Casting a Wider Net: Whole-Cell Assays to Capture Varied and Biased Signaling

Terry Kenakin

Department of Pharmacology University of North Carolina School of Medicine, Chapel Hill, North Carolina

Received July 9, 2012; accepted July 24, 2012

ABSTRACT

The observation of complex receptor behaviors has shown how ligands can have multiple efficacies and can also differentially stimulate certain cellular signaling pathways over others (i.e., biased signaling). Conventional pharmacological assays (usually proximal to the receptor) will detect ligands that produce the signal defined by the assay (i.e., Ca^{2+}, cAMP, and others) but otherwise may miss biased ligands that produce little activation of pathways not measured by the assay. In theory, this is less of a hazard for generic whole-cell assays, which may be sensitive to multiple signaling inputs. Whole-cell assays have the advantage of detecting effects induced by a variety of receptor interactions with cytosolic proteins, including those that may be previously unknown. These ideas are discussed within the context of the high-throughput flow cytometry measurement of receptor internalization described by Wu et al. in the current issue of the journal (p. 645). The internalization of receptors can be a useful therapeutic modality and the article by Wu et al. illustrates how this new assay, targeted to downstream cellular effects, can uncover unique ligand efficacies linked to receptor internalization.

Introduction

The two characteristic properties of all drugs are affinity for a biological target (this gets them to the target) and efficacy to change the behavior of that target (what they do when they get there). The concept of drug efficacy has changed dramatically over the past 15 to 20 years, and a major reason for this revolution is the increasing availability of multiple receptor and cellular assays that allow observation of receptor behavior through numerous vantage points. The pharmacologists’ window into drug efficacy is the assay; the type of assay used actually defines the efficacy that is observed. With this increase in the number of ways to monitor receptors has come an appreciation of the diverse behaviors these proteins have in their repertoire.

How Assay Technology Changed Pharmacology

The new views of receptor behavior afforded by new assay technology have introduced two important ideas to pharmacology. The first is that drugs can have many and diverse efficacies; this behavior has been termed pluridimensional efficacy (Galandrin and Bouvier, 2006). For example, the β-adrenoceptor ligand propranolol produces inverse agonism for cAMP but positive agonism for ERK1/2 activation (Azzi et al., 2003; Baker et al., 2003). The cannabinoid ligand desacetyllevonantradole is a positive agonist for Gi1 and Gi2 but an inverse agonist for Gi3 (Mukhopadhyay and Howlett, 2005). A diverse range of positive and negative agonism has been found for β-adrenoceptor ligands tested in adenylate cyclase versus mitogen-activated protein kinase assays (Galandrin and Bouvier, 2006).

The second receptor behavior relevant to drug discovery is the observation that ligands need not produce identical effects on receptors but rather can bias stimulus through receptors to different signaling pathways in the cell (for a review, see Kenakin, 2010a). This has clearly been shown for a number of

ABBREVIATIONS: ERK1/2, extracellular signal-regulated protein kinases 1 and 2; 7TM, seven-transmembrane; PTH, parathyroid hormone; RANTES, (S)-8-[4-(2-butoxyethoxy)phenyl]-1-isobutyl-N-[4-[[1-propyl-1H-imidazol-5-yl]methyl]sulfinyl]phenyl]-1,2,3,4-tetrahydro-1-benzazocine-5-carboxamide monomethanesulfonate.
seven-transmembrane (7TM) receptor functions, notably G protein signaling versus β-arrestin recruitment to the receptor. For example, this has been reported for biased ligands such as [Trp1]PTHrp-(1–36) (G protein-biased) versus PTH-1A ([β-Trp14,Tyr22]PTH-(7–34); β-arrestin-biased) for the PTH receptor (Gesty-Palmer et al., 2006), the substance P analog SpD ([β-Arg1,β-Phe5,β-Trp7,9,Leu11]substance P; G protein-dependent response) versus bombesin (G protein-independent β-arrestin activity) (MacKinnon et al., 2001), and SII (Sar1,Ile4,Ile8,Ser9,Lys10) ([D-Arg1,D-Phe5,D-Trp7,9,Leu11]substance P; G protein-dependent response) versus bombesin (G protein-independent β-arrestin activity) (MacKinnon et al., 2001), and SII (Sar1,Ile4,Ile8,AngII) (Ahn et al., 2004) [biased toward producing activation of the β-arrestin pathway versus angiotensin II (Wei et al., 2003)]. In fact, the discovery of different efficacies for known molecules is directly linked to the testing of those molecules in different assays. This idea leads to the general concept that the discovery of new efficacies and the reduction of the likelihood of missing efficacy through biased signaling may be linked to the capability of the assay to detect signaling sequelae that result from varied receptor conformational active states. The number of unique types of molecules detected in different assays can easily exceed the number of assays used for screening. For example, it would be predicted that the testing of molecules in two assays such as a signaling assay and receptor internalization assay can detect up to seven different types of molecular efficacy (Kenakin, 2005). It is not the number of assays per se that is relevant but rather the range of detectors of molecular events that matters. From this point of view, cells furnish a complete set of interrogators of receptor conformation in the form of cytosolic signaling proteins (Magalhaes et al., 2012) (Fig. 1), thus, in turn, optimizing the probability of detecting new and useful efficacies for molecules.

These ideas suggest that if a specific assay is chosen for detection of ligands, it will see a subset of molecules that happen to have the particular efficacy monitored by the assay or ligands biased toward that particular signaling pathway. The corollary to this idea is that a whole-cell assay that monitors the outcome of multiple signaling pathways may have the advantage of detecting a range of efficacies with less influence of bias. This idea has been effectively discussed in terms of using the phosphorylation of P42/44 mitogen-activated protein kinase (ERK1/2) as a means of detecting the receptor activation of a range of G proteins in cells (Osmond et al., 2005). In particular, a single assay of ERK1/2 activity in COS cells has been shown to detect receptor activation of Gαq, Gαos, and Gβγ activation (Osmond et al., 2005). The measurement of cell surface receptors through fluorogen-activating protein-tagged β-adrenoceptors described in this issue of the journal (Wu et al., 2012) offers another approach to the use of whole-cell assays for detection of ligands with diverse and previously unknown efficacies.

Receptor Internalization and Cell Function

Receptor systems are dynamic in that receptors are synthesized and transported to the cell surface, have a lifetime at the cell surface where they transmit information from the extracellular space to the cytosol, and then become internalized within the cytosol either to be degraded or recycled to the surface again. Before dedicated assays to view these processes became available, the desensitization and internalization of receptors were often deduced from the disappearance of agonist response. Under these circumstances, internalization necessarily was tied to the level of agonist response and the two processes were tacitly assumed to be directly linked. However, the ability to track receptor internalization as a response separate from physiological pathway stimulation showed that some antagonist ligands produce no observable physiological activation but nevertheless do actively internalize 7TM receptors (Roettger et al., 1997; Willins et al., 1998; Gray and Roth, 2001). For example, the chemokine RANTES(9–68) produces no observable CCR5 receptor activation (as seen by an absence of calcium mobilization or chemotaxis) (Gong et al., 1996), yet actively internalizes CCR5 receptors (Amara et al., 1997).

There are numerous therapeutic indications for drugs that reduce or eliminate endogenous receptor signaling. Reduction in signaling can be produced by antagonist binding to the endogenous agonist binding site (orthosteric inhibition) or allosteric binding to reduce endogenous agonist binding and/or function. Another approach is to eliminate the recep-
tor from the cell membrane through internalization; i.e., ligand-induced internalization can be a useful therapeutic modality. There are certain cases in which receptor internalization actually may be a more effective means of antagonism. Blockade of receptor signaling at the cell surface requires an appropriate target occupancy; i.e., if the antagonist diffuses away from the receptor, then endogenous agonism can resume and therefore antagonist offset kinetics is a complicating factor in the in vivo use of antagonists (Copeland et al., 2006; Vauquelin and Charlton, 2010). In contrast, internalization introduces a kinetic buffer into the removal of signaling in that the resumption of signaling then depends either on the rate of receptor recycling or synthesis. In particular, it would be predicted that the reemergence or synthesis of new receptors on the cell surface would be a slower process than the simple dissociation of an antagonist on the cell surface.

Direct antagonist-induced internalization of receptors provides an absolute cessation of the extracellular ligand-receptor interaction that can be useful. For example, the ability of 5-HT2A receptor antagonists to down-regulate cortical 5-HT2A receptors may play a role in the therapeutic activity of some atypical antipsychotic drugs (e.g., clozapine and olanzapine) (Yadav et al., 2011). Likewise, antagonist-induced down-regulation of 5-HT2A receptors may also play a role in protection against human polymavirus virus infections (Elphick et al., 2004; O’Connor and Roth, 2005). Another example of therapeutically relevant receptor internalization is found in the treatment of AIDS (Mack et al., 1998). To be specific, HIV-1 uses the CCR5 receptor to infect cells, and the absence of this receptor from the cell surface through a genetic mutation that prevents expression (A32 allele) leads to subsequent immunity from HIV-1 infection (Dean et al., 1996; Huang et al., 1996). This result suggests a viable option for prevention of HIV-1 infection, namely the direct internalization of CCR5 as discussed previously for RANTES (Yadav et al., 2011).

Whole-Cell Assays and Ligand Detection

High-throughput screens designed to detect allosteric effects can yield molecules that otherwise would not be seen in conventional screening formats (Kenakin, 2010b; Burford et al., 2011). The basic difference in these assays is the inclusion of low concentrations of endogenous agonists to determine the possible effects of cobinding synthetic ligands either to block, potentiate, or change the quality of the endogenous signal. Cases in which receptor internalization may be involved in allosteric function have been seen with antagonists that create bias in the endogenous system. For example, it has been shown that high gene copy numbers for CCL3L1 can lead to delayed onset of AIDS in HIV-1-infected patients (Gonzalez et al., 2005). Activation by chemokines leads to prevention of HIV-1 cell entry through internalization of receptors; thus, the implication for the CCL3L1 gene copy data is that high levels of CCL3L1 protect against HIV progression through CCR5 internalization. In fact, chemokine-induced CCR5 internalization is a strategy for the use of PSC-RANTES as a treatment against HIV-1 infection (Hartley et al., 2004). Therefore, a biased antagonist that blocks HIV-1 interaction with the CCR5 receptor, but allows chemokines, such as CCL3L1, to internalize receptors, theoretically offers a therapeutic advantage over nonbiased antagonists. An example of this type of ligand is (S)-8-[4-(2-butoxyethoxy)phenyl]-1-isobutyl-N-(4-[[1-propyl-1H-imidazol-5-yl]methyl][sulfanyl]phenyl)-1,2,3,4-tetrahydro-1-benzazocine-5-carboxamide monomethanesulfonate (TAK652), a biased antagonist that selectively blocks HIV-1 while preserving chemokine function [this antagonist is 11–12 times more potent at blocking HIV-1 entry than blockade of chemokine-induced CCR5 internalization (Muniz-Medina et al., 2009)].

The simplest mechanism to account for biased agonism and antagonism is ligand-induced stabilization of unique receptor conformational active states (Kenakin, 1995). Within this theoretical framework, ligands would stabilize conformational states that are predisposed to cellular internalization; a possible mechanism for this could be ligand-directed control of receptor phosphorylation. This has been described as a phosphorylation-mediated “barcoding” of receptors that is dependent on receptor conformation. The fact that receptors are barcoded through unique intracellular patterns of phosphorylation leads to long-term programing of the receptor’s behavior (Tobin, 2008; Tobin et al., 2008; Butcher et al., 2011; Nobles et al., 2011). An example of this effect is seen with the μ-opioid receptor agonists [d-Ala2,N-Me-Phe4,Gly5-ol]-enkephalin and etonitazene, which stimulate the phosphorylation of both Thr370 and Ser375; in contrast, morphine leads to phosphorylation of only Thr370 (Doll et al., 2011). One of the most prominent outcomes of these effects is receptor internalization and subsequent cytosolic reactions (i.e., degradation or recycling to the cell surface).

In general, the more an assay depends on cell complexity the more it will differentiate subtle ligand effects. Downstream assays such as cell sorting are an effective way of detecting the overall outcome of ligand-directed conformational stabilization (i.e., texture in efficacy). An assay such as that reported by Wu et al. (2012) is a way to observe the end-organ response of these interactions without the need to define the mechanism. The importance of these trends was underscored by the reports of previously unknown cytosolic protein interactants with 7TM receptors that may lead to alteration of receptor function and disposition (Magalhaes et al., 2012). For example, desipramine binds to α7-adrenerceptors but produces no overt α7-adrenerceptor response. However, although conventional signaling assays show no observable effect of desipramine, recently it has been shown that this ligand causes β-arrestin-3 recruitment to the receptor (with no α7-adrenerceptor signaling) and that this effect is linked to internalization of α7-adrenerceptors. This efficacy may be associated with a useful clinical phenotypic profile in depressive disorders (Cottingham et al., 2011). As new assays become available, it would seem reasonable to subject known drugs to new interrogations to possibly link interesting in vivo drug phenotypes with measurable in vitro activities (O’Connor and Roth, 2005).

Consideration of the multiple conformational nature of receptor systems through molecular dynamics (Frauenfelder et al., 1988, 1991; Woodward, 1993; Hilsen and Freire, 1997; Kenakin, 2002; Hilsen et al., 2006) predicts that signaling bias and texture in efficacy should be a common, not rare, effect. In particular, uniformity in efficacy would require that ligands have identical affinities for numerous receptor conformations; this would be an unlikely thermodynamic prediction. Therefore, some kind of ligand bias would be predicted for most, if not all, synthetic ligands. The detection of such bias is directly related to the assays used to observe drug
effect, a situation analogous to the discovery and progression of ideas related to inverse agonism. When first reported by Costa and Herz (1989), inverse agonism was thought to be rare. The “rarity” of inverse agonism seems to have been related to the lack of availability of constitutive receptor assays, because in the years subsequent to the discovery, the reports of increasingly common inverse agonism have paralleled the availability of constitutive receptor assays (Kenakin, 2004). It will be interesting to see whether biased agonism and antagonism follow the same progression; i.e., as more experience is gained with high-throughput assays capable of detecting complex behaviors, will bias signaling in ligands be seen to be a more common phenomenon?

Authorship Contributions

Wrote or contributed to the writing of the manuscript: Kenakin.

References

Address correspondence to: Dr. Terry P. Kenakin, Department of Pharmacology, University of North Carolina School of Medicine, 120 Mason Farm Rd., Room 1042 Genetic Medicine Building, CB#7365, Chapel Hill, NC 27590-7365. E-mail: kenakin@email.unc.edu