tr>
<tr>
<td>mα7-YFP + mβ2</td>
<td>(1:3)</td>
<td>-3.455</td>
<td>-3.599 to -3.311</td>
<td>0.986</td>
<td>1.180</td>
<td>0.771 to 1.589</td>
</tr>
<tr>
<td>mα7-YFP + mβ2</td>
<td>(1:10)</td>
<td>-3.285</td>
<td>-3.555 to -3.016</td>
<td>0.956</td>
<td>1.070</td>
<td>0.411 to 1.729</td>
</tr>
<tr>
<td>mα7-YFP + mβ2^{V9'S}</td>
<td>(1:3)</td>
<td>-3.415</td>
<td>-3.564 to -3.267</td>
<td>0.986</td>
<td>1.171</td>
<td>0.755 to 1.587</td>
</tr>
<tr>
<td>mα7-YFP + mβ2^{V9'S}</td>
<td>(1:10)</td>
<td>-2.528</td>
<td>-2.657 to -2.398</td>
<td>0.978</td>
<td>1.880</td>
<td>0.855 to 2.905</td>
</tr>
<tr>
<td>mα7</td>
<td></td>
<td>-3.193</td>
<td>-3.405 to -2.981</td>
<td>0.966</td>
<td>1.246</td>
<td>0.576 to 1.915</td>
</tr>
<tr>
<td>mα7 + mβ2</td>
<td>(1:3)</td>
<td>-3.216</td>
<td>-3.444 to -2.989</td>
<td>0.963</td>
<td>1.158</td>
<td>0.536 to 1.781</td>
</tr>
<tr>
<td>mα7 + mβ2</td>
<td>(1:10)</td>
<td>-3.295</td>
<td>-3.526 to -3.063</td>
<td>0.965</td>
<td>1.001</td>
<td>0.522 to 1.479</td>
</tr>
<tr>
<td>mα7 + mβ2^{V9'S}</td>
<td>(1:3)</td>
<td>-3.389</td>
<td>-3.661 to -3.117</td>
<td>0.953</td>
<td>0.896</td>
<td>0.441 to 1.350</td>
</tr>
<tr>
<td>mα7 + mβ2^{V9'S}</td>
<td>(1:10)</td>
<td>-2.899</td>
<td>-3.116 to -2.682</td>
<td>0.965</td>
<td>1.052</td>
<td>0.546 to 1.557</td>
</tr>
</tbody>
</table>

ACh, acetylcholine; C.I., confidence interval. Mouse nAChR subunits expressed in oocytes. Injections of β2 into oocytes was either 1:3 or 1:10 α7 to β2 subunits. (mβ2 denotes wild type subunit and mβ2^{V9'S} denotes gain-of-function mutant subunit)
Coexpression of RIC-3 alters trafficking of α7 and β2 subunits in α7Yβ2C cells

Coexpression of RIC-3 with α7Y and β2Ch led to profoundly fewer nAChRs localized to filopodia-like processes of α7Yβ2Ch/RIC-3 cells. In contrast, coexpression with RIC-3 did not change the fluorescence levels of α7Y subunits in these processes in the absence of β2 subunits (data not shown). Our observation is consistent with some previous reports in which RIC-3 coexpression abolished surface localization of α4β2 nAChRs in oocytes and mammalian COS cells (Castillo et al., 2005) and reduced functional expression of α3β4 nAChRs in oocytes (Halevi et al., 2003). Conversely, RIC-3 increased functional expression of α4β2, α4β4, α3β2, or α3β4 nAChRs when coexpressed in tsA201 cells. Yet, RIC-3 did not alter expression of α9 or α9α10 nAChRs (Lansdell et al. 2005), suggesting that the differential effects of RIC-3 are dependent on host-cell background and the presence of other interacting proteins. Our observations suggest that RIC-3 may act with subcellular specificity retarding localization of α7β2 nAChRs to filopodia-like membrane processes of SH-EP1 cells.

RIC-3 could sequester α7β2 nAChRs in the ER, or reroute them to the proximal plasma membrane and/or micropodia underlying the cell body, away from distal filopodia. Given the two-fold increase in choline response of α7Yβ2C/RIC-3 versus α7Yβ2C cells, it is more likely that RIC-3 facilitated additional trafficking to one or both of these plasma membrane regions. Another explanation, and not exclusive of a shift in localization, is that RIC-3 facilitated coassembly of receptors with a higher proportion of α7 subunits. A higher percentage of α7-α7 versus α7-β2 interfaces in the receptor population would produce larger evoked current according to our model (Fig. 8). The TIRF data are consistent with both these possibilities.

An intriguing implication of our observations is that RIC-3 may play a role in targeting α7β2 nAChRs to specific compartments of neurons and perhaps differentially affects the functional expression of heteromeric α7* nAChRs versus homomeric α7 nAChR. Additionally, β2 subunit incorporation (Ren et al., 2005) may also play a role in targeting α7β2 receptors to specific plasma membrane regions. Even though previous studies suggest that mammals may express α7* nAChR (Anand et al., 1993; Sudweeks and Yakel, 2000; Azam et al., 2003), there is little knowledge concerning the mechanisms that would direct cells toward homomeric versus heteromeric assembly of these subunits. Several regions of the rodent brain express nAChR α7 and β2 mRNA, but not α4 mRNA, including medial septum, pedunculopontine tegmentum, striatum, and neurons projecting to the hippocampus (Azam et al., 2003). Given the distinct roles of these regions and their involvement in CNS disorders (Liu et al., 2009; Severance and Yolken, 2007), it would be beneficial to know more about the specific α7* nAChR subtype(s) expressed, and what controls their expression, stoichiometry (Nelson et al., 2003, Exley et al., 2006), and subcellular targeting (Srinivasan et al., 2011).

References

