P-Glycoprotein, Multidrug-Resistance Associated Protein 2, Cyp3a, and Carboxylesterase Affect the Oral Availability and Metabolism of Vinorelbine

Jurjen S. Lagas, Carola W. N. Damen, Robert A. B. van Waterschoot, Dilek Iusuf, Jos H. Beijnen, and Alfred H. Schinkel

Division of Molecular Oncology (J.S.L., R.A.B.v.W., D.I., A.H.S.), The Netherlands Cancer Institute, Amsterdam, The Netherlands; and Department of Pharmacy and Pharmacology, Slotervaart Hospital, Amsterdam, the Netherlands (J.S.L., C.W.N.D., J.H.B.)

Received December 5, 2011; accepted July 5, 2012

ABSTRACT

We investigated the interactions of the anticancer drug vinorelbine with drug efflux transporters and cytochrome P450 drug-metabolizing enzymes. Vinorelbine was transported by human multidrug-resistance associated protein (MRP) 2, and Mrp2 knockout mice displayed increased vinorelbine plasma exposure after oral administration, suggesting that Mrp2 limits the intestinal uptake of vinorelbine. Using P-glycoprotein (P-gp), Cyp3a-, and P-gp/Cyp3a knockout mice, we found that the absence of P-gp or Cyp3a resulted in increased vinorelbine plasma exposure, both after oral and intravenous administration. Surprisingly, P-gp/Cyp3a knockout mice displayed markedly lower vinorelbine plasma concentrations than wild-type mice upon intravenous administration but higher concentrations upon oral administration. This could be explained by highly increased formation of 4’-O-deacetylvinorelbine, an active vinorelbine metabolite, especially in P-gp/Cyp3a knockout plasma. Using wild-type and Cyp3a knockout liver microsomes, we found that 4’-O-deacetylvinorelbine formation was 4-fold increased in Cyp3a knockout liver and was not mediated by Cyp3a or other cytochrome P450 enzymes. In vitro incubation of vinorelbine with plasma revealed that vinorelbine deacetylation in Cyp3a and especially in P-gp/Cyp3a knockout mice but not in P-gp-deficient mice was strongly up-regulated. Metabolite formation in microsomes and plasma could be completely inhibited with the nonspecific carboxylesterase (CES) inhibitor bis(4-nitrophenyl) phosphate and partly with the CES2-specific inhibitor loperamide, indicating that carboxylesterase Ces2a, which was appropriately up-regulated in Cyp3a and especially in P-gp/Cyp3a knockout liver was responsible for the 4’-O-deacetylvinorelbine formation. Such compensatory up-regulation can complicate the interpretation of knockout mouse data. Nonetheless, P-gp, Mrp2, Cyp3a, and Ces2a clearly restricted vinorelbine availability in mice. Variation in activity of their human homologs may also affect vinorelbine pharmacokinetics in patients.

Introduction

Vinorelbine is a semisynthetic vinca alkaloid that is indicated in the treatment of non-small-cell lung cancer and advanced breast cancer (Domenech and Vogel, 2001; Gralla et al., 2007). In current clinical practice, vinorelbine is mainly intravenously applied despite the development of an oral vinorelbine formulation, which has been approved in several European countries. This may be explained by the relatively high interindividual variability in drug exposure that was observed for oral vinorelbine administration in numerous clinical studies (Gralla et al., 2007; Hirsh et al., 2007; Rossi et al., 2007; Delord et al., 2009). For clinical practice, it is thus important to identify interactions of vinorelbine with drug efflux transporters and drug-metabolizing enzymes because these systems might affect the exposure and toxicity of vinorelbine, especially upon oral administration. Moreover, drug efflux transporters may also directly contribute to resistance of tumors against vinorelbine.

It has been well established by various groups that the drug efflux transporter P-glycoprotein (MDR1/ABCB1) transports vinorelbine in vitro and mediates resistance against vinorelbine (Adams and Knick, 1995; Takara et al.,...
However, data about the in vivo interaction of vinorelbine with P-gp are inconclusive. For instance, Press et al. (2006) found no significant changes in oral or intravenous vinorelbine area under the plasma concentration-time curves (AUCs) between wild-type (WT) or P-gp-deficient [Mdr1a/1b (−/−)] mice, although interindividual variation in these experiments was very high, potentially obscuring modest shifts. Furthermore, in a phase I study in 26 patients with advanced solid tumors, the P-gp inhibitor tariquidar was combined with intravenously applied vinorelbine (20 mg/m²), but alterations in the pharmacokinetics of vinorelbine were not observed (Abraham et al., 2009). On the other hand, Wong et al. (2006) found in a cohort of 41 patients receiving intravenous vinorelbine that low hepatic ⁹⁹ᵐTc-hexakis-2-methoxybutylicsionitrile clearance (used as a measure for P-gp-mediated clearance) significantly correlated with low vinorelbine clearance. In addition, a phase I trial with 19 patients with advanced solid tumors revealed increased exposure and decreased clearance when intravenous vinorelbine (22.5 mg/m²) was combined with the potent P-gp inhibitor zosuquidar (Lè et al., 2005). A more extensive analysis of in vivo vinorelbine-P-gp interactions thus seemed worthwhile.

To date, interactions of vinorelbine with the drug efflux transporter MRP2 (ABCC2) have not been reported. However, cellular resistance to the vinca alkaloid vincristine has been associated with MRP2 expression (Chen et al., 1999; Kawabe et al., 1999), and in vitro transport of vinblastine by MRP2 has also been demonstrated (Evers et al., 1998, 2000a; Huisman et al., 2005). It thus seemed possible that vinorelbine might also be transported by MRP2, which could affect vinorelbine pharmacokinetics, toxicity, and resistance of tumors.

Vinorelbine is thought to be mainly metabolized by CYP3A4 to inactive metabolites (Kajita et al., 2000; Beulz-Riche et al., 2005). However, to some extent vinorelbine is also converted to a pharmacodynamically active metabolite, 4'-O-deacetylvinorelbine. In fact, metabolic profiling after oral vinorelbine administration revealed that 4'-O-deacetylvinorelbine is the predominant metabolite in human blood with an elimination half-life of at least 100 h (Marty et al., 2001). This deacetylation reaction is believed to be catalyzed by carboxylesterase enzymes, which are formed in the liver and reside in blood, although specific enzyme(s) responsible for this activity have not been identified yet (Beulz-Riche et al., 2005; Delord et al., 2009).

The aim of this study was to obtain better insight into the potential impact of P-gp, MRP2, and CYP3A on the pharmacokinetics of vinorelbine, using in vitro, ex vivo, or in vivo assays and P-gp-, Mrp2-, and Cyp3a-deficient mouse strains.

Materials and Methods

Chemicals. Vinorelbine (Navelbine) 10 mg/ml concentrate for solution for infusion originated from Pierre Fabre Medicament (Boulogne, France). Vinorelbine tartrate was purchased from Sequioa Research Products (Pangbourne, UK). Deacetylvinblin sulfinate was obtained from the Faculty of Pharmacy (University of Utrecht, Utrecht, The Netherlands). Loperamide hydrochloride and bis(4-nitrophenyl) phosphate (BNPP) were from Sigma-Aldrich (Steinheim, Germany). Methoxyflurane (Metofane) was from Medical Developments Australia (Springvale, VIC, Australia). Heparin (5000 IU/ml) was from Leo Pharma BV (Breda, The Netherlands). The organic solvents methanol, acetonitrile (both high-performance liquid chromatography-grade), and diethyl ether were from Merck (Darmstadt, Germany). Drug-free human plasma was from healthy volunteers. GlaxoSmithKline (Uxbridge, UK) kindly provided elacridar (GF120918). All other chemicals and reagents were obtained from Sigma-Aldrich.

Transport Assays. Polarized canine kidney MDCK-II cell lines were used in transport assays. MDCK-II cells transduced with human MRP2 were described previously (Evers et al., 1998). Transepithelial transport assays using Transwell plates were performed as described previously with minor modifications (Schnikel et al., 1995). Experiments were performed in the presence of 5 µM elacridar to inhibit any endogenous P-glycoprotein activity. Elacridar at 5 µM does not affect MRP2 activity (Evers et al., 2000b). Elacridar was present in both compartments during a 2-h preincubation and during the transport experiment. After preincubation, experiments were started (t = 0) by replacing the medium in either the apical or basolateral compartment with fresh OptiMEM medium, either with or without 5 µM Elacridar and containing 5 µM vinorelbine. Cells were incubated at 37°C in 5% CO₂, and 50-µl aliquots were taken at t = 2 and 4 h. The samples were diluted with 450 µl of drug-free human plasma, 50 µl of internal standard (100 ng/ml deacetylvincristine) was added, and the samples were extracted with 3 ml of diethyl ether. Vinorelbine was quantified by high-performance liquid chromatography, as described previously (van Tellingen et al., 1992). Transport was calculated as the fraction of drug found in the acceptor compartment relative to the total amount added to the donor compartment at t = 0. Transport is given as mean percentage ± S.D. (n = 3). Membrane tightness was assessed in parallel, using the same cells seeded on the same day and at the same density, by analyzing transepithelial [¹⁴C]inulin (approximately 3 kBq/well) leakage. Leakage had to remain <2% of the total added radioactivity per 2 h. Active transport across MDCK-II monolayers was expressed by the relative transport ratio (r), defined as percentage of apically directed translocation divided by percentage of basolaterally directed translocation after 4 h (Huisman et al., 2005). The apparent permeability coefficient (r_app) was calculated using the equation P_app (centimeters per second) = dC/dt · 1/A · V/C₀ (centimeters per second), where dC/dt (micromoles per second) represents the flux across the monolayer (permeability rate), A (square centimeters) represents the surface area of the monolayer, V (cubic centimeters) represents the volume of the receiver chamber, and C₀ (micromolar concentration) represents the initial concentration in the donor compartment (Irvin et al., 1999).

Animals. Mice were housed and handled according to institutional guidelines complying with Dutch legislation. Animals used in this study were female Mdr1a/1b(−/−) (van Waterschoot et al., 2009), Mdr2(−/−) (Vlaming et al., 2006), Cyp3a(−/−) (van Herwaarden et al., 2007), Mdr1a/1b/Cyp3a(−/−) (van Waterschoot et al., 2009), and WT mice, all of a >99% FVB genetic background, between 9 and 12 weeks of age. Animals were kept in a temperature-controlled environment with a 12 h light/12 h dark cycle and received a standard diet (AM-II; Hope Farms, Woerden, The Netherlands) and acidified water ad libitum.

Plasma Pharmacokinetics. For oral studies, vinorelbine (10 mg/ml) was 10-fold diluted with saline and dosed at 10 mg/kg b.wt. (10 ml/kg). To minimize variation in absorption, mice were fasted for 3 h before vinorelbine was administered by gavage into the stomach, using a blunt-ended needle. Multiple blood samples (~40 µl) were collected from the tail vein at 15 and 30 min and 1, 2, 4, 8, and 24 h, using heparinized capillary tubes (Oxford Labware, St. Louis, MO). Blood samples were centrifuged at 2100 × g for 6 min at 4°C, and the plasma was completed to 200 µl with drug-free human plasma and stored at −20°C until analysis. For intravenous studies, vinorelbine (10 mg/ml) was diluted 5-fold with saline and injected as single bolus at 10 mg/kg (5 ml/kg) into the tail vein. Blood samples were collected by cardiac puncture under methoxyflurane anesthesia at 7.5 and 30 min and 1, 2, 4, 8, and 24 h, with four animals per time point.
Samples were processed as described above and stored at −20°C until analysis.

Drug Analysis in Plasma. Plasma concentrations of vinorelbine and 4'-O-deacetylvinorelbine were determined by LC-MS/MS as described previously (Damen et al., 2009).

Pharmacokinetic Calculations and Statistical Analysis. The AUC was calculated using the trapezoidal rule. The peak plasma concentration (C_{max}) and the time of maximum plasma concentration (T_{max}) were estimated from the original data. Plasma clearance (CL) after intravenous administration was calculated by the formula CL = dose/AUC. The oral bioavailability (F) was calculated by the formula F = AUC_{oral}/AUC_{i.v.} × 100%. To assess statistical significance, the two-sided unpaired Student’s t test (two groups) or one-way analysis of variance followed by Dunnett’s multiple comparison test (>2 groups) was performed. Data obtained with single and combination knockout mice were compared with data obtained with WT mice, unless stated otherwise. Data are presented as means ± S.D., and differences were considered statistically significant when P < 0.05.

Microsomal Incubations. Microsomes from the livers of WT and Cyp3a(-/-) mice were prepared as described previously (Emoto et al., 2000). Incubations were performed in triplicate at 37°C in a total volume of 200 μl containing 100 mM potassium phosphate buffer (pH 7.4), an NADPH-regenerating system (BD Biosciences, San Diego, CA), and 0.5 mg of protein/ml liver microsomes. Reactions were started by addition of vinorelbine (18.5 μM), allowed to proceed for 20 min, and terminated by addition of 100 μl of ice-cold acetonitrile. Control incubations omitting cofactor NADPH were performed to establish whether the metabolism was P450-dependent. For inhibition experiments, the nonspecific CES inhibitor BNPP (100 μM), the CES2-specific inhibitor loperamide (100 μM), or vehicle was preincubated for 5 min at 37°C, and reactions were started by addition of vinorelbine (18.5 μM). Incubations were performed without NADPH, allowed to proceed for 30 min, and terminated by addition of 100 μl of ice-cold acetonitrile. Concentrations of vinorelbine and 4'-O-deacetylvinorelbine in supernatant (6800g for 10 min) were determined by LC-MS/MS (Damen et al., 2009).

Plasma Incubations. Blood was collected from WT, Mdr1a/1b(-/-) (Schenkel et al., 1997), Cyp3a(-/-) (van Herwaarden et al., 2007), and Mdr1a/1b/Cyp3a(-/-) (van Waterschoot et al., 2009) mice (n = 4/strain) by cardiac puncture under methoxyflurane anesthesia. Blood samples were immediately centrifuged at 2100g for 6 min at ambient temperature, and plasma was collected. Plasma samples (390 μl) were warmed to 37°C, and incubations were started by addition of 10 μl of vinorelbine stock solution (260 μM) to obtain a final concentration of 6.5 μM. Samples of 25 μl were collected at 0, 15, 30, 60, and 120 min. For inhibition experiments, the nonspecific CES inhibitor BNPP (100 μM), the CES2-specific inhibitor loperamide (100 μM), or vehicle was preincubated for 5 min at 37°C. Reactions were started by addition of vinorelbine (6.5 μM) and allowed to proceed for 120 min. Samples were immediately completed to 100 μl with ice-cold acetonitrile to stop the deacetylation reaction and subsequently stored at −20°C until analysis. Concentrations of vinorelbine and 4'-O-deacetylvinorelbine were determined by LC-MS/MS (Damen et al., 2009).

RNA Isolation, cDNA Synthesis, and Real-Time RT-PCR. Livers of mice between 9 and 11 weeks of age (n = 3 genotype) were excised and immediately placed in an appropriate volume of RNALater (QIAGEN, Venlo, The Netherlands). They were stored at 4°C until RNA was extracted using the RNeasy Mini Kit (QIAGEN) according to the manufacturer’s protocol. Subsequently, cDNA was generated using 5 μg of total RNA in a synthesis reaction using random hexamers (Applied Biosystems, Foster City, CA) and SuperScript II reverse transcriptase (Invitrogen, Carlsbad, CA) according to the supplier’s protocols. The reverse transcription reaction was performed for 60 min at 42°C with a deactivation step of 15 min at 70°C. cDNA was stored at −20°C until use. Real-time RT-PCR was performed using specific primers (QIAGEN) on an Applied Biosystems 7500 real-time cycler system as described previously (van Waterschoot et al., 2008). Results were analyzed by the comparative C_{t} method as described previously (Schmittgen and Livak, 2008), and statistical analysis was performed on ΔC_{t} values as described previously (Yuan et al., 2006).

Results

In Vitro Transport of Vinorelbine by MRP2. To determine whether vinorelbine (Fig. 1A) is transported by MRP2, we used polarized MDCK-II cells transduced with human MRP2 cDNA. The MDCK-II-Neo cell line was used as a control, because it contains very little endogenous canine Mrp2 (Evers et al., 1998). Because vinorelbine is a well-established P-gp substrate, 5 μM elacridar was added to inhibit any transport by endogenous canine P-gp. In MDCK-II-Neo cells no active polarized transport of vinorelbine was observed, as evident from roughly equal basolateral-to-apical and apical-to-basolateral translocation rates (Fig. 1B). In contrast, in MRP2-transduced cells, apically directed translocation was markedly increased, and basolaterally directed translocation was markedly decreased (Fig. 1C). The transport ratio r, which is a measure for active transport, was 3.5-fold increased (1.3 for Neo versus 4.5 for MRP2-transduced cells) (Fig. 1). Vinorelbine is thus a transported substrate of human MRP2.

Impact of Mrp2 and P-gp on the Oral AUC of Vinorelbine. To test whether Mrp2 and P-gp restrict the oral uptake of vinorelbine, we orally administered 10 mg/kg vinorelbine to WT, Mrp2(-/-), and Mdr1a/1b(-/-) mice. Oral absorption in all strains was very rapid, and maximal plasma concentrations of vinorelbine and 4'-O-deacetylvinorelbine were determined by LC-MS/MS (Damen et al., 2009).

Fig. 1. Molecular structures of vinorelbine (R* = COCH3) and 4'-O-deacetylvinorelbine (R* = H) (A) and transcellular transport of vinorelbine (5 μM) in MDCK-II-Neo cells (B) or MDCK-II-MRP2 cells (C), in the presence of elacridar (5 μM). At t = 0 h, vinorelbine was applied in one compartment (apical or basolateral), and the percentage translocated to the opposite compartment at t = 2 and 4 h was plotted (n = 3). The translocation from the basolateral to the apical compartment; □, translocation from the apical to the basolateral compartment. r represents the relative transport ratio (i.e., the apically directed translocation divided by the basolaterally directed translocation) at t = 4 h. Data represent means ± S.D. At t = 4 h, 1% of transport is approximately equal to an apparent permeability coefficient (P_{app}) of 0.30 × 10^{-6} cm/s.
centrations were reached before 15 min, the first sampling point (Fig. 2). The oral AUC up to 24 h (AUC0–24) in Mdr2(−/−) mice was 1.5-fold higher than that in WT mice (P < 0.05) (Fig. 2; Table 1), and the Cmax (earliest measured time point) was 3.3-fold increased (P < 0.05). The oral AUC0–24 in Mdr2/1b(−/−) mice was 3.6-fold higher than that in WT mice (P < 0.05) (Fig. 2; Table 1), and the Cmax (earliest measured time point) was 7.0-fold increased (P < 0.05). These results show that Mdr2 can modestly and P-gp can markedly restrict the oral availability of vinorelbine. The effect of the absence of these transporters was particularly strong shortly after drug administration (15 and 30 min), suggesting a direct impact on the intestinal uptake of vinorelbine.

Impact of P-gp and Cytochrome P450 3A on Vinorelbine Plasma Pharmacokinetics. Because we had found that P-gp markedly affected the oral AUC of vinorelbine and because it is known that CYP3A4 can mediate metabolism of vinorelbine (Beuzl-Riche et al., 2005), it was of interest to establish the separate and combined impact of these two detoxifying systems on vinorelbine pharmacokinetics. We previously showed that for docetaxel, also a shared P-gp and CYP3A substrate, simultaneous disruption of both systems previously showed that for docetaxel, also a shared P-gp and CYP3A substrate, simultaneous disruption of both systems (van Waterschoot et al., 2008). This apparent discrepancy could be attributed to compensatory midazolam metabolism by mouse Cyp2c enzymes, which were substantially up-regulated in Cyp2a(−/−) mice (van Waterschoot et al., 2008). We therefore hypothesized that the lower plasma concentrations of vinorelbine in Mdr2/1b/Cyp3a(−/−) mice might also be explained by increased metabolic conversion of vinorelbine, obviously via a metabolic route(s) other than Cyp3a. Because 4-O-deacetylvinorelbine is a major vinorelbine metabolite in mice and humans (van Tellingen et al., 1993; Puzoza et al., 2007), we analyzed the plasma samples from the intravenous experiment for the presence of this metabolite (for the oral experiment, because of the applied multiple sampling approach, the sample size was too small to additionally measure this metabolite). In stark contrast to the parental vinorelbine, plasma concentrations of 4-O-deacetylvinorelbine were highly increased in Mdr2/1b/Cyp3a(−/−) mice compared with those in WT mice (Fig. 3C; Table 2). Of note, single Cyp3a(−/−) mice also displayed markedly elevated plasma concentrations of this metabolite. The intravenous AUC0–24 for 4-O-deacetylvinorelbine was 3.6-fold higher in Mdr2/1b/Cyp3a(−/−) mice, 5.1-fold increased in Cyp3a(−/−) mice, and 11.2-fold higher in Mdr2/1b/Cyp3a(−/−) mice than in WT mice, whereas the equivalent changes in parental vinorelbine AUC0–24 were 2.3-, 1.5-, and 0.72-fold, respectively (Table 2). In particular, the Cyp3a(−/−) and Mdr2/1b/Cyp3a(−/−) mice thus displayed a profound increase in 4-O-deacetylvinorelbine over vinorelbine concentration ratios. This increased vinorelbine conversion might lead to an underestimation of the effect of the knocked out proteins on vinorelbine clearance.

To determine the additive plasma exposure to vinorelbine and 4-O-deacetylvinorelbine after intravenous vinorelbine, we plotted the combined plasma concentration-time curves and calculated the combined AUC0–24 and Cmax values (Fig. 3D; Table 2). This calculation indicated that the combined
AUC0–24 values were 2.2- to 2.8-fold increased in each of the
three knockout strains compared with those in the WT mice,
illustrating a markedly reduced elimination of vinorelbine/
4'-O-deacetylvinorelbine in each of the knockout strains.
Still, the overall effect seen in the combination knockout
strain was less than expected from the effects seen in the
separate knockout strains. 4'-O-Deacetylvinorelbine/vinorel-
bine exposure ratios increased from 0.25 in WT mice to 0.39,
0.81, and 3.8 in Mdr1a/1b(-/-), Cyp3a(-/-), and Mdr1a/1b/
Cyp3a(-/-) mice, respectively, suggesting pronounced
changes mainly in the latter two strains.

TABLE 2
Plasma pharmacokinetic parameters after oral or intravenous administration of vinorelbine at 10 mg/kg

<table>
<thead>
<tr>
<th>Strain</th>
<th>WT</th>
<th>Mdr1a/1b(-/-)</th>
<th>Cyp3a(-/-)</th>
<th>Mdr1a/1b/Cyp3a(-/-)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral vinorelbine</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUC0–24 h · mg⁻¹ · l⁻¹</td>
<td>0.25 ± 0.10</td>
<td>0.86 ± 0.37*</td>
<td>0.54 ± 0.15*</td>
<td>0.84 ± 0.22*</td>
</tr>
<tr>
<td>Cmax, mg/l</td>
<td>0.64 ± 0.02</td>
<td>0.45 ± 0.07**</td>
<td>0.11 ± 0.03*</td>
<td>0.33 ± 0.13*</td>
</tr>
<tr>
<td>Tmax, h</td>
<td>0.25</td>
<td>0.25</td>
<td>1</td>
<td>0.25</td>
</tr>
<tr>
<td>Intravenous vinorelbine</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUC0–24 h · mg⁻¹ · l⁻¹</td>
<td>1.62 ± 0.27</td>
<td>3.70 ± 0.35**</td>
<td>2.50 ± 0.14**</td>
<td>1.17 ± 0.04*</td>
</tr>
<tr>
<td>Cmax, mg/l</td>
<td>6.30 ± 0.97</td>
<td>2.72 ± 0.24**</td>
<td>4.01 ± 0.23**</td>
<td>8.55 ± 0.31**</td>
</tr>
<tr>
<td>Tmax, h</td>
<td>15.4 ± 6.7</td>
<td>23.2 ± 10.2</td>
<td>21.6 ± 6.1</td>
<td>71.8 ± 19.1*</td>
</tr>
<tr>
<td>Intravenous 4'-O-deacetylvinorelbine</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUC0–24 h · mg⁻¹ · l⁻¹</td>
<td>0.40 ± 0.05</td>
<td>1.45 ± 0.14**</td>
<td>2.02 ± 0.02**</td>
<td>4.46 ± 0.31**</td>
</tr>
<tr>
<td>Cmax, mg/l</td>
<td>2.01 ± 0.30</td>
<td>5.15 ± 0.46**</td>
<td>4.52 ± 0.14**</td>
<td>5.63 ± 0.29**</td>
</tr>
<tr>
<td>AUCi.v 4'-O-deacetylvinorelbine/AUCi.v vinorelbine Exposure ratio</td>
<td>0.25</td>
<td>0.39</td>
<td>0.81</td>
<td>3.8</td>
</tr>
</tbody>
</table>

*P < 0.05, compared with WT mice.
**P < 0.01.

AUC0–24 values were 2.2- to 2.8-fold increased in each of the
two knockout strains compared with those in the WT mice,
illustrating a markedly reduced elimination of vinorelbine/
4'-O-deacetylvinorelbine in each of the knockout strains.
Still, the overall effect seen in the combination knockout
strain was less than expected from the effects seen in the
separate knockout strains. 4'-O-Deacetylvinorelbine/vinorel-
bine exposure ratios increased from 0.25 in WT mice to 0.39,
0.81, and 3.8 in Mdr1a/1b(-/-), Cyp3a(-/-), and Mdr1a/1b/
Cyp3a(-/-) mice, respectively, suggesting pronounced
changes mainly in the latter two strains.

**4'-O-Deacetylvinorelbine Formation is Up-Regu-
lated in Cyp3a(-/-) Liver Microsomes.** These results
raised the question to what extent vinorelbine in mice is
cleared by Cyp3a or perhaps Cyp2c, by conversion to 4'-O-
deacetylvinorelbine, and/or by some other metabolic path-
way. Because metabolic drug clearance after intravenous administration is often mostly mediated by the liver, we incubated vinorelbine with liver microsomes from WT and Cyp3a(-/-) mice. We assessed P450-mediated metabolism by comparing vinorelbine concentrations in the presence and absence of the cofactor NADPH, which is essential for Cyp activity. In addition, we measured 4’-O-deacetylvinorelbine formation. We observed, unexpectedly, only minimal disappearance of vinorelbine in microsomes from WT mice, and the absence or presence of NADPH did not affect this process, indicating that this process was not P450-mediated (Fig. 4A). A small amount of 4’-O-deacetylvinorelbine was formed, and this was again not NADPH-dependent (Fig. 4B). In the Cyp3a(-/-) microsomes, however, we observed much more extensive disappearance of vinorelbine, correlating with a higher production of 4’-O-deacetylvinorelbine (Fig. 4, A and B). Again, these conversions were independent of the presence or absence of NADPH, indicating that they were not P450-mediated. The sum of the remaining vinorelbine and 4’-O-deacetylvinorelbine amounts in the various incubations (Fig. 4C) yielded total drug amounts that were not substantially below the originally applied amount of vinorelbine (18.5 μM), suggesting that there was little metabolism to other compounds under these conditions.

Increased 4’-O-Deacetylvinorelbine Formation in Cyp3a(-/-) and Mdr1a/1b/Cyp3a(-/-) Plasma. Because the abundant 4’-O-deacetylvinorelbine formation in the Cyp3a(-/-) liver microsomes was not P450-mediated, it might be catalyzed by (partly) soluble proteins that could also be secreted into the blood. We therefore incubated vinorelbine (6.5 μM or approximately 5000 ng/ml, i.e., of the same order as expected shortly after intravenous administration of vinorelbine) in vitro with plasma freshly collected from WT, Mdr1a/1b(-/-), Cyp3a(-/-), and Mdr1a/1b/Cyp3a(-/-) mice and measured disappearance of vinorelbine and appearance of 4’-O-deacetylvinorelbine over time. In WT and Mdr1a/1b(-/-) plasma there was a slow disappearance of vinorelbine, associated with low production of 4’-O-deacetylvinorelbine over time (Fig. 5, A and B). Of interest, however, in Cyp3a(-/-) plasma, vinorelbine disappearance and 4’-O-deacetylvinorelbine appearance were clearly increased, and both processes were markedly further enhanced in the Mdr1a/1b/Cyp3a(-/-) plasma. These results indicate that there is substantial up-regulation of enzyme(s) forming 4’-O-deacetylvinorelbine in Cyp3a(-/-) and especially Mdr1a/1b/Cyp3a(-/-) plasma, but not in Mdr1a/1b(-/-) plasma. Adding up the vinorelbine plus 4’-O-deacetylvinorelbine values in plasma for each strain (Fig. 5C) indicated that most of the drug was still detectable in these two forms after 120 min, suggesting only little metabolism to alternative vinorelbine metabolites.

Up-Regulation of Carboxylesterases in Livers of Mdr1a/1b(-/-), Cyp3a(-/-), and Mdr1a/1b/Cyp3a(-/-) Mice. The conversion of vinorelbine to 4’-O-deacetylvinorelbine is essentially an esterase reaction, so we considered that one or more (carboxylesterases or paraoxonases produced in the liver and secreted into the blood might be up-regulated in the Cyp3a(-/-) and Mdr1a/1b/Cyp3a(-/-) strains but not in the Mdr1a/1b(-/-) mice. We therefore tested gene expression of all obvious candidate hepatic carboxylesterases (Holmes et al., 2010) and paraoxonases in liver of the different mouse strains using RT-PCR (Supplemental Fig. 1; Supplemental Table 1). The paraoxonase enzymes (Pon1, Pon2, and Pon3) were not differentially expressed in the WT and
knockout strains. In contrast, four (Ces1b, Ces1c, Ces1d, and Ces1e) of the six Ces1 enzymes tested were found to be highly up-regulated in all three knockout strains. However, because these genes were also up-regulated to the same extent in Mdr1a/1b(−/−) mice, whereas metabolite formation in Mdr1a/1b(−/−) was similar to that in WT mice (Fig. 5), these Ces1 enzymes cannot be responsible for the (increased) formation of 4′-O-deacetylvinorelbine. Of interest, however, the carboxylesterase Ces2a (formerly named Ces6) was 2.7-fold up-regulated in Cyp3a(−/−) mice, whereas its expression was not altered in Mdr1a/1b(−/−) mice (Fig. 6D; Supplemental Fig. 1; Supplemental Table 1). On the basis of this Ces2a expression pattern (Fig. 6D) and its similarity to the pattern of metabolite formation in the knockout strains (Figs. 5 and 6, A–C), Ces2a is the only plausible carboxylesterase candidate for the increased formation of 4′-O-deacetylvinorelbine.

Increased 4′-O-Deacetylvinorelbine Formation Can Be Inhibited by BNPP and Loperamide. To further corroborate the involvement of carboxylesterases and especially Ces2a, we tested whether the formation of 4′-O-deacetylvinorelbine in plasma could be inhibited using the nonspecific carboxylesterase inhibitor BNPP and the (human) CES2-specific inhibitor loperamide (Wang et al., 2011; Williams et al., 2011). We incubated vinorelbine (6.5 μM) with BNPP (100 μM), loperamide (100 μM), or vehicle for 120 min in vitro with plasma freshly collected from WT, Mdr1a/1b(−/−), Cyp3a(−/−), and Mdr1a/1b/Cyp3a(−/−) mice, and we measured disappearance of vinorelbine and appearance of 4′-O-deacetylvinorelbine over time. Loperamide inhibited the formation of 4′-O-deacetylvinorelbine approximately 2- to 3-fold in all four strains, whereas BNPP completely inhibited metabolite formation (Fig. 6, A and B). Adding up the vinorelbine plus 4′-O-deacetylvinorelbine values in plasma for each strain (Fig. 6C) suggested little metabolism to alternative vinorelbine metabolites. Moreover, we obtained similar inhibition data with liver microsomes of WT and Cyp3a knockout mice (Supplemental Fig. 2). In microsomes of Cyp3a(−/−) mice, loperamide inhibited the formation of 4′-O-deacetylvinorelbine ~3-fold, whereas BNPP completely inhibited metabolite formation. Taken together, these inhibition results combined with the RNA expression data indicate that a carboxylesterase is responsible for the formation of 4′-O-deacetylvinorelbine in liver and plasma and that this carboxylesterase is most likely Ces2a.

Discussion

In this study, we demonstrated that vinorelbine is a transported substrate for MRP2 and that loss of Mrp2 in mice resulted in a 1.5-fold elevated plasma exposure upon oral vinorelbine administration. The absence of P-gp in mice resulted in a marked (~3.5-fold) increase in plasma exposure after oral vinorelbine and a 2.3-fold increase after intravenous vinorelbine. The absence of Cyp3a alone or combined absence of P-gp and Cyp3a also resulted in increased plasma exposure levels (2.2- and 3.4-fold, respectively) of oral vinorelbine. However, these latter values are probably an underestimate, as in both strains, especially the Mdr1a/1b/Cyp3a(−/−) mice (and in contrast to the single P-gp-deficient strain), there was a substantial up-regulation of plasma enzyme(s) that convert vinorelbine to its major metabolite 4′-O-deacetylvinorelbine. The impact of this up-regulation was even more apparent after intravenous vinorelbine administration. Inhibition experiments together with RT-PCR expression data indicated that up-regulation of Ces2a is most

![Fig. 6. Concentrations of vinorelbine (A), 4′-O-deacetylvinorelbine (B), and vinorelbine + 4′-O-deacetylvinorelbine (C; combined) after ex vivo incubation of 6.5 μM vinorelbine for 120 min in plasma of WT, Mdr1a/1b(−/−), Cyp3a(−/−), and Mdr1a/1b/Cyp3a(−/−) mice in the absence (WT) or presence of the nonspecific carboxylesterase inhibitor BNPP (100 μM) or the CES2-specific inhibitor loperamide (100 μM). Data represent mean concentrations ± SD; n = 3. D, expression levels of Ces2a in livers of WT, Mdr1a/1b(−/−), Cyp3a(−/−), and Mdr1a/1b/Cyp3a(−/−) mice, as determined by real-time RT-PCR. Data are normalized to glyceraldehyde-3-phosphate dehydrogenase expression. Values represent mean fold change ± SD, compared with WT mice; n = 3. *** P < 0.001, compared with WT ΔCt values.](https://molpharm.aspetjournals.org/article/2014/9/6963/1/6963)
likely responsible for the (increased) formation of 4'-O-deacetylvinorelbine in the Cyp3a(-/-) and Mdr1a/1b/Cyp3a(-/-) mice.

Thus far, interactions of vinorelbine with MRPs have not been reported. However, cellular resistance to the vinca alkaloid vincristine has been associated with MRP2 expression (Chen et al., 1999; Kawabe et al., 1999), and transport of vinblastine by MRP2 has been demonstrated in vitro (Evers et al., 1998, 2000a; Huisman et al., 2005). In this study, we show that human MRP2 can efficiently transport vinorelbine in vitro. This very likely means that tumor cells expressing this protein will to some extent be protected from the cytotoxicity of vinorelbine. Moreover, Mrp2(-/-) mice had significantly higher plasma vinorelbine concentrations than WT mice, especially at early time points (15 and 30 min) after oral administration, suggesting that Mrp2 can limit the intestinal uptake of vinorelbine. This could also mean that MRP2 activity and variations in its expression or activity level in patients due to genetic polymorphisms or induction or inhibition by other coadministered drugs may affect the therapeutic efficacy of vinorelbine.

The marked (3.5-fold) increase in plasma exposure after oral vinorelbine in Mdr1a/1b(-/-) mice indicates that P-gp is an important determinant of oral availability of vinorelbine. The increase in plasma levels was especially evident shortly after vinorelbine administration, suggesting that the intestinal uptake was improved. Although vinorelbine is an established P-gp substrate (Adams and Knick, 1995; Shepard et al., 2003), in contrast to our results, it was previously reported that Mdr1a/1b(-/-) mice did not have a statistically significantly increased plasma AUC upon oral vinorelbine administration at 10 mg/kg (Press et al., 2006). However, variation in plasma levels in those experiments was extremely high, hampering reliable comparisons between strains. We have since then found that the reproducibility of plasma levels upon oral drug administration to mice can be markedly improved by including a short (3 h) fasting period before administration, and this was applied in the vinorelbine experiments described in the current study. Press et al. (2006) did find a clear and highly significant reduction in fecally excreted vinorelbine in Mdr1a/1b(-/-) mice (from 34 to 6% of the dose), in line with a role of P-gp in limiting intestinal uptake of vinorelbine (Press et al., 2006). Taken together, our results show that P-gp appears to substantially limit the oral availability of vinorelbine in mice. Because vinorelbine is also a good substrate of human P-gp, this might also contribute to the variable oral availability of vinorelbine in patients. The previously reported association in patients of low intravenous vinorelbine clearance and low apparent P-gp clearance activity (Wong et al., 2006) is also in line with our findings in Mdr1a/1b(-/-) mice. Possibly inhibiting P-gp with a dedicated modulating drug might therefore improve the oral and intravenous availability and overall therapeutic efficacy of vinorelbine in patients.

The interpretation of vinorelbine experiments in the Cyp3a(-/-) and Mdr1a/1b/Cyp3a(-/-) mice is complicated by the marked up-regulation of the plasma and liver carboxylesterase enzyme that converts vinorelbine to 4'-O-deacetylvinorelbine. This almost certainly means that the vinorelbine AUCs measured in these strains for vinorelbine are an underestimate of the values that would have occurred without this up-regulation. Despite this, the oral and intravenous AUCs of vinorelbine were still significantly (2.2- and 1.5-fold, respectively) increased in Cyp3a(-/-) mice relative to those in WT mice. This finding strongly suggests that Cyp3a-mediated metabolism does substantially reduce the effective availability of vinorelbine, consistent with the previous demonstration that CYP3A4 and, to a lesser extent, CYP3A5 are the primary vinorelbine-metabolizing enzymes in human liver microsomes, although the various metabolites formed have not been structurally defined yet (Kajita et al., 2000; Beulz-Riche et al., 2005). In combination with our mouse data, this also suggests that CYP3A4 and CYP3A5 may affect the oral and intravenous availability of vinorelbine in humans. These enzymes can display substantial inter- and intraindividual variation in expression and they are involved in many drug-drug interactions by either gene induction or direct inhibition, which could affect the therapeutic efficacy of vinorelbine.

We note that metabolism of vinorelbine by soluble (plasma) enzymes was thus far not tested (Kajita et al., 2000; Beulz-Riche et al., 2005). However, 4'-O-deacetylvinorelbine is a major vinorelbine metabolite found in both mouse and human plasma, and this metabolite is also pharmacodynamically active (van Tellingen et al., 1993; Briassoulis et al., 2009). It is therefore interesting to find that one (or more) plasma enzyme(s) can mediate substantial formation of this metabolite. It has previously been suggested that 4'-O-deacetylvinorelbine is formed by a carboxylesterase, but its identity has thus far not been resolved (e.g., Delord et al., 2009). In this study we have been able to identify mouse Ces2a as the most likely candidate for 4'-O-deacetylvinorelbine formation. We note that loperamide is a specific CES2 inhibitor with IC_{50} = 1 μM in humans, IC_{50} = −100 μM for dog, and IC_{50} = −35 μM for monkey (Williams et al., 2011). For mouse Ces2a, IC_{50} values for loperamide have thus far not been reported, but our results of −50% inhibition at a concentration of 100 μM are well in line with the IC_{50} values obtained in other animal species. Further experiments with recombinant mouse Ces2a, which is currently not available to us, could clarify these results further.

The up-regulation of Ces2a makes it difficult to interpret the combined effect of P-gp and Cyp3a deficiency in the Mdr1a/1b/Cyp3a(-/-) mice on vinorelbine availability, after either oral or intravenous drug administration. Presumably, without this up-regulation, the AUC of vinorelbine would have been considerably higher than that in the separate Mdr1a/1b(-/-) or Cyp3a(-/-) mice. This problem cannot be solved by considering the sum of vinorelbine and 4'-O-deacetylvinorelbine, because the further disposition and metabolism of either compound might be quite different. Any statement on the possible interaction between Cyp3a and Mdr1a/1b P-gp affecting vinorelbine availability therefore remains speculative. These findings once again illustrate that great caution should be exercised in the assessment of pharmacokinetic and related effects in knockout mouse strains, as there can sometimes be important changes in alternative detoxification pathways. This seems to be especially a risk with Cyp3a-deficient mouse strains (van Waterschoot et al., 2008 and the present study), although in the present study we also found up-regulation of some carboxylesterase genes in Mdr1a/1b(-/-) mice.

In summary, we have demonstrated a substantial in vivo impact of P-gp, Mrp2, and Cyp3a on vinorelbine availability.
and clearance in mice, as well as the involvement of a plasma carbomethyltransferase, most likely Ces2a. Variation in the activity of their human homologs is also likely to affect vinorelbine pharmacokinetics and therapeutic efficacy in patients.

Acknowledgments

We acknowledge Dr. Olaf van Tellingen (The Netherlands Cancer Institute) for help with the synthesis of 4-O-deacetylvinorelbine, which was used in the LC-MS/MS assay (Damen et al., 2009). We are grateful to Anita van Esch (The Netherlands Cancer Institute) for RT-PCR analysis and to Dr. Hilde Rosing and Abadi Gebretensae (Slotervaart Hospital) for LC-MS/MS analysis.

Authorship Contributions

Participated in research design: Lagas, Damen, van Waterschoot, and Schinkel.
Conducted experiments: Lagas, Damen, van Waterschoot, and Isuf.
Contributed new reagents or analytic tools: Beijnen.
Performed data analysis: Lagas, Damen, Isuf, and Schinkel.
Wrote or contributed to the writing of the manuscript: Lagas and Schinkel.

References