Regulation of Breast Cancer Resistant Protein by Peroxisome Proliferator-Activated Receptor α in Human Brain Microvessel Endothelial Cells

Md. Tozammel Hoque, Kevin R. Robillard, and Reina Bendayan

Graduate Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada

Received November 13, 2011; accepted January 19, 2012

ABSTRACT
Breast cancer resistance protein (BCRP/ABCG2), an ATP-binding cassette (ABC) membrane-associated drug efflux transporter, is known to localize at the blood-brain barrier (BBB) and can significantly restrict xenobiotic permeability in the brain. The objective of this study is to investigate the regulation of BCRP functional expression by peroxisome proliferator-activated receptor alpha (PPARα), a ligand-activated transcription factor primarily involved in lipid metabolism, in a cerebral microvascular endothelial cell culture system (hCMEC/D3), representative of human BBB. We demonstrate that PPARα-selective ligands (i.e., clofibrate, GW7647) significantly induce BCRP mRNA and protein expression in a time- and concentration-dependent manner, whereas pharmacological inhibitors (i.e., MK886, GW6471) prevent this induction. Using [3H]mitoxantrone, an established BCRP substrate, we observe a significant reduction in its cellular accumulation by monolayer cells treated with clofibrate, suggesting increased BCRP efflux activity. In addition, we show a significant decrease in BCRP protein expression and function when PPARα is down-regulated by small interfering RNA. Applying chromatin immunoprecipitation and quantitative real-time polymerase chain reaction, we observe that clofibrate treatment increases PPARα binding to the peroxisome proliferator response element within the ABCG2 gene promoter. This study provides the first evidence of direct BCRP regulation by PPARα in a human in vitro BBB model and suggests new targeting strategies for either improving drug brain bioavailability or increasing neuroprotection.

Introduction
The blood-brain barrier (BBB) localized at the interface of the systemic circulation and brain parenchyma can significantly restrict the permeability of xenobiotics including several pharmacological agents in the central nervous system (CNS) (Pardridge, 2010). In addition to the physical barrier formed by the microvessel endothelial cells, drug penetration into the brain is highly regulated by a biochemical barrier mainly constituted of metabolic enzymes and influx/efflux transport proteins (Abbott et al., 2010). In particular, the membrane-associated efflux drug transporters, breast cancer resistance protein (BCRP) and P-glycoprotein (P-gp), ex...
pressed in brain microvessel endothelial cells, have long been recognized to play a significant role in preventing the permeability of several drugs across the BBB, presenting a great challenge to the treatment of CNS disorders (Bendayan et al., 2002, 2006; Lee et al., 2007; Ronaldson et al., 2008; Vlaming et al., 2009; Miller, 2010).

BCRP/ABCG2 belongs to the G subfamily of the ATP-binding cassette (ABC) transporter superfamily. The human ABCG2 gene is located on chromosome 4, band 4q21-4q22, and encodes a 70-kDa, 655 amino acid protein (Polgar et al., 2008). It is known as a half-transporter that upon homodimerization exerts its functional activity. In addition to its localization at the BBB, BCRP is expressed in a wide range of tissues, including intestine, liver, kidney, testis, placenta, and mammary gland. BCRP is known to be involved in the elimination of many drugs including chemotherapeutic agents such as mitoxantrone, methotrexate, and irinotecan (Doyle et al., 1998; Maliepaard et al., 2001; Ishikawa, 2009).

Studies have examined the effect of Bcrp on cerebral drug accumulation in animal models, using established substrates, such as dantrolene or the phytostereogens daidzein, genistein, and coumestrol. In Abcg2 knockout mice, brain accumulation of these compounds was remarkably higher (more than 10-fold) compared with the wild-type animals (Enokizono et al., 2007, 2008).

Despite the apparent role of BCRP in protecting the brain from xenobiotic exposure, factors that regulate the expression and function of BCRP at both the gene and the protein level are poorly defined and not well understood. Investigation from our laboratory as well as other groups has implicated nuclear hormone receptors such as pregnane X receptor (PXR), constitutively active receptor, aryl hydrocarbon receptor, and estrogen receptor in the regulation of drug transcytosis from xenobiotic exposure, factors that regulate the expression of the target transcriptional activity of PPARα is actively involved in the regulation of BCRP in this system. Selective modulation of BCRP expression at the BBB by PPARα can potentially lead to the development of novel therapeutic strategies for overcoming restricted drug delivery to the brain or to enhance neuroprotection.

Materials and Methods

Materials

Type I collagen was purchased from BD Biosciences (San Jose, CA). Dimethyl sulfoxide (DMSO) and acrylamide solution were obtained from Bishap Canada Inc. (Burlington, ON, Canada). Clofibrate, 2-methyl-2-[4-[2-[[(cyclohexylo]aminocarbonyl]] carbonyl]-4-cyclohexylbutyl]amino]-ethyl]phenyl)thio)-propanoic acid (GW6471), (2S)-2-[[1Z,1-methyl-3-oxo-3-[4-[2-(5-methyl-2-phenyl-4-oxazolyl)ethoxy]phenyl]propyl]carbamate acid ethyl ester (GW6471), 1-[[4-(chloromethyl)ethyl]-3-[[1,1-dimethylthiob]thio]-a,α-dimethyl-5-[1-methylthyl]-1H-indole-2-propanoic acid, sodium salt (MK886), 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT), chloroform, parafomaldehyde (37%), phenylmethylsulfonyl fluoride, (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT), chloroform, parafomaldehyde (37%), phenylmethylsulfonyl fluoride, horseradish peroxidase-conjugated secondary antibodies were ordered from Thermo Fisher Scientific (Waltham, MA). Hybond-P polyvinylidene difluoride (PVDF) membrane and microscope cover glass slide (22 x 22 mm, thickness no. 1) were supplied from GE Healthcare Life Sciences (Piscataway, NJ) and Thermo Fisher Scientific, respectively. [3H]Mitoxantrone (12.7 Ci/mmol) was ordered from Moravek Biochemicals Inc. (Brea, CA). ABI high-capacity reverse-transcriptase cDNA kit and anti-P-gp antibody were obtained from Applied Biosystems (Foster City, CA) and ID Labs Inc. (London, ON, Canada), respectively. PerfeCTa SYBR green Fastmix was purchased from Quanta Biosciences Inc. (Gaithersburg, MD). Anti-BCRP (rat monoclonal) and anti-lamin-A (mouse monoclonal) antibodies were purchased from Abcam Inc. (Boston, MA). The rabbit polyclonal anti-Na+/K+ ATPase-α1 antibody was purchased from Sigma Aldrich Canada (Mississauga, ON, Canada). Western blot stripping solution and inhibitor cocktail were all purchased from Sigma-Aldrich Canada.

Methods

1. **Materials and Methods**

2. **Results and Discussion**

3. **Conclusions**

4. **Acknowledgments**

5. **References**

PPARα Regulates BCRP at the Human Brain Endothelium

599
against PPARα (HSS108289) and nonsilencing negative control siRNA were purchased from Invitrogen and Ambion (Austin, TX), respectively.

Methods

Cell Culture Systems. The immortalized human brain microves sel endothelial cell line, hCMEC/D3, was kindly provided by Dr. P.O. Couraud (Institut Cochin, Departement Biologie Cellulaire and INSERM, Paris, France). This cell line has been widely used as a potential in vitro model of human BBB and is known to display many morphological and biochemical properties of human brain microvas cular endothelium in vivo, such as functional expression of tight junction proteins, endothelial cell markers, and drug efflux transporters. Cells were used at passages 28 to 39 for all the experiments and were maintained at 37°C, 5% CO₂, and 95% humidified air in buffered saline (PBS). The formazan content, dissolved in DMSO, from each well was determined by UV analysis at 580 nm using a SpectraMax 384 microplate reader (Molecular Devices, Sunnyvale, Inc.), and 2.5% fetal bovine serum (FBS). Cells were grown on rat tail collagen type I-coated 75-cm² flasks, 150-cm² dishes or six-well plates as described previously (Weksler et al., 2005; Zastre et al., 2009; Chan et al., 2011). Whole-cell pellets of primary cultures of human brain-derived microvascular endothelial cells (BBB-ECs) were generously provided by Dr. Alexandre Prat (Neuroimmunology Research Laboratory, Center of Excellence in Neuromics, Faculty of Medicine, Centre Hospitalier de l’Université de Montréal, Montréal, Quebec, Canada). These cells were isolated from brain tissue samples obtained from newborns undergoing surgery for the treatment of intractable epilepsy and constitute an additional in vitro model of human brain microvascular endothelium. Informed consent and ethical approval were obtained from the patients before the surgery. Human fetal brain tissue (hFBT) samples were collected and ethical approval were obtained from the patients before the surgery. Human fetal brain-derived microvascular endothelial cells (BBB-ECs) were isolated from brain tissue samples obtained from newborns undergoing surgery for the treatment of intractable epilepsy and constitute an additional in vitro model of human brain microvascular endothelium. Informed consent and ethical approval were obtained from the patients before the surgery.

TABLE 1

<table>
<thead>
<tr>
<th>Genes and Direction</th>
<th>Primer Sequence (5’-3’)</th>
<th>Accession</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABCG2 Forward</td>
<td>GGC-CTT-GGG-ATA-CTT-TGA-ATC</td>
<td>NM_004827</td>
</tr>
<tr>
<td>Reverse</td>
<td>GAA-TCT-CCA-TTA-ATG-ATG-TCC-A</td>
<td></td>
</tr>
<tr>
<td>Cyclophilin B Forward</td>
<td>GGA-GAT-GGC-ACA-GGA-GGA-A</td>
<td>NM_00942</td>
</tr>
<tr>
<td>Reverse</td>
<td>GCC-CGT-AGT-GCT-TCA-GTT-T</td>
<td></td>
</tr>
<tr>
<td>ABCG2 promoter (–3946/–3796) Forward</td>
<td>AGG-GCA-GAG-GGC-AAT-AG</td>
<td>NM_001878</td>
</tr>
<tr>
<td>Reverse</td>
<td>AGG-AGA-CTG-ATT-TGC-ACA-AGG-TT</td>
<td></td>
</tr>
<tr>
<td>ABCG2 promoter (–1527/–1268) Forward</td>
<td>CTC-CTC-CTG-TAG-TGC-CTT-CAG-ACC-CTG-CT</td>
<td>NM_001878</td>
</tr>
<tr>
<td>Reverse</td>
<td>TTG-CAA-ATG-ACC-GCA-GAT-CAT-GCC-ACC-A</td>
<td></td>
</tr>
</tbody>
</table>

Cell Treatment. hCMEC/D3 monolayers grown on collagen-coated six-well plates, 75/175-cm² flasks (approximately 80–90% confluence) were treated with PPARα ligands (clofibrate or GW7647) or PPARα antagonists (MK886/GW6471) or in combination with ligands and antagonists at specific time points (3–72 h) and concentrations (1.25 nM to 125 μM). At the beginning of each experiment, culture medium was aspirated and fresh medium containing ligands dissolved in ethanol or DMSO was added. Control cells were exposed to 0.1% (v/v) ethanol or DMSO (vehicle) in the absence of ligands. To ensure cells remain viable during treatment, all ligand concentrations used were tested applying the MTT assay as described above.

Total RNA Extraction, cDNA Synthesis and Quantitative Real-Time Polymerase Chain Reaction. Total RNA was extracted from hCMEC/D3 cells using TRIzol reagent (Invitrogen) according to manufacturer’s instructions. The concentration (absorbance at 260 nm) and purity (absorbance 260 nm/absorbance 280 nm ratio) of RNA samples were assessed using a UV/Vis scanning spectrophotometer (DU Series 700; Beckman Coulter, Mississauga, ON, Canada). Isolated total RNA was subjected to DNase I digestion (0.1 U/ml) according to manufacturer’s instructions to remove genomic DNA. Reverse transcription was then performed with DNase-treated total RNA (2 μg) in a final reaction volume of 40 μl using an ABI high-capacity reverse-transcription cDNA kit according to manufacturer’s instructions. All sample reactions were performed at 25°C for 10 min, followed by 37°C for 120 min, and then 85°C for 5 min using Mastercycler EP Realplex 2S thermal cycler (Eppendorf Canada, Mississauga, ON, Canada). ABCG2 and peptidylprolyl isomerase B (cyclophilin B) genes were quantified by quantitative real-time polymerase chain reaction (qPCR) on Mastercycler ep realplex 2S thermal cycler using SYBR green fluorescence detection. The 10-μl final reaction mixtures contained 1.25 μl of diluted cDNA, 5 μl of PerFeCTa SYBR Green FastMix, 0.6 μl of a 1.25 μM concentration of each primer and 2.55 μl of nuclease-free water. Specific primers were designed using Primer Express 3 (Applied Biosystems) and were on exon-exon junctions to avoid any potential amplification of genomic DNA. The specificity of each reaction was assessed by melting curve analysis to ensure the presence of only a single amplification product. Validated primer sequences are shown in Table 1. Threshold cycle (CT) values for ABCG2 mRNA are normalized to the housekeeping gene cyclophilin B. Results are expressed as percentage change ± S.E., using a comparative Ct method (ΔΔCt). Changes in ABCG2 mRNA expression were calibrated to vehicle-treated cells.

siRNA Down-Regulation Studies. Cells were plated in a six-well plate with a density of 0.1 × 10⁶ cells/well. After 24 h, cell monolayers at approximately 80% confluence were subjected to siRNA transfection. Transfection mix was prepared in Opti-MEM GlutaMax (Invitrogen) medium with siRNA and Lipofectamine 2000 (Invitrogen) according to the manufacturer’s protocol. The final concentration of siRNA and Lipofectamine added to the cells were 100 nM and 2 μl/ml, respectively. Cells were cultured in the presence of transfection mixture for 24 h, as described previously (Huang et al., 2009). The following day, transfection mixture was replaced by fresh
The chromatin was sheared to 200 to 1000 bp by sonication. The lysis buffer containing protease inhibitor (Affymetrix). PBS. After scrapping and centrifugation, cell pellets were suspended in 1% form- (225 l) and input (40 l/IP), 10 l/IP) was used to recover the chromatin. The chromatin was diluted twofold in lysis buffer (Affymetrix); 600 l of diluted sample per immunoprecipitation was used. After 1-h preclearing with Protein A agarose beads (50 l/IP), 10 l of specific anti-PPARδ antibody (Santa Cruz Biotechnology Inc.), previously validated in ChIP assays (Nagasawa et al., 2009), was added for overnight incubation. In parallel, a no-antibody sample was run as control. Protein A agarose (50 l/IP) was used to recover the immune complexes (2 h at 4°C). Washes and elutions were performed in accordance with the ChIP assay kit. Eluted (225 l) and input (40 l) DNA were reverse cross-linked overnight at 65°C in the presence of 0.2 M NaCl and were purified using a spin column to a final volume of 40 l. qPCR was performed using 2 l of template DNA per 25 l of polymerase chain reaction (PCR) amplification scale. Quantification of PPARα occupancy to the PPREs within the ABCG2 gene promoter (−3946/−3796) by SYBR green real-time PCR was performed using the following primer set: forward, 5′-AGG-GCA-GAG-GGC-AAT-GG-3′ and reverse, 5′-AGG-AGA-CTG-ATT-TGC-ACA-TTG-CT-3′, which amplifies a product of 150 bp (−3946/−3796). The detection of another region (−1527/−1268) of the same ABCG2 gene promoter, which serves as negative control, was included in similar PCRs using the following primer set: forward, 5′-CTC-CTC-CTG-TAG-TGC-CTT-CAG-ATC-CTT-CT-3′ and reverse, 5′-TTG-CAA-ATG-ACC-CGA-GAT-CCC-ACC-A-3′, which amplifies a product of 259 bp (−1527/−1268) (Table 1). Quantification was performed by qPCR (standard curve method) using serial dilutions of the input as standards. All measurements were performed in triplicate, and results were verified in at least three independent chromatin preparations.

Western Blot Analysis. Western blot analysis was performed as described previously (Zastre et al., 2009; Ronaldson et al., 2010) with minor modifications. In brief, the hCMEC/D3 monolayers, the primary cultures of human microvessel endothelial cells (BBB-ECs) and the hFBT were washed with ice-cold PBS. After centrifugation, whole-cell lysates were prepared by lysing cell pellets in lysis buffer (1% (v/v) NP-40, 20 mM Tris, 150 mM NaCl, 5 mM EDTA at pH 7.5 containing 1 mM phenylmethylsulfonyl fluoride and 0.1% (v/v) protease inhibitor cocktail) for 20 min at 4°C. Cell lysates were sonicated for 5 s and centrifuged at 14,000 rpm for 10 min at 4°C to remove cell debris. The whole-cell lysates were then mixed in Laemmli sample buffer and resolved on 10% SDS-polyacrylamide gel. After electrophoresis, the gels were washed in transfer buffer (25 mM Tris-HCl, pH 8, 200 mM glycine) containing 20% (v/v) methanol and then electrotransferred onto PVDF membranes. The membranes were blocked in Tris-buffered saline/Tween 20 buffer containing 5% (m/v) skim milk followed by incubation with primary antibody overnight at 4°C. The membranes were then washed in Tris-buffered saline/Tween 20 and were incubated with anti-mouse, anti-rat, or anti-rabbit horseradish peroxidase-conjugated secondary antibodies (all at 1:10,000 dilution) for 1.5 h. The BCRP protein expression was detected using a rat monoclonal anti-BCRP (1:200 dilution) antibody, which recognizes an epitope corresponding to amino acids 221 to 394 of mouse Bcrp.

Fig. 1. Immunoblot analysis and immunocytochemical localization of BCRP and PPARδ in human cerebral microvessel endothelial cells (hCMEC/D3). A, whole-cell lysates prepared from BCRP-overexpressing MCF7 MX100 (BCRP control, 50 l/kg), HepG2 cells (PPARδ control, 50 l/kg), and hCMEC/D3 cells (5, 20, or 50 l/kg/lane) were separated on 10% SDS-polyacrylamide gel electrophoresis (PAGE) gel and subsequently transferred to PVDF membrane. The membranes were then blotted with anti-BCRP (BXP53, rat monoclonal, top), anti-PPARδ (mouse monoclonal, middle), or anti-actin (AC40, mouse monoclonal, bottom) antibodies, followed by incubation with respective horseradish peroxidase conjugated anti-rat or anti-mouse secondary antibodies (all at 1:10,000 dilution) for 1.5 h. The BCRP protein expression was detected using a rat monoclonal anti-BCRP (1:200 dilution) antibody, which recognizes an epitope corresponding to amino acids 221 to 394 of mouse Bcrp.
MCF7 MX100-overexpressing BCRP was used as a positive control. The P-gp protein expression was detected using a mouse monoclonal anti-P-gp (C219, 1:500 dilution) antibody raised against an internal epitope of human P-gp. MDA435/LCC6-MDR1 cell lysates were used as positive controls for P-gp. PPARα expression was detected using rabbit polyclonal (1:500 dilution) or mouse monoclonal (1:500 dilution) anti-PPARα antibodies, which recognize the epitopes corresponding to 4 to 96 amino acids and 1 to 98 amino acids of human PPARα protein, respectively. HepG2 cell lysates were used as positive controls for PPARα expression. Actin expression was used as loading control and was detected using mouse monoclonal AC40 antibody (1:2000 dilution). Protein bands were visualized by enhanced chemiluminescence, and protein expression was determined by densitometric analysis using Alpha DigiDoc RT2 imaging software (Alpha Innotech, San Leandro, CA).

Immunofluorescence Studies. The subcellular localization of BCRP and PPARα proteins was examined by confocal microscopy in untreated hCMEC/D3 cells, as well as in cells treated with vehicle (EtOH or DMSO) or PPARα ligands, clofibrate (100 μM), or GW7647 (20 nM) for 20 h. Cell monolayers grown on glass coverslips were fixed with 100% methanol on ice for 20 min. After fixation, cells were washed in PBS and permeabilized with 0.1% Triton X-100 for 5 min at room temperature as described previously (Hoque and Ishikawa, 2001). Fixed cells were blocked with 0.1% (m/v) bovine serum albumin and 0.1% (m/v) skim milk in PBS for 1 h before primary antibody incubation for 1.5 h at room temperature or overnight at 4°C. The rat monoclonal (BXP53, 1:20 dilution) and rabbit polyclonal (1:200 dilution) antibodies were used to detect BCRP and PPARα subcellular localization, respectively. The mouse monoclonal antibody was used to visualize lamin A expression, a marker for nuclear envelope. After primary antibody incubation, cells were washed with PBS by gentle agitation and followed by incubation with anti-mouse Alexa Fluor 594 or anti-rabbit Alexa Fluor 488 conjugated secondary antibody (both in 1:500 dilution) (Invitrogen) for 1.5 h at room temperature. Staining in the absence of primary antibodies was used as a negative control. After secondary antibody incubation, cells were washed again with PBS and mounted on a 76 × 26 mm microscope slide (VWR, West Chester, PA) using VECTASHIELD mounting solution containing DAPI. Cells were then visualized using a Plan C-Apochromat-63x/1.4 oil differential interference objective and Zeiss LSM 510 META NLO two-photon confocal laser-scanning microscope (Carl Zeiss AG, Oberkochen, Germany) equipped with argon (458, 476, 488, and 513 nm wavelengths), helium-neon (533 nm wavelength), and tunable Chameleon (720–930 nm wavelengths) laser lines. Measurement of nuclear fluorescence intensity was determined using ImageJ software (ver. 1.38; http://rsb.info.nih.gov/ij). The average fluorescence intensity for each treatment group was the mean of all measurements taken from at least 100 cells.

Functional Studies. BCRP activity was measured with the use of mitoxantrone, an established substrate. Mitoxantrone accumulation by hCMEC/D3 cells was performed in Hanks’ balanced salt solution, containing 1.3 mM KCl, 0.44 mM KH₂PO₄, 138 mM NaCl, 0.34 mM Na₂PO₄, and 5.6 mM D-glucose, supplemented with 0.01% bovine serum albumin and 25 mM HEPES, pH 7.4. Throughout the manuscript, supplemented Hanks’ balanced salt solution buffer is referred to as transport buffer. Cells were plated at a cell density of 4 × 10⁴ cells/cm², and accumulation experiments were performed at 100% cell monolayer confluence.

Cellular accumulation of [³H]mitoxantrone, a known substrate of BCRP, was determined applying a radioactive transport assay as described previously (Lee et al., 2007) with slight modification. In brief, hCMEC/D3 cells were incubated with transport buffer containing 20 μM mitoxantrone ([³H]mitoxantrone, 0.1 μCi/ml) in the absence or presence of the BCRP-selective inhibitor Ko143 (5 μM). After 2 h, mitoxantrone containing medium was aspirated, and cells were washed twice with ice-cold PBS and solubilized in 1% Triton X-100 at 37°C for 30 min. The content of each well was collected, mixed with 3 ml of PicoFluor 40 scintillation fluid (PerkinElmer Life Sciences), and counted in a liquid scintillation counter. The average fluorescence intensity for each treatment group was the mean of all measurements taken from at least 100 cells.

BCRP activity was expressed as the amount of radioactive drug accumulated per mg of protein, respectively. HepG2 cell lysates were used as positive controls for PPARα expression. Actin expression was used as loading control and was detected using mouse monoclonal AC40 antibody (1:2000 dilution). Protein bands were visualized by enhanced chemiluminescence, and protein expression was determined by densitometric analysis using Alpha DigiDoc RT2 imaging software (Alpha Innotech, San Leandro, CA)

Immunoblot analysis of BCRP and PPARα in primary cultures of BBB-ECs and hFBTs. Whole-cell lysates prepared from human BBB-ECs pellet obtained from four individuals (S1–S4) (50 μg each) (A) and hFBTs obtained from two individuals (1–2) (B) were resolved on a 10% SDS-PAGE gel and transferred to a PVDF membrane. HepG2 (50 μg) and MCF7 MX100 cells (5 μg) were used as positive controls for PPARα and BCRP proteins, respectively. BCRP and PPARα proteins were detected using rat and mouse monoclonal antibodies, respectively. Actin was detected using mouse monoclonal antibody (A and B). Data generated from densitometric analysis is presented as ratio of BCRP and PPARα expression normalized to actin (loading control).

Fig. 2. Immunoblot analysis of BCRP and PPARα in primary cultures of BBB-ECs and hFBTs. Whole-cell lysates prepared from human BBB-ECs pellet obtained from four individuals (S1–S4) (50 μg each) (A) and hFBTs obtained from two individuals (1–2) (B) were resolved on a 10% SDS-PAGE gel and transferred to a PVDF membrane. HepG2 (50 μg) and MCF7 MX100 cells (5 μg) were used as positive controls for PPARα and BCRP proteins, respectively. BCRP and PPARα proteins were detected using rat and mouse monoclonal antibodies, respectively. Actin was detected using mouse monoclonal antibody (A and B). Data generated from densitometric analysis is presented as ratio of BCRP and PPARα expression normalized to actin (loading control).
and Analytical Sciences, Waltham, MA), and the total radioactivity was measured using a Beckman Coulter LS5600 liquid scintillation counter (Fullerton, CA). Background accumulation was estimated by determining the retention of radiolabeled compounds by the cells after zero time exposure, by removing the radiolabeled solution immediately after its addition into each well, followed by two subsequent washes with ice-cold PBS, and quantified using liquid scintillation counting. Total radioactive cellular accumulation was normalized to the total cellular protein content as determined by detergent-compatible protein assay (Bio-Rad Laboratories, Hercules, CA), using bovine serum albumin as the standard. For all the accumulation assays, data are reported as accumulation of the substrate at steady state in the absence or presence of inhibitor.

Statistical Analysis. All experiments were repeated at least three times in cells pertaining to different passages. Results are

Fig. 3. Ligand-induced nuclear accumulation of PPARα in hCMEC/D3 cells. hCMEC/D3 cells grown on collagen-coated coverslips were induced with PPARα agonists, (A) clofibrate or (B) GW7647 or vehicle control (ethanol/DMSO), dissolved in hCMEC/D3 culture medium without serum for 24 h. Cells were then fixed with ice-cold methanol and permeabilized with Triton X-100 (0.1%). Cellular localization of PPARα protein was detected by rabbit polyclonal anti-PPARα antibody (1:200 dilution) followed by incubation with anti-rabbit Alexa Fluor 488-conjugated secondary antibody (1:500). Nuclear envelope was visualized with mouse monoclonal anti-Lamin-A antibody (1:500 dilution). C, average PPARα nuclear fluorescence normalized to vehicle control was obtained from three independent experiments performed in cells pertaining to different passages (≥100 cells/treatment group). *Statistically significant differences in nuclear fluorescence compared with control as determined by one-way ANOVA with Bonferroni post hoc test (p < 0.05).

Fig. 4. Induction of ABCG2 mRNA expression by PPARα ligands in hCMEC/D3 cells. Monolayers of hCMEC/D3 cells were exposed to PPARα-selective agonists 100 μM clofibrate (A) or 20 nM GW7647 (B) or in conjunction with antagonist MK886 or GW6471 (5 μM) for 24 h. ABCG2 mRNA expression was measured by qPCR. All treatment and vehicle groups were performed in triplicate in three independent experiments pertaining to different cell passages. Ct values for ABCG2 mRNA were normalized with the housekeeping gene cyclophilin B mRNA. Results are expressed as percentage change ± S.E.M., using comparative Ct method (ΔΔCt). *Statistically significant differences in ABCG2 mRNA expression compared with control as determined by one-way ANOVA with Bonferroni post hoc test (p < 0.05).
reported as a mean \pm S.D. or as mean \pm S.E. as appropriate. Comparisons between groups were performed using either two-tailed Student’s t test or one-way analysis of variance (ANOVA) with Bonferroni multiple comparison post hoc test. Data were analyzed by InStat 3.0 software (Graphpad Software Inc., San Diego, CA), and a value of \(p < 0.05 \) was considered to be statistically significant.

Results

Expression of BCRP and PPARα Proteins in hCMEC/D3 Cells, Human BBB-ECs, and hFBTs. To document the expression of BCRP and PPARα in immortalized human cerebral microvessel endothelial cells (hCMEC/D3), primary cultures of human brain microvessel endothelial cells (BBB-ECs), and hFBTs, we performed immunoblotting analysis using whole-cell/tissue lysates with specific antibodies known to recognize BCRP and PPARα proteins, respectively. We detected BCRP and PPARα at approximately 70 and 52 kDa bands in all cell/tissue lysates examined, respectively (Figs. 1A, and 2, A and B). These are molecular mass reported previously for the two proteins (Szatmari et al., 2006; Huang et al., 2009). We observed some interindividual differences in BCRP and to a lesser extent PPARα expression in BBB-ECs (Fig. 2A). We further investigated the cellular localization of BCRP and PPARα by confocal microscopy. Anti-Na⁺/K⁺-ATPase α1 antibody was used as a marker of the plasma membrane. BCRP protein seemed to be primarily localized at the cell plasma membrane, whereas PPARα was found in both the nucleus and cytoplasm (Fig. 1B).

Ligand-Mediated Nuclear Accumulation of PPARα in hCMEC/D3 Cells. PPARα is a ligand-activated transcrip-
tion factor known to translocate into the nucleus from the cytoplasm upon ligand binding (Xu et al., 2002). We, therefore, performed immunofluorescence experiments to investigate PPARα nuclear accumulation in hCMEC/D3 upon activation with PPARα-specific ligands, clofibrate and GW7647. We observed approximately 34.8 and 31.67% increase in PPARα nuclear fluorescence intensity in cells treated with clofibrate (100 μM) or GW7647 (20 nM) compared with control (Fig. 3). These results suggest that the increase in PPARα nuclear accumulation could be mediated by an interaction with clofibrate or GW7647, two established PPARα ligands.

Ligand-Mediated Up-Regulation of ABCG2 mRNA in hCMEC/D3 Cells. We examined the mRNA expression of ABCG2 in hCMEC/D3 cells treated with PPARα ligands, clofibrate or GW7647, for 24 h. Both ligands significantly induced ABCG2 mRNA expression by approximately 71 and 49%, respectively compared with vehicle-treated control cells (Fig. 4). Our observations in hCMEC/D3 cells corroborate with previous findings where PPARα agonists (e.g., Wy14643, GW7647, and clofibrate) are reported to induce the mRNA expression of several drug transporters including Abcg2 in mouse liver and intestine (Moffit et al., 2006; Hirai et al., 2007). To evaluate whether the observed ABCG2 induction is mediated by PPARα, hCMEC/D3 cells were exposed to selective PPARα antagonists, MK886 (5 μM) or GW6471 (5 μM), in conjunction with the ligands for 24 h. MK886 and GW6471 are known to attenuate ligand-mediated activation of PPARα in other in vitro cell culture systems (Kehrer et al., 2001; Goto et al., 2011). As expected, addition of MK886 or GW6471 abolished ABCG2 mRNA induction mediated by clofibrate and GW7647 (Fig. 4).

Ligand-Mediated Up-Regulation of BCRP Protein Expression in hCMEC/D3 Cells. To determine whether the increase in ABCG2 mRNA expression resulted in changes in BCRP protein expression, hCMEC/D3 cells were cultured with increasing concentrations of clofibrate or GW7647 for 72 h. We observed a significant concentration-dependent up-regulation of BCRP protein in the presence ligands (Fig. 5, A and C). The highest induction of BCRP protein, approximately 175 and 125%, was observed when cells were incubated with 125 μM clofibrate or 20 nM GW7646, respectively. To assess the kinetics of BCRP protein expression induction, hCMEC/D3 cells were incubated with either clofibrate (100 μM) or GW7647 (20 nM) at several time points (6–72 h). As shown in Fig. 5, B and D, significant induction of BCRP protein expression was observed as early as 24 and 48 h of treatment with clofibrate and GW7647, respectively. The highest BCRP protein induction by both ligands (approximately 200%) was observed at 72 h (Fig. 5, B and D). It is noteworthy that we could not detect any significant increase in P-gp expression, another major ABC drug efflux transporter known to be expressed at the BBB by PPARα ligands in the cell culture system (data not shown).

Effect of PPARα Inhibitors on Ligand-Mediated BCRP Protein Induction. We further tested whether the observed BCRP protein induction is primarily mediated by PPARα in hCMEC/D3 cells exposed to varying concentrations of PPARα-specific antagonists (MK886 or GW6471) in conjunction with the ligands, clofibrate or GW7647, for 48 h. As expected, addition of MK886 (5 μM) with clofibrate (100 μM) or GW7647 (20 nM) decreased BCRP protein induction to nearly 0% (Fig. 6). Similar data were observed when another PPARα selective antagonist, GW6471, was used in a similar set of experiments (data not shown).

Effect of Clofibrate Treatment on BCRP Function in hCMEC/D3 Cells. To investigate whether the increase in

Fig. 6. Inhibition of BCRP protein induction by PPARα antagonists in hCMEC/D3 cells. BCRP protein expression was determined in hCMEC/D3 cells treated with PPARα ligands alone, clofibrate (100 μM)/GW7647 (20 nM), or in conjunction with clofibrate or GW7644 in the presence of different concentrations of PPARα antagonist, MK886 (1, 5, and 10 μM). A, representative immunoblot (top) and densitometric analysis (bottom) of BCRP expression in hCMEC/D3 cells exposed to vehicle, 100 μM clofibrate alone or 100 μM clofibrate in conjunction with 1, 5, or 10 μM MK886. B, representative immunoblot (top) and densitometric analysis (bottom) of BCRP expression in hCMEC/D3 cells exposed to vehicle, 20 nM GW7647 alone or 20 nM GW7647 in conjunction with 1, 5, or 10 μM MK886. Whole-cell lysates from hCMEC/D3 cells (50 μg each) were resolved on a 10% SDS-PAGE gel and probed with anti-BCRP or anti-actin antibodies, respectively. The relative levels of BCRP expression were determined by densitometric analysis. Results are expressed as percentage change normalized to vehicle treated control (control) and reported as mean ± S.D. obtained from three independent experiments performed in cells pertaining to different passages. *, Statistically significant differences between treatment groups as determined by one-way ANOVA with Bonferroni post hoc tests at a significant level of p < 0.05.
protein expression resulted in a greater BCRP functional activity, we measured the accumulation of mitoxantrone, a chemotherapeutic agent and BCRP substrate, in hCMEC/D3 cells treated with clofibrate for 72 h. \(^{3}H\)Mitoxantrone accumulation was significantly reduced in cells treated with clofibrate compared with vehicle-treated control (5483 ± 435 pmol/mg protein versus 6270 ± 345 pmol/mg protein; \(p < 0.05\)). These data suggest that the higher level of BCRP expression in clofibrate treated cells is most likely associated with greater drug efflux activity resulting in lower levels of mitoxantrone accumulation by these cells. This effect was reversed in the presence of an established BCRP inhibitor, Ko143, in both vehicle- and clofibrate-treated cells, further confirming a BCRP-mediated efflux of mitoxantrone (Fig. 7).

Down-Regulation of BCRP Expression and Function by PPAR\(\alpha\) siRNA in hCMEC/D3 Cells. PPAR\(\alpha\) targeting siRNA was used to further examine the direct involvement of PPAR\(\alpha\) in the regulation of BCRP in hCMEC/D3 cells. In PPAR\(\alpha\) siRNA-transfected cells, PPAR\(\alpha\) protein expression was down-regulated by approximately 60%, whereas BCRP expression was reduced by nearly 23% as reflected by immunoblotting (Fig. 8, A and B) compared with cells treated with control scrambled siRNA. To investigate whether the decreased BCRP expression in PPAR\(\alpha\) siRNA-treated cells was associated with a lesser BCRP activity, we measured the accumulation of mitoxantrone in siRNA-transfected cells. Mitoxantrone accumulation was significantly higher in PPAR\(\alpha\) siRNA-treated cells compared with control siRNA-treated cells (8442 ± 610 pmol/mg protein versus 7752 ± 686 pmol/mg protein; \(p < 0.05\)), suggesting a lower BCRP function (Fig. 8C).

Involvement of PPAR\(\alpha\) in the Transcriptional Regulation of \(ABCG2\) Gene in hCMEC/D3 Cells. Bioinformatics analyses of 5’-flanking region of human \(ABCG2\) promoter have identified a well conserved 150-bp region (−3946/−3796) containing three putative PPREs (Szatmari et al., 2006). We, therefore, hypothesized that PPAR\(\alpha\) binds to this region to mediate the induction of \(ABCG2\). To test this hypothesis, we examined PPAR\(\alpha\) recruitment to this region in the native chromatin context by ChIP using specific anti-PPAR\(\alpha\) antibody previously validated in ChIP assays (Nagasawa et al., 2009). As shown in Fig. 9, an increased PPAR\(\alpha\) occupancy to the (−3946/−3796) region of \(ABCG2\) promoter was evident in hCMEC/D3 cells exposed to clofibrate for 3 h. PPAR\(\alpha\) occupancy was not increased in another region (−1527/−1268) of the same \(ABCG2\) promoter, suggesting the affinity of PPAR\(\alpha\) to the PPREs located at the −3946/−3796 region of \(ABCG2\) gene promoter. Similar observations were made with another PPAR\(\alpha\) ligand (GW7647) (data not shown).

Discussion

In addition to the well established role of PPAR\(\alpha\) in lipid metabolism, studies have suggested that PPAR\(\alpha\) could regulate the expression of transport proteins in the liver and intestine (Moffit et al., 2006; Hirai et al., 2007). However, at the BBB, the involvement of PPAR\(\alpha\) in the regulation of drug transporters is currently unknown. The objective of this study was to investigate the role of PPAR\(\alpha\) in the regulation of the drug efflux transporter, BCRP, expression, and function at the human BBB. Because of the challenge in obtaining healthy human brain samples and sufficient tissue, we used the hMCEC/D3 cell culture system, an in vitro representative model of the human BBB (Weksler et al., 2005). When possible, human brain tissues and primary cultures of human brain microvessel endothelial cells were also used.

In this study, we detected PPAR\(\alpha\) protein expression and localization by Western blotting and immunofluorescence experiments in hCMEC/D3 cells (Fig. 1). An earlier report also documented PPAR\(\alpha\) expression in hMCEC/D3 cells by immunoblotting (Huang et al., 2009). In addition, we observed PPAR\(\alpha\) protein expression in primary cultures of human BBB-ECs and hFBTs (Fig. 2, A and B). These findings provide evidence that PPAR\(\alpha\) is expressed in human brain tissue and brain microvessel endothelial cells and can serve as a potential site for drug-receptor interactions and regulation of drug transporters and metabolic enzymes. PPAR\(\alpha\) has been reported to translocate into the cell nucleus upon ligand (fenofibrate) activation in human umbilical vein endothelial cells (Xu et al., 2002). Our results corroborate these data in hCMEC/D3 cells showing increased PPAR\(\alpha\) nuclear accumulation upon treatment with two different PPAR\(\alpha\) ligands, clofibrate and GW7647 further confirming the proposed mechanism of PPAR\(\alpha\) activation. Together, these observations provide the first evidence that PPAR\(\alpha\) is likely to be functional at the human BBB.

Previous studies have shown that PPAR\(\alpha\) ligands can induce Bcrp expression at the mRNA level in mouse intestine and liver (Moffit et al., 2006; Hirai et al., 2007). In the current study, we demonstrated that the earliest induction (approximately 49–72%) of \(ABCG2\) mRNA occurred at 24 h after treatment of hMCEC/D3 cells by two different PPAR\(\alpha\)
ligands. In addition, the PPARα antagonists, MK886 and GW6471, were able to attenuate the ligand-mediated ABCG2 mRNA induction. In addition to the induction of ABCG2 mRNA expression, PPARα ligands could also induce BCRP protein expression in a time- and concentration-dependent manner (approximately 100–200%), and these effects were attenuated by the PPARα-selective antagonists. Taken together, these observations strongly suggest for the first time that PPARα is involved in the regulation of BCRP at both the mRNA and the protein level in human brain microvessel endothelial cells.

In our transport experiments, we demonstrated significantly higher BCRP function in hCMEC/D3 cells treated with clofibrate compared with control. Similar trend was also observed in GW7647 treated cells. We further characterized the involvement of PPARs in the regulation of BCRP expression and function by using siRNA and observed reduced BCRP protein expression (over 20%) in hCMEC/D3 cells transfected with PPARα siRNA compared with control. Furthermore, significant higher mitoxantrone accumulation in PPARα siRNA treated cells was observed suggesting reduced BCRP function in the brain microvessel endothelial cells.

Applying the ChIP assay, we observed an enhanced PPARα binding to the −3946/−3796 region of the human ABCG2 gene promoter in clofibrate-treated hCMEC/D3 cells. Similar enhancement is not seen in other regions (−1527/−1268) of the same ABCG2 gene promoter reported to have no PPRE consensus (Szatmari et al., 2006). These data provide first evidence that PPARα can directly bind to the −3946/−3796 region of ABCG2 gene promoter in hCMEC/D3 cells. A previous report identified three PPREs located at the −3946/−3796 region of the human ABCG2 gene promoter for another PPAR isoform, binding in human dendritic cells (Szatmari et al., 2006). These findings further support the fact that PPAR receptors recognize a similar PPRE consensus for their binding to the target gene promoter.

The expression of BCRP is believed to be associated with the regulation of xenobiotic bioavailability, distribution, and toxicity in many tissues including the brain. Hence, the wide substrate specificity and tissue distribution of this transporter may play a major role in pharmacotherapy. Both endogenous (fatty acids, eicosanoids) and synthetic (lipid-lowering agents, insulin sensitizers) PPARα ligands are known to modulate PPARα activity. Drug efflux transporters such...
as BCRP and P-gp can serve as a major pathway for CNS drug clearance at the BBB and brain parenchyma where drug-metabolizing enzymes seem to be expressed at very low levels (Dauchy et al., 2008; Woodland et al., 2008). We propose that inhibiting PPARα activity can reduce BCRP functional expression rendering the BBB more permeable and potentially increasing the delivery of CNS drugs that are known BCRP substrates. On the other hand, activating PPARα can induce BCRP expression resulting in a less permeable barrier with increased protection against neurotoxins. Our data provide first evidence that the activity of PPARα in a human BBB model can be pharmacologically modulated by selective ligands (clofibrate, GW7647) or inhibitors (MK886, GW6471). This, in turn, could result in induction or down-regulation of BCRP expression and function in the brain.

In summary, in this work, we demonstrate the expression of PPARα in two in vitro representative systems of the human BBB, hCMEC/D3 and primary cultures of human brain-derived microvascular endothelial cells (BBB-ECs), as well as in hFBT samples. We also provide first evidence that pharmacological activation of PPARα can increase BCRP gene and protein expression as well as function in hCMEC/D3 cells and that this effect can be attenuated by specific PPARα inhibitors. In addition, we show that BCRP expression and function can be down-regulated by targeting PPARα using siRNA and demonstrate the ligand-induced PPARα binding to the PPREs in the BCRP promoter region, suggesting the direct involvement of PPARα in the regulation of this transport protein. As more xenobiotics are identified as ligands of PPARα, the selective tightening of the human BBB could be modulated by a careful design of drug regimens, which could improve CNS drug delivery or enhance neuroprotection.

Address correspondence to: Dr. Reina Bendayan, Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College St., Toronto, ON, MSS SM2, Canada. E-mail: r.bendayan@utoronto.ca