Sensory Nerve Terminal Mitochondrial Dysfunction Activates Airway Sensory Nerves via Transient Receptor Potential (TRP) Channels

Lika Nesuashvili, Stephen H. Hadley, Parmvir K. Bahia, and Thomas E. Taylor-Clark

Department of Molecular Pharmacology and Physiology, College of Medicine, University of South Florida, Tampa, Florida

Received December 7, 2012; accepted February 25, 2013

ABSTRACT

Mitochondrial dysfunction and subsequent oxidative stress has been reported for a variety of cell types in inflammatory diseases. Given the abundance of mitochondria at the peripheral terminals of sensory nerves and the sensitivity of transient receptor potential (TRP) ankyrin 1 (A1) and TRP vanilloid 1 (V1) to reactive oxygen species (ROS) and their downstream products of lipid peroxidation, we investigated the effect of nerve terminal mitochondrial dysfunction on airway sensory nerve excitability. Here we show that mitochondrial dysfunction evoked by acute treatment with antimycin A (mitochondrial complex III Qo site inhibitor) preferentially activated TRP1-expressing “nociceptor-like” mouse bronchopulmonary C-fibers. Action potential depression was reduced by the TRPA1 antagonist HC-030031. Inhibition of TRPV1 further reduced C-fiber activation. In mouse dissociated vagal neurons, antimycin A induced Ca\(^{2+}\) influx that was significantly reduced by pharmacological inhibition or genetic knockout of either TRPA1 or TRPV1. Inhibition of both TRPA1 and TRPV1 was required to abolish antimycin A-induced Ca\(^{2+}\) influx in vagal neurons. Using an HEK293 cell expression system, antimycin A induced concentration-dependent activation of both hTRPA1 and hTRPV1 but failed to activate nontransfected cells. Myxothiazol (complex III Qo site inhibitor) inhibited antimycin A-induced TRPA1 activation, as did the reducing agent dithiothreitol. Scavenging of both superoxide and hydrogen peroxide inhibited TRPA1 activation following mitochondrial modulation. In conclusion, we present evidence that acute mitochondrial dysfunction activates airway sensory nerves preferentially via TRPA1 through the actions of mitochondrial-derived ROS. This represents a novel mechanism by which inflammation may be transduced into nociceptive electrical signaling.

Introduction

There is growing evidence that mitochondrial dysfunction contributes to the complex mechanisms of multiple diseases. In addition to diseases of inherited and spontaneous mutations in nuclear or mitochondrial DNA (leading to altered mitochondrial protein expression) (Copeland, 2008), increased mitochondrial reactive oxygen species (ROS) production is thought to contribute to chronic inflammatory disease states such as type II diabetes mellitus, cardiovascular disease, asthma, and irritable bowel syndrome (Hall and Wiley, 1998; Rocha et al., 2010; Reddy, 2011; Chowdhury et al., 2013).

Mitochondria are present in the vast majority of nucleated cells including sensory nerves. ATP production is coupled to oxygen reduction by electron transport chain (ETC) proteins of the mitochondrial inner membrane. During normal physiologic conditions approximately 2% of oxygen undergoes incomplete reduction and produces the ROS superoxide.

Inefficiencies of ETC proteins in complexes I and III lead to excess superoxide production and, through a series of reactions, the downstream formation of ROS and lipid peroxidation products (e.g., 4-hydroxynonenal) (Karihtala and Soini, 2007). Although the mechanism of mitochondrial dysfunction in chronic inflammatory diseases is not well understood, numerous inflammatory signaling pathways increase mitochondrial ROS production either: 1) through the inhibition of complexes I or III [e.g., tumor necrosis factor α (Corda et al., 2001), neurotrophins via p75NTR (Pehar et al., 2007), and Toll-like receptors (West et al., 2011)]; or 2) through down-regulation of mitochondrial antioxidant enzymes by microRNAs (Aroor et al., 2012) and transforming growth factor β (Michaeloudes et al., 2011).

In the respiratory system, mitochondrial dysfunction and oxidative stress has been described in airway epithelial and smooth muscle cells in asthma and chronic obstructive pulmonary disease (Rabinovich et al., 2007; Mabalirajan et al., 2008; Aguilera-Aguirre et al., 2009). The airways and lungs are densely innervated with vagal sensory nerves. Interestingly, the peripheral terminals of these nerves, which...
innervate the submucosal and epithelial layers of the airways, contain a high density of mitochondria (Hung et al., 1973; von During and Andres, 1988). The vast majority of airway sensory nerves are “nociceptive,” i.e., they serve to protect the airways through the initiation of reflexes (cough, hypersecretion, bronchospasm) and sensations (dyspnea, itch, urge to cough) (Carr and Undem, 2003). As such there is considerable interest in understanding the mechanisms through which inflammation and other noxious stimuli activate these nerves and induce debilitating morbidity. Airway nociceptive nerves selectively express ion channels such as transient receptor potential vanilloid 1 (TRPV1) (Kollari et al., 2003) and transient receptor potential ankyrin 1 (TRPA1) (Nassenstein et al., 2008) that are activated by inflammatory mediators, oxidative stress, and downstream products of lipid peroxidation (Papatoutian et al., 2009). Previous studies have shown that activation of TRPV1 or TRPA1 leads to airway nociceptor-induced reflexes and thus produces symptoms similar to airway diseases (Fursberg et al., 1988; Carr and Undem, 2003; Andre et al., 2008). Based on the anatomic colocalization of mitochondria and TRP channels in peripheral nerve terminals, we propose that sensory nerve terminal mitochondrial modulation is linked to sensory nerve activation. Here we show that acute mitochondrial modulation activates airway vagal nociceptors predominantly through the gating of TRPA1 channels.

Materials and Methods

All experiments were approved by the University of South Florida Institutional Animal Care and Use Committee.

Dissociation of Mouse Vagal Ganglia. Male mice were killed by CO2 asphyxiation followed by exsanguination. Vagal ganglia were immediately isolated and enzymatically dissociated from wild-type C57BL/6J, TRPA1+/−, and TRPV1−/− mice (The Jackson Laboratory, Bar Harbor, ME), using previously described methods (Taylor-Clark et al., 2008a). Isolated neurons were plated onto poly-d-lysine and laminin-coated coverslips, incubated at 37°C in L-15 (supplemented with 10% fetal bovine serum [FBS]), and used within 24 hours.

Knockout Mice. Male TRPA1+/− (The Jackson Laboratory; B6; 129P-TRpa1tm1Kvkw/J) were mated with female TRPA1+/− mice (The Jackson Laboratory, Bar Harbor, ME), using previously described methods (Taylor-Clark et al., 2008a). Isolated neurons were plated onto poly-d-lysine and laminin-coated coverslips, incubated at 37°C in L-15 (supplemented with 10% fetal bovine serum [FBS]), and used within 24 hours.

Bromochromaline C-Fiber Extracellular Recordings. Male mice were killed by CO2 asphyxiation followed by exsanguination. The innervated isolated lung preparation was prepared as previously described (Taylor-Clark et al., 2008a, 2009). Briefly, the airways and lungs with their intact extrinsic innervation (vagus nerve including vagal ganglia) were taken and placed in a dissecting dish containing Krebs bicarbonate buffer solution composed of (mM): 118 NaCl, 5.4 KCl, 1.0 NaH2PO4, 1.2 MgSO4, 1.9 CaCl2, 25.0 NaHCO3, and 11.1 d-glucose, and equilibrated with 95% O2 and 5% CO2 (pH 7.3–7.4). Connective tissue was trimmed away leaving the trachea and lungs with their intact nerves. The airways were then pinned to the larger compartment of a custom-built two-compartment recording chamber that was lined with silicone elastomer (Sylgard). A vaginal ganlion was pulled into the adjacent compartment of the chamber through a small hole and pinned. Both compartments were separately superfused with Krebs bicarbonate buffer (37°C). A sharp glass electrode was pulled by a Flaming Brown micropipette puller (P-87; Sutter Instruments, Novato, CA) and filled with 3 M NaCl solution. The electrode was inserted and placed near the cell bodies of vagal ganglion. The recorded action potentials were amplified (Microelectrode AC amplifier 1800; A-M Systems, Everett, WA), filtered (0.3 kHz of low cut-off and 1 kHz of high cut-off), and monitored on an oscilloscope (TDS1002B; Tektronix, Beaverton, OR). The scaled output from the amplifier was captured and analyzed by a Macintosh computer using NeuroOFT software (Phocos, Baltimore, MD). To measure conduction velocity, an electrical stimulation (S44; Grass Instruments, Quincy, MA) was applied to the center of the receptive field. The conduction velocity of the individual bronchopulmonary afferent was calculated by dividing the distance along the nerve pathway by the time delay between the shock artifact and the action potential evoked by electrical stimulation. Drugs were intratracheally applied as a 1-nl bolus over 10 seconds. Inhibition of TRPA1 (HC-030031, 30 μM) or TRPV1 (iodoresiniferatoxin [I-RTX], 1 μM) was achieved by addition of these inhibitors to the perfusion (10-minute pretreatment). The viability of a given bronchopulmonary C-fiber terminal was determined by action potential discharge to mechanical (von Frey fibers) and chemical stimuli (α,β-methylene ATP (PX2, agonist, 30 μM). C-fibers were characterized for their expression of TRPA1 and TRPV1 channels by their response to selective TRPA1 agonists, cinna
dehyde (300 μM) or allyl isothiocyanate (AITC, 300 μM), and to the selective TRPV1 agonist capsaicin (1 μM). Due to a lack of TRPV1 channels in bronchopulmonary C-fibers from TRPV1−/− mice, “nociceptive” status was assessed solely by conduction velocity and the response to TRPA1 agonists (Kollari et al., 2003; Nassenstein et al., 2008). Due to the irreversible inhibition of complex III by antimycin (Potter and Reif, 1952; Slater, 1973; Turrens et al., 1985; Stowe and Camara, 2009), only one antimycin A treatment was used per preparation. Due to potential heterologous desensitization, capsaicin was only given at the end of each experiment. All excitatory chemical treatments were separated by wash of at least 15 minutes. Action potential discharge was quantified off-line and recorded in 1-second bins. A response was considered positive if the number of action potentials in any 1-second bin was twice the average background response. The background activity was usually either absent or less than 2 Hz. The peak frequency evoked by a stimulus was quantified as the maximum number of action potentials that occurred within any 1-second bin.

HEK293 Cell Culture. Wild-type nontransfected HEK293 cells (nt-HEK), stably expressing human TRPA1-HEK cells (hTRPA1-HEK) and stably expressing hTRPV1-HEK cells were previously obtained from GlaxoSmithKline. These HEK cells were cultured as previously described (Taylor-Clark et al., 2008a). Cells were maintained in an incubator (37°C, 5% CO2) in Dulbecco’s modified Eagle’s medium (containing 110 mg/l pyruvate and 564 mg/l-glutamine) supplemented with 10% FBS and 0.5% penicillin/streptomycin (nt-HEK cells) or 1% (G418-sulfate as a selection media (hTRPA1-HEK and hTRPV1-HEK cells). Transient expression of hTRPA1 was achieved by 24-hour incubation using a BacMam vector (3–5%; kind gift from Dr. M. A. Alexander, GlaxoSmithKline, King of Prussia, PA). Transient expression of hTRPA1 was used for all studies except for the MitoTracker imaging studies that instead used the stably transfected hTRPA1-HEK cell line. Cells were removed from their culture flasks by treatment with Accutase (Innovative Cell Technologies, San Diego, CA), then plated onto poly-d-lysine-coated coverslips, incubated at 37°C, and used within 24 hours.

Fluorescent Ca2+ Imaging. Cells were studied for changes in [Ca2+], with Fura-2 AM. Neuron-covered coverslips were incubated (37°C) with Fura-2 AM (8 μM, for 30 minutes) in L-15 medium containing 10% FBS. HEK293-covered coverslips were incubated (at 37°C) in Dulbecco’s modified Eagle’s medium (containing 110 mg/l pyruvate and 564 mg/l-glutamine, supplemented with 10% FBS) with Fura-2 AM (8 μM, for 30 minutes). For imaging, the coverslip was placed in a custom-built heated chamber (bath volume of 300 μl) with Fura-2 AM (8 μM, for 30 minutes) in L-15 medium. Fluorescent Ca2+ imaging was performed using an inverted microscope (BX51; Olympus) or a confocal microscope (FV1000; Olympus). Cells were excited at 340 and 380 nm (emission 510 nm), measured by digital microscopy.
(CoolSnap HQ2; Photometrics, Surrey, BC, Canada), and analyzed by specialized software (Nikon Elements; Nikon, Melville, NY). The ratio images were acquired every 6 seconds. At the end of the dissociated neuronal studies, neurons were exposed to KCl (75 mM, 60 seconds) to confirm voltage sensitivity. At the end of all Fura-2 AM experiments, cells were exposed to ionomycin (5 μM, 60 seconds) to obtain a maximal response. Only one antimycin A treatment was used per preparation. Concentration response curves represent unpaired observations.

For the analysis of \([Ca^{2+}]_i\), we used the excitation ratio 340 nm/380 nm and related all measurements to the peak positive response in each cell. This approach bypasses the conversion of ratiometric responses into absolute \([Ca^{2+}]_i\), using Tsien parameters; thus, we avoided the requirements for calibrating the Fura-2 \(R_{min}\), \(R_{max}\), and \(b\) values for each recorded cell. Given that mammalian cells are heterogeneous with respect to their de-esterification of Fura-2 AM following uptake, raw ratiometric responses should not be compared quantitatively between individual cells. Thus we have chosen to normalize ratiometric responses at each timepoint in each cell to its maximum \([Ca^{2+}]_i\) (evoked by the Ca²⁺ ionophore ionomycin)—data were presented as the percentage change in 340 nm/380 nm ratio (\(R\)); response at time (\(x\)) = \(100 \times (R_x - R_0) / (R_{max} - R_0)\), where \(R_x\) was the 340 nm/380 nm ratio of the cell at a given time point, \(R_0\) was the cell’s mean baseline 340 nm/380 nm ratio measured over 60 seconds, and \(R_{max}\) was the cell’s peak 340 nm/380 nm ratio. This normalization allows for quantitative comparisons between cells (Taylor-Clark et al., 2008a, 2009). Only cells that had low \([Ca^{2+}]_i\) at baseline (\(R < 1.3\)) and yielded a robust response to the positive control were included in analyses. Data are presented in the text as mean peak response as a percentage of ionomycin peak or, for the inhibitor/knockout studies, as the mean response against time for the duration of antimycin A treatment (as a percentage of ionomycin peak). For concentration-response data, the pooled unpaired data were fitted with nonlinear regression curve fitting software (Prism; GraphPad Software, La Jolla, CA) using the following equation:
\[
y = \min + \frac{\max - \min}{1 + 10^{(\log EC_{50} - x) \times H}}
\]
where \(y\) is the normalized response and \(x = \log [\text{antimycin A}]\). \(EC_{50}\) values mentioned in the text refer to 50% response of antimycin A’s maximum response.

Patch-Clamp Electrophysiology. Recordings from nt-HEK, HEKs transiently expressing hTRPA1, and hTRPV1-HEK cells were made at room temperature (20–23°C) using whole-cell, perforated patch-clamp, or single-channel recording techniques as previously described (Taylor-Clark et al., 2008b, 2009). Membrane currents were recorded and analyzed using a MultiClamp 700B amplifier, Digidata 1440A and pClamp 10 acquisition software (Molecular Devices, Sunnyvale, CA). Current signals were sampled at 100 KHz and filtered at 5 KHz (using an 8-pole Bessel filter) for whole cell recording or sampled at 2 KHz and filtered at 0.1 KHz for single-channel recording.

Whole-Cell and Perforated Patch Recording. Patch pipettes were fabricated from 1.5-mm o.d., 1.1-mm i.d. borosilicate glass (Sutter Instrument Co., CA) and fire-polished. Pipettes for whole-cell (3–5 MΩ) or perforated-patch recording (1–3 MΩ) were filled with solution composed of (mM): 130 CsCl, 1 CaCl₂, 2 MgCl₂, 10 HEPES, 10 dextrose, 11 EGTA, and 5 Na-triphosphate; adjusted to pH 7.2 with NaOH. Na-triphosphate was used to prevent rundown of TRPA1 responses (Kim and Cavanaugh, 2007). Perforation was achieved using 5 μg/ml gramicidin. Cells on a coverslip were superfused at 8 ml/min with HEPES-buffered bath solution [composition (mM): 154 NaCl, 4.7 CsCl, 2.0 MgCl₂, 0.01 CaCl₂, 10 HEPES, 5.6 dextrose; adjusted to pH 7.4 with NaOH]. Cells were voltage-clamped at 0 mV and 500-millisecond voltage ramps from −80 mV to +80 mV were applied every second. Currents evoked by voltage ramps were analyzed at −70 mV or +70 mV. Only one antimycin A treatment was used per cell. TRP channel inhibitors were added 2 minutes after antimycin A to indicate TRP-dependent currents (paired experiments).

Single-Channel Inside-Out Patch Recording. Patch pipettes were fabricated from 1.5-mm o.d., 0.75-mm i.d. borosilicate glass, the tips coated in Sylgard 184 (Dow Corning, Midland, MI) and fire-polished. Pipettes, when filled, had resistances of 5–9 MΩ. The bath and pipette solution comprised (in mM): 126 NaCl, 4 KCl, 2 EGTA (no Ca²⁺ added), 1 MgCl₂, 10 HEPES, 5 glucose, and 5 Na-triphosphate [to prevent TRPA1 rundown (Kim and Cavanaugh, 2007)]; adjusted to pH 7.3 with NaOH. The patch was held at 90 mV, then the presence of TRP channels was confirmed by conductances obtained in a series of voltage steps: 100 milliseconds from −60 mV to +60 mV in 20-mV steps. Excised patches were held at +40 mV and current recordings made for 10 minutes. Antimycin A was applied for 3 minutes followed by ATTC or capsacin for 1–3 minutes. Digitized data were analyzed (pClamp 10.0; Molecular Devices) to obtain channel activity (\(NP_{1/2}\), in which \(N\) is the number of channels in the patch and \(P_{1/2}\) is the open probability) and amplitude histograms for single-channel conductance. Due to the variability in the frequency of single-channel openings under control conditions, the final data are expressed as the relative change in open probability upon drug treatment. Only one antimycin treatment was used per patch. ROS scavengers were added prior to antimycin A treatment (unpaired comparison with control).

Imaging of Membrane-Bound Mitochondria. nt-HEK293, hTRPA1-HEK, and hTRPV1-HEK on coverslips were incubated for 30 minutes at 37°C with MitoTracker Orange CMTMRos (250–500 ng/ml; Life Technologies, Carlsbad, CA). Cells were then perfused using whole-cell bath solution and inside-out excised patches pulled using pipettes backfilled with whole-cell pipette solution as described above. Fluorescence was observed using an X-Cite 120Q fluorescent light source (EXFO Inc., Quebec City, QC, Canada) and a rhodamine filter. Images were obtained using a Retiga Exi Fast 1394 camera and captured using QCapture software (QImaging, Surrey, BC, Canada).

Statistical Analysis. Data were analyzed using GraphPad software. Where appropriate paired or unpaired Student’s t-tests were used. A \(P\) value less than 0.05 was taken as significant. All data were expressed as mean ± S.E.M. unless otherwise noted.

Chemicals. ATTC, antimycin A, catalase, cinnaimaldehyde, glutathione, MnTMPyP, and superoxide dismutase were purchased from Sigma-Aldrich (St. Louis, MO); Tempol, HC-060031, ruthenium red, and capsacin were purchased from Tocris (Ellisisville, MO). Fura-2 AM was purchased from TEF Labs (Austin, TX). 5'-Iodoresiniferatoxin was purchased from Alomone Laboratories (Jerusalem, Israel).

Results

Mitochondrial Modulation Activates Nociceptive Airway Vagal Nerves. To test whether modulation of nerve terminal mitochondria play a role in vagal sensory nerve activation we used the selective ETG complex III inhibitor antimycin A. Antimycin A inhibits the Q, site on complex III, redirecting electrons along the transport chain, and causing the incomplete reduction of available \(O_2\), thus resulting in superoxide formation in isolated mitochondria (10 nM to 10 μM) (Potter and Reif, 1952; Slater, 1973; Turrens et al., 1985; Gylukhandanyan and Pennefather, 2004; Stowe and Camara, 2009) and intact cells (0.5–50 μM) (Li et al., 2003; Kim and Usachev, 2009; Liu et al., 2010; Gonzalez-Dosal et al., 2012). To study the mitochondria that are densely packed within bronchopulmonary sensory nerve terminals (von Dura and Andres, 1988), we have used a mouse ex vivo lung-vagal ganglia preparation in which drug treatments are perfused through the isolated lung and the action potential discharge of individual bronchopulmonary sensory nerves is recorded by an extracellular electrode micro-positioned in the vagal ganglia. The majority of bronchopulmonary sensory fibers are slowly conducting nociceptive c-fibers that serve to protect the airways from noxious stimuli by evoking defensive reflexes.
(Carr and Undem, 2003). We have previously shown that these nociceptive fibers express TRPV1 and TRPA1 channels (Nassenstein et al., 2008; Taylor-Clark et al., 2008a, 2009). Here, bronchopulmonary fibers were characterized by conduction velocity and responses to selective agonists for TRPA1 (cinnamaldehyde, 300 \(\mu \)M; and AITC, 300 \(\mu \)M), and TRPV1 (capsaicin, 1 \(\mu \)M) using concentrations previously shown to be selective for specific TRP channels (Caterina et al., 1997; Kollarik et al., 2003; Jordt et al., 2004; Macpherson et al., 2007; Nassenstein et al., 2008). As expected, capsaicin activated the vast majority of slowly conducting c-fibers (conduction velocity <0.7 m/s, mean peak response 14.2 \(\pm \) 1.9Hz) (Kollarik et al., 2003). Approximately half of these nociceptive-like fibers (46/86) also responded to TRPA1 agonists. Fast conducting (>0.7 m/s) fibers did not respond to either TRPA1 or TRPV1 agonists, which is consistent with previous reports describing the non-nociceptive nature of fast conducting airway nerves (Kollarik et al., 2003; Undem et al., 2004).

We chose the concentration of 20 \(\mu \)M antimycin A for these neuronal studies based upon previous studies in intact cells (Li et al., 2003; Kim and Usachev, 2009; Liu et al., 2010; Gonzalez-Dosal et al., 2012). This concentration is expected to produce near maximal inhibition of complex III and evoke substantial superoxide production. Antimycin A (20 \(\mu \)M) caused robust action potential discharge in slowly-conducting nociceptive (i.e., TRPV1-expressing) sensory nerves (Fig. 1A). The peak discharge in response to antimycin A in TRPA1-expressing nociceptors (7.5 \(\pm \) 1.9 Hz, \(n = 17 \)) was significantly higher than in nociceptors not expressing TRPA1 (2.5 \(\pm \) 1.0 Hz, \(n = 22, P < 0.02 \)). Antimycin A failed to activate non-nociceptors (0.5 \(\pm \) 0.4 Hz, \(n = 11 \)). These results suggest that acute modulation of sensory nerve terminal mitochondria selectively activates a major subset of nociceptive nerves innervating the airways. Regardless of conduction velocity or sensitivity to TRP channel ligands, these bronchopulmonary fibers continued to demonstrate electrical excitability up to 1 hour after antimycin A treatment.

Next we tested whether antimycin A-induced nerve activation is due to direct effects on the nerve mitochondria or is mediated through its actions on neighboring cells in the lung. We studied the effect of mitochondrial modulation on dissociated vagal sensory neurons using \(\text{Ca}^{2+} \) imaging. Preliminary studies demonstrated that 80% of dissociated vagal neurons were activated by AITC (100 \(\mu \)M) and 74% by capsaicin (1 \(\mu \)M) (unpublished data), similarly to our previous studies (Taylor-Clark et al., 2008a, 2008b, 2009). Antimycin A (20 \(\mu \)M) increased \([\text{Ca}^{2+}]_i\) in 298 out of 320 neurons (peak response 36.0 \(\pm \) 1.5% of ionomycin response), comparable to the magnitude of AITC and capsaicin responses, indicating that antimycin A directly activated sensory neurons in an environment devoid of other cell types (e.g., epithelial cells, smooth muscle cells) (Fig. 1B). In the absence of extracellular \(\text{Ca}^{2+} \), antimycin A failed to increase \([\text{Ca}^{2+}]_i\) in dissociated vagal sensory neurons (\(n = 59 \)), indicating that antimycin A increases \([\text{Ca}^{2+}]_i\) through the gating of \(\text{Ca}^{2+} \)-permeable ion channels in the plasma membrane (unpublished data).

TRPA1 and TRPV1 Channels Are Critical for Mitochondrial Modulation-Induced Nerve Activation. Given that acute mitochondrial modulation by antimycin A is likely to produce ROS and that ROS are capable of activating TRPA1 (Andersson et al., 2008; Sawada et al., 2008; Takahashi et al., 2008) and TRPV1 (Susankova et al., 2006; Taylor-Clark et al., 2008a; Chuang and Lin, 2009), we hypothesized that the selective activation of vagal nociceptors by antimycin A was due to the indirect gating of these channels. We first addressed this hypothesis using the selective TRPA1 inhibitor HC-030031 (IC\(_{50} \sim 1 \mu \)M, McNamara et al., 2007) and the selective

![Fig. 1. Antimycin A activates nociceptive vagal sensory neurons.](image-url)
TRPV1 inhibitor 5'-iodoresiniferatoxin [I-RTX; IC$_{50}$ ~ 5 nM (Wahl et al., 2001)]: we have previously shown these inhibitors selectively and potently inhibit AITC (TRPA1)- and capsaicin (TRPV1)-induced responses in sensory nerves, respectively (Taylor-Clark et al., 2008a,b). Three-minute pretreatment with the selective TRPA1 inhibitor HC-030031 (30 µM) significantly decreased antimycin A-induced Ca$^{2+}$ influx (mean response 13.3 ± 1.0%, n = 171, P < 0.05) compared with control (mean response 26.3 ± 1.1%, n = 298) in dissociated vagal neurons (Fig. 2, A and C). As expected HC-030031 abolished AITC-induced neuronal activation but had no effect of capsaicin responses (data not shown). Three-minute pretreatment with the selective TRPV1 inhibitor I-RTX (500 nM) also reduced antimycin A-induced neuron activation, albeit to a lesser extent (mean response 17.3 ± 2.2%, n = 165 P < 0.05). As expected I-RTX abolished capsaicin-induced neuronal activation but had no effect of AITC responses (unpublished data). These findings were supported by complementary knockout studies (Fig. 2, B and C). Antimycin A evoked significantly less Ca$^{2+}$ influx in vagal sensory neurons derived from TRPA1$^{-/-}$ mice (mean response 11.3 ± 1.7%, n = 81, P < 0.05) compared with wild-type neurons. Responses to antimycin A were also reduced in vagal sensory neurons from TRPV1$^{-/-}$ mice (mean response 21.3 ± 1.4%, n = 137, P < 0.05). There was no significant difference between the pharmacological inhibition and genetic ablation of TRPA1 in decreasing antimycin A-induced Ca$^{2+}$ influx. There was also no significant difference between the pharmacological inhibition and genetic ablation of TRPV1 in decreasing antimycin A-induced Ca$^{2+}$ influx. These studies suggest that both TRPA1 and TRPV1 contribute to antimycin A-induced neuronal responses. Furthermore, antimycin A-induced activation was completely abolished in TRPA1$^{-/-}$ mouse vagal neurons in the presence of TRPV1 inhibitor I-RTX (mean 0.0 ± 0.8%, n = 50, P < 0.05) (Fig. 2, B and C). Thus the Ca$^{2+}$ influx evoked by acute mitochondrial modulation is dependent mostly on the activation of TRPA1 and, to a lesser extent, TRPV1.

We next studied the mechanism underlying the action potential discharge from bronchopulmonary C-fiber terminals evoked by antimycin A (Fig. 3). Again, fibers were identified as “TRPA1-expressing” by their response to selective TRPA1 ligands (cinnamaldehyde and AITC) and as “nociceptors” by their conduction velocity (and by capsaicin sensitivity for wild-type C-fibers). We hypothesized that TRPA1 would contribute to the antimycin A-induced activation of TRPV1-expressing bronchopulmonary C-fibers. Indeed, 10-minute pretreatment of TRPA1-expressing nociceptors from wild-type mice with TRPA1 channel antagonist HC-030031 (30 µM) decreased antimycin A-induced action potential discharge (peak discharge of 1.6 ± 0.7 Hz, n = 9, P < 0.01) compared with control (7.5 ± 1.9 Hz), suggesting that TRPA1 channels are critical to the initiation of action potentials from the nerve terminal (Fig. 3, left). Consistent with our hypothesis indicating that neuronal mitochondrionally-derived ROS (see below) are sufficient to mediate antimycin A-induced nerve activation, 10-minute pretreatment with a membrane-impermeable antioxidant glutathione (GSH, 3 mM) had no effect on antimycin A-induced action potential discharge (7.8 ± 2.6 Hz, n = 5, P > 0.4). Our studies also demonstrated a possible role of TRPV1 in the nerve terminal responses to mitochondrial modulation. Antimycin A evoked decreased action potential discharge from TRPA1-expressing fibers from TRPV1$^{-/-}$ mice (peak discharge 4.3 ± 1.2 Hz, n = 10, P = 0.08), although this did not reach significance compared with controls (Fig. 3, middle). However, in wild-type nociceptors that did not express TRPA1 (as determined by a lack of response to TRPA1 selective agonist), the TRPV1 inhibitor I-RTX (1 µM) produced a significant reduction in antimycin A-induced nerve activation (peak discharge 0.6 ± 0.3 Hz, n = 10, P < 0.05; compared with 2.5 ± 1.0 Hz, n = 22 without I-RTX), indicating the residual non-TRPA1-mediated antimycin A-induced action potential discharge was due to the activation of TRPV1 (Fig. 3, right). Therefore, similar to findings in dissociated vagal neurons, the action potential discharge in bronchopulmonary C-fibers evoked by antimycin A was due to the activation of TRPA1 and, to a lesser extent, TRPV1.

Mitochondrial Modulation Activates TRPA1 and TRPV1 in HEK293 Cells. TRP channels are membrane-bound polymodal cation-permeable channels that can be activated by multiple stimuli (Patapoutian et al., 2009). We further studied the interaction of mitochondrial function and TRPA1 and TRPV1 in HEK293 cells. At concentrations

![Image](https://example.com/image.png)
sufficient to selectively inhibit ETC complex III in intact cells (0.5–20 μM) (Li et al., 2003; Kim and Usachev, 2009; Liu et al., 2010; Gonzalez-Dosal et al., 2012), antimycin A caused an increase in 340 nm/380 nm ratio in Fura 2 AM-loaded HEK293 cells transiently expressing hTRPA1, indicating an increase in [Ca²⁺], and TRPA1 activation (Fig. 4, A and B).

The effect of antimycin A on TRPA1 channel activation was concentration-dependent and the relationship was fitted with nonlinear regression, indicating an apparent EC₅₀ of 1.8 μM (95% confidence interval, 1.4–2.4 μM), a Hill slope of 2.8 (95% confidence interval 0.5–5.2), and an R² goodness-of-fit of 0.99. Antimycin failed to activate nt-HEK cells. Consistent with the activation of the cation-permeable TRP channel, the antimycin A-induced increase in [Ca²⁺] in HEKs expressing hTRPA1 was dependent on Ca²⁺ influx—the response was absent in the absence of external calcium (n = 59, unpublished data). Studies of stably transfected hTRPV1-HEK cells indicated that TRPV1 was also activated by antimycin A in a concentration-dependent manner, albeit to a lesser extent (Fig. 4, A and B).

We investigated the effect of antimycin A on TRP channel currents using whole-cell patch clamp electrophysiology. To maximize the putative TRP currents following antimycin A treatment we chose to use 10 μM antimycin A (identified as a maximal dose in our Ca²⁺ imaging studies of HEK293 cells). To prevent rundown of TRPA1 currents, we added 5 mM Na-triphosphate to the pipette solution (Kim and Cavanaugh, 2007). In these studies, outwardly rectifying currents (reversing at 0 mV) were evoked by AITC and capsaicin as expected: HEK cells transfected with hTRPA1 responded to AITC (30 μM, control: −69 ± 20 pA at −70 mV, 127 ± 19 pA at +70 mV; AITC: −102 ± 184 at −70 mV, 1906 ± 251 pA at +70 mV (P < 0.01)) and hTRPV1-HEK cells responded to capsaicin (300 nM, control: −41 ± 5 pA at −70 mV, 93 ± 11 pA at +70 mV; capsaicin: −389 ± 128 at −70 mV, 948 ± 194 pA at +70 mV (P < 0.01)). Antimycin A (10 μM) failed to increase currents in nt-HEK cells (n = 5) (Fig. 5A). However, we found that antimycin A evoked outwardly rectifying currents in HEKs transfected with TRPA1 (n = 16, P < 0.001) that were subsequently inhibited by the selective TRPA1 inhibitor HC-030031 (30 μM, n = 6, P < 0.01) (Fig. 5B). In whole-cell patch clamp recordings of hTRPV1-HEK cells, antimycin A (10 μM) failed to evoke detectable currents (n = 5, unpublished data). However in gramicidin-perforated patch clamp recordings antimycin A (10 μM) evoked small but significant outwardly rectifying currents (n = 7, P < 0.05) that were subsequently inhibited by the TRP channel blocker ruthenium red (30 μM, P < 0.05) (Fig. 5C). In addition, in one cell, antimycin A-induced hTRPV1 currents were abolished by the selective TRPA1 inhibitor I-RTX (500 nM, unpublished data). The lack of detectable currents in whole-cell patch clamp recordings of hTRPV1-HEK cells may be due to the combination of a weak activation of TRPV1 following acute mitochondrial modulation and the dilution of soluble factors required for the channel activation.

Mechanism of Antimycin A-Induced TRPA1 Activation. Given the preferential role of TRPA1 in mitochondrial modulation-induced nociceptive neuronal activation, we further investigated the mechanism underlying the TRPA1 activation. TRPA1 can be activated through multiple mechanisms, including N-terminal cysteine modification (by ROS and lipid peroxidation products) (Hinman et al., 2006; Macpherson et al., 2007), intracellular Ca²⁺ (Zurborg et al., 2007), and noxious cold temperatures (Story et al., 2003). Selective inhibition of the Qₐ site in mitochondrial ETC complex III by antimycin A (±50 μM) causes mitochondrial membrane potential depolarization and substantial superoxide production (Potter and Reif, 1952; Slater, 1973; Turrens et al., 1985; Gyulkhandanyan and Pennefather, 2004; Stowe and Camara, 2009). Given TRPA1’s sensitivity to ROS and
downstream lipid peroxidation products we therefore hypothesized that antimycin A activated TRPA1 indirectly via the mitochondrial production of ROS. TRPA1 is rapidly activated following antimycin A treatment (see Fig. 4). Given the difficulty in complete elimination of evoked mitochondrial ROS within this limited timeframe (and prior to TRPA1 activation), we chose to use 2 μM antimycin A (approximately EC50 for TRPA1 activation) in the following mechanistic studies.

We first addressed this hypothesis using myxothiazol, an inhibitor of the Qo site on complex III. Inhibition of Qo causes mitochondrial membrane potential depolarization but only very mild superoxide production (Turrens et al., 1985; Gyulkhandanyan and Pennefather, 2004; Tretter et al., 2007). Furthermore, selective inhibition of Qo (myxothiazol) substantially reduces subsequent superoxide production evoked by inhibition of the Qo site (antimycin A) (Turrens et al., 1985; Gyulkhandanyan and Pennefather, 2004; Tretter et al., 2007). Myxothiazol (200 nM) evoked a mild initial increase in [Ca2+]i in both nt-HEK (n = 68) and HEK293 cells transiently expressing hTRPA1 (n = 137), although this response decreased to a greater extent in nt-HEK upon washout. It is possible that the TRPA1-mediated responses immediately following myxothiazol washout are due to limited ROS production by the Qo site inhibitor. Following myxothiazol treatment, 2 μM antimycin A-induced TRPA1 activation was reduced (peak response 10.8 ± 2.0% ionomycin) compared with controls (peak response 35.6 ± 2.1% ionomycin, n = 103, P < 0.05) (Fig. 6A). Importantly, direct activation of hTRPA1 by AITC (100 μM) was unaffected by myxothiazol pretreatment. Thus we conclude that antimycin A indirectly activates TRPA1 in a manner that is dependent on superoxide production from the Qo site of complex III.

Superoxide can be converted into H2O2 by superoxide dismutase (SOD) enzymes in both the mitochondrial matrix (SOD2) and the cytosol (SOD1); H2O2 is then broken down by catalase. Both superoxide and H2O2 have been shown to activate TRPA1 (Andersson et al., 2008; Sawada et al., 2008; Takahashi et al., 2008). To investigate the role of ROS in mitochondrial modulation-induced TRPA1 activation we used tempol [SOD mimic (Krishna et al., 1996)] and MnTMPyP [combined SOD and catalase mimic (Faulkner et al., 1994; Day et al., 1997)] (Fig. 6, B and C). For tempol pretreatment, cells were first incubated for 90 minutes in 1 mM tempol, followed by 10-minute perfusion pretreatment with 100 μM tempol. Tempol had little effect on 2 μM antimycin A-induced TRPA1 activation (n = 213). Fifteen-minute perfusion pretreatment with MnTMPyP (50 μM) reduced antimycin A-induced TRPA1 activation: mean response over 180 seconds was 16.8 ± 2.9% (n = 58) compared with 26.5 ± 9.0% in controls (n = 628, P < 0.05). A combination of tempol and MnTMPyP further reduced antimycin A-induced TRPA1 activation (mean response over 180 seconds was 6.7 ± 1.6%, n = 55, P < 0.05), indicating that ROS were critical for the activation of TRPA1 following mitochondrial modulation. None of the tempol/MnTMPyP treatments reduced direct activation of hTRPA1 by AITC (100 μM).

ROS can activate TRPA1 directly through reversible modification of N-terminal cysteines (Andersson et al., 2008; Takahashi et al., 2008). In addition, ROS are able to initiate peroxidation of unsaturated phospholipids (Karhitala and Soini, 2007), increasing the local concentration of compounds with α,β-unsaturated carbonyl moieties (e.g., 4-hydroxynonenal) that directly activate TRPA1 through modification of N-terminal cysteines via Michael addition reactions (Trevisani et al., 2007). We investigated the mechanism by which ROS evoked by mitochondrial modulation activated TRPA1 (direct versus indirect) using the reducing agent dithiothreitol (DTT). DTT prevents and reverses sulphydryl group oxidation/disulfide bond formation of exposed cysteine residues by hydrogen peroxide and other ROS (Getz et al., 1999), and has previously been shown to prevent and reverse TRPA1 activation by these compounds (Andersson et al., 2008; Sawada et al., 2008; Takahashi et al., 2008). However, DTT has no effect on cysteine modifications by α,β-unsaturated...
Fig. 5. Antimycin A induces the activation of TRPA1 and TRPV1 channels. Whole-cell currents evoked under control conditions (black line) and during antimycin A (AntA; 10 μM, dark gray line) treatment. (A) nt-HEK cells: (left) representative I-V relationship and (right) mean ± S.E.M. currents at −70 and +70 mV (right). (B) hTRPA1-expressing HEKs without and with HC-030031 (HC, 30 μM, light gray line); representative I-V relationship (left), representative current response [(lower left) −70 (gray squares) and +70 mV (black squares)] against time, and mean ± S.E.M. currents at −70 and +70 mV (right). (C) Perforated patch of hTRPV1-expressing HEKs without and with ruthenium red (RR, 30 μM, light gray line); representative I-V relationship (left) and mean ± S.E.M. currents at −70 and +70 mV (right). *Significant increase in currents compared with control conditions (P < 0.05); #significant reduction by inhibitor (P < 0.05).
MitoTracker Orange, we found specific mitochondrial fluorescence in five out of five inside-out patches from nt-HEK cells, five out of five patches from stably transfected hTRPA1-HEK, and three out of three patches from stably transfected hTRPV1-HEK (Fig. 7, F and G, and unpublished data). To confirm that excised-patch mitochondria were responsible for the antimycin A-induced TRPA1 activation, we pretreated the inside-out patch for 4 minutes with a combination of tempol (100 μM), SOD (10 IU/ml), and catalase (100 IU/ml). ROS scavenging by this combination of tempol and enzymes significantly inhibited the antimycin A-induced increase in TRPA1 open probabilities (n = 4, P < 0.05). Similar to the Ca2+ imaging studies, the scavenging of ROS had no effect on direct activation of TRPA1 by AITC (10 μM, unpublished data).

Discussion

Mitochondrial function is altered in airway inflammatory disease states such as asthma and chronic obstructive pulmonary disease (Rabinovich et al., 2007; Mahalirajan et al., 2008; Aguilera-Aguirre et al., 2009). Given that peripheral sensory nerve terminals are densely packed with mitochondria (Hung et al., 1973; von During and Andres, 1988), we investigated the effect of mitochondrial modulation on sensory nerve function. In the present study we have shown that acute mitochondrial dysfunction selectively activates nociceptive vagal nerves and fails to activate non-nociceptive nerves. Nociceptive nerves protect the innervated organ through the initiation of reflexes and behavioral responses (Carr and Undem, 2003). Thus we present evidence of a novel mechanism by which nocifensive airway responses can be evoked.

We found that 20 μM antimycin A caused action potential discharge in nociceptive bronchopulmonary C-fibers and also activated dissociated vagal nociceptive neurons (as assessed by Ca2+ imaging), suggesting that neuronal mitochondria were sufficient for the antimycin A-induced responses. The antimycin A-induced increase in [Ca2+]i was dependent on...
Fig. 7. Antimycin A evokes single-channel TRPA1 currents in inside-out patches due to the presence of mitochondria in excised patches. (A) Representative recordings of single-channel activities in inside-out patches held at +40 mV from HEK cells transiently expressing hTRPA1 (top, three channels) and hTRPV1 (bottom, 1 channel) before and after exposure to AITC (10 μM) or capsaicin (300 nM). Dotted lines indicate currents through a single ion channel. Marker denotes 2 pA and 2 seconds. (B) Mean ± S.E.M. I-V relationship for individual TRPA1 (n = 13, left) and TRPV1 single channel recordings (n = 4, right) derived from 100-ms voltage steps under control conditions. (C) Representative single-channel activities in response to antimycin A (10 μM) in inside-out patches held at +40 mV from nt-HEK cells (top) and HEK cells expressing hTRPA1 (middle, two channels) or hTRPV1 (bottom, 1 channel). Dotted lines indicate currents through a single ion channel. Marker denotes 2 pA and 2 seconds. (D) Representative current amplitude histograms of an inside-out patch containing a single TRPA1 channel before (top) and after antimycin A (bottom). Data fitted by Gaussian distribution (mean ± S.D. indicated). (E) Mean ± S.E.M. relative change in channel opening probability in response to antimycin A. *Significant increase compared with nt-HEK (P < 0.05). (F and G) Representative images of inside-out excised patches from HEK293 cells. Arrow indicates the location of the patch (note that the patch is in focus but in a different focal plane to neighboring cells). Line denotes 15 μm. (F) Inside-out patch from unlabeled nt-HEK cell in brightfield (left) and under rhodamine fluorescence (right). Note the lack of fluorescence in the patch. (G) Rhodamine fluorescence of patch pipette before (left, combination of brightfield and fluorescence images) and after (right, fluorescence image only) inside-out patch excision from nt-HEK cell labeled with MitoTracker Orange (500 ng/ml). Note the presence of mitochondria in the patch. (H) Representative single-channel activities in the...
extracellular Ca$^{2+}$, indicating that plasma membrane ion channels were involved. Bronchopulmonary single nerve fiber recordings showed that nociceptors expressing TRPA1 had significantly greater action potential discharge in response to antimycin A than the nociceptors not expressing TRPA1. Pharmacologic (HC-030031) or genetic blockade of TRPA1 significantly decreased both the action potential discharge in TRPA1-expressing nociceptive bronchopulmonary nerves and the Ca$^{2+}$ influx in vagal neurons, indicating that TRPA1 was the major molecular transduction mechanism for antimycin A-induced nerve activation. The contribution of TRPV1 to antimycin A-induced sensory nerve activation was not as prominent or consistent. The TRPV1 antagonist 1-RTX or genetic knockout of TRPV1 caused a minor but significant reduction in antimycin A-induced Ca$^{2+}$ influx in vagal neurons. Indeed, blockade of both TRPA1 and TRPV1 was required to abolish the antimycin A-induced Ca$^{2+}$ influx response. However, in recordings from bronchopulmonary C-fiber nerve terminals, inhibition of TRPV1 only caused significant reductions in the action potential discharge from fibers that did not express TRPA1. Thus, antimycin A responses are largely mediated by TRPA1, with residual responses due to TRPV1 activation. We have previously shown preferential action potential discharge from bronchopulmonary C-fibers via TRPA1 (as opposed to TRPV1) in response to 4-oxononenal, a product of lipid peroxidation that activates TRPA1 and TRPV1 in Ca$^{2+}$ imaging studies (Taylor-Clark et al., 2008a).

TRP channels are polymodal nonselective cation channels (Patapoutian et al., 2009). TRPV1 and TRPA1 are almost exclusively expressed on nociceptive nerves (Caterina et al., 1997; Jorj et al., 2004). TRPA1 is activated by oxidant/electrophilic compounds derived from plants (Jorj et al., 2004), pollution (Bautista et al., 2006), inflammation and oxidative stress (Trevisani et al., 2007; Andersson et al., 2008; Taylor-Clark et al., 2008a,b), and also by nonelectrophilic compounds such as menthol and cannabinoids (Jorj et al., 2004). TRPV1 is activated by capsaicin, protons, heat, and inflammatory mediators (Caterina et al., 1997; Hwang et al., 2000), and there is evidence to suggest that TRPV1 is also activated by certain electrophilic compounds (Salazar et al., 2008; Taylor-Clark et al., 2008a). Here, consistent with our neuronal data, we found that in heterologous cell systems both TRPA1 and TRPV1 were activated by antimycin A. Antimycin A induced Ca$^{2+}$ influx and evoked outwardly rectifying currents in hTRPA1- and hTRPV1-expressing HEK cells that were blocked by the selective TRPA1 inhibitor HC-030031 and the TRP channel blocker ruthenium red, respectively. Both Ca$^{2+}$ imaging and whole-cell patch data indicated that TRPA1 was more robustly activated following mitochondrial modulation than TRPV1. Antimycin A activated heterologously-expressed TRPA1 between 0.5 μM and 20 μM, consistent with previous reports of superoxide production by antimycin A at these concentrations in intact cells (Li et al., 2003; Kim and Usachev, 2009; Liu et al., 2010; Gonzalez-Dosal et al., 2012). Curve-fitting analysis demonstrated an apparent EC$_{50}$ of ~2 μM with a Hill slope of ~3. It is difficult to place firm conclusions on the biologic significance of this Hill slope value given that the hypothesized mechanism linking antimycin A with TRPA1 activation involves multiple components [i.e., complex III inhibition by antimycin, superoxide production, ROS processing (overcoming catalysis, conversion to other ROS), reaction with multiple cysteines on TRPA1, Ca$^{2+}$ modulation of TRPA1 currents]. In our neuronal preparations, 20-μM antimycin A also produced substantial TRP-dependent vagal neuron activation. However, we did not determine a concentration-response relationship in these studies; thus, we are presently unable to compare mitochondrial dysfunction sensitivity of native neurons to HEK293 cells.

Our mechanistic data in HEK293 cells indicates that antimycin A induces TRPA1 activation indirectly, dependent on the actions of ROS produced by mitochondria. Myxothiazol, an inhibitor of the Q$_o$ site on mitochondrial ETC complex III causes mitochondrial depolarization like antimycin (Q$_o$ site inhibitor), but myxothiazol evokes little superoxide production from complex III and causes almost complete abolition of superoxide production by subsequent antimycin A treatment (Turrens et al., 1985; Gyulkhandanyan and Pennefather, 2004; Tetter et al., 2007). Myxothiazol reduced antimycin A-induced hTRPA1 activation in Ca$^{2+}$ imaging studies, indicating that superoxide production from mitochondria was critical for TRPA1 activation. In some systems the complex I inhibitor rotenone has been shown to reduce antimycin A-induced superoxide production (Stowe and Camara, 2009). However, in intact cells with normal glycolysis/citric acid cycle rotenone can also evoke superoxide production from mitochondria (Li et al., 2003; Gyulkhandanyan and Pennefather, 2004; Stowe and Camara, 2009). We found that rotenone (500 nM) caused selective activation of TRPA1 but also reduced antimycin A-induced TRPA1 activation (unpublished data). Further investigation is required to determine whether antimycin A-induced TRPA1 activation is inhibited by rotenone due to a reduction in evoked ROS or due to desensitization of TRPA1 to ROS.

Superoxide is converted into H$_2$O$_2$ by SOD enzymes in both the mitochondria and cytosol. H$_2$O$_2$ has been shown to activate TRPA1 directly through DTT-sensitive oxidation of N-terminal cysteines (Andersson et al., 2008; Sawada et al., 2008; Takahashi et al., 2008). Exogenously applied superoxide also activates heterologously expressed TRPA1 channels (Sawada et al., 2008), although it is likely (but not proven) that this occurs indirectly following its conversion to H$_2$O$_2$. Our data indicates that the SOD/catalase mimetic MnTMPyP reduced antimycin A-induced TRPA1 activation by approximately 30%, whereas the SOD mimetic tempol had little effect. This suggests that H$_2$O$_2$ may play a more prominent role than superoxide in antimycin-induced TRPA1 activation. However, a combination of tempol and MnTMPyP virtually abolished TRPA1 activation by antimycin A. The synergistic presence of a combination of tempol (100 μM), SOD (10 units/ml), and catalase (100 units/ml) in response to antimycin A (10 μM) from an inside-out patch from a HEK cell expressing hTRPA1 (1 channel). Dotted lines indicate currents through a single-ion channel. Marker denotes 2 pA and 2 seconds. (I) mean ± S.E.M. relative change in TRPA1 channel opening probability in response to antimycin A, without and with antioxidant combination treatment. #Significant decrease compared with control antimycin A responses (P < 0.05).
effects of these antioxidant enzyme mimetics in reducing antimycin A-induced responses indicates that both H2O2 and superoxide contribute to TRPA1 activation downstream of mitochondrial modulation. Consistent with the Ca2+ imaging data in whole cells, a combination of tempol, SOD, and catalase reduced antimycin A-induced TRPA1 channel conductances in excised inside-out patches (that were shown to contain mitochondria using MitoTracker Orange). Nevertheless, it is not yet known if superoxide and H2O2 act in series or in parallel to activate TRPA1. DTT, a reducing agent, is able to distinguish between TRPA1 activation by ROS (e.g., H2O2) and by α,β-unsaturated carbonyl compounds produced downstream of ROS-mediated lipid peroxidation (e.g., 4-hydroxynonenal) (Andersson et al., 2008; Takahashi et al., 2008). DTT reverses sulfhydryl group oxidation/disulfide bond formation of exposed cysteine residues but cannot reverse sulfhydryl modification by Michael addition reactions (Getz et al., 1999). DTT completely blocked antimycin A-induced ROS activation following mitochondrial modulation, suggesting that TRPA1 activation was due to ROS (likely H2O2) acting directly on the channel. In conclusion, our mechanistic studies indicate that 2 μM antimycin A activated TRPA1 downstream of mitochondrial ROS. We predict that the ROS-dependent mechanism would be critical for TRPA1 activation by other antimycin A concentrations, although there is the possibility that other mechanisms are involved at higher concentrations. Further studies are required to confirm this ROS-dependent mechanism in the TRP-dependent activation of native neurons by mitochondrial dysfunction.

TRPA1 was highly sensitive to mitochondrial modulation by antimycin, to the extent that superoxide production by very limited numbers of mitochondria in excised patches (likely <3, based upon space restrictions) were capable of significant ROS-mediated channel activation within a short time frame (<20 seconds). There remains the minor possibility that there was a direct interaction between antimycin A and TRPA1 in excised patches, although both the sensitivity of antimycin A-induced TRPA1 activation to ROS scavengers and the lack of cysteine-modification by antimycin A argues against this hypothesis. We briefly investigated the possibility that TRPA1 was, in addition to being expressed on the plasma membrane, also expressed in mitochondria. Using a V5-tagged hTRPA1 protein and the mitochondrial-specific fluorescent probe MitoTracker Orange, we found no colocalization of TRPA1 (detected by primary antibody against V5) with MitoTracker Orange following channel overexpression in HEK293 as determined by confocal microscopy (unpublished data), indicating that TRPA1 is not a mitochondrial protein. Our finding that mitochondrial dysfunction is sufficient to evoke airway sensory nerve activation is likely to be relevant for other sensory nerve types. Mitochondrial dysfunction and subsequent ROS production occurs in diseases such as type II diabetes, irritable bowel syndrome, and cardiovascular disease (Hall and Wiley, 1998; Rocha et al., 2010; Chowdhury et al., 2013). As such, we predict that mitochondrial-TRPA1 interactions may contribute to nociceptor activation in these pathologies. In the airways, mitochondrial dysfunction and oxidative stress has been demonstrated for an array of cell types both in asthma and chronic obstructive bronchitis (Rabinovich et al., 2007; Reddy, 2011) and can be initiated by a wide variety of inflammatory signaling pathways common in respiratory diseases: e.g., tumor necrosis factor α (Corda et al., 2001), neurotrophins via p75NTR (Pehar et al., 2007), microRNAs (Aroor et al., 2012), transforming growth factor β (Michaeldoules et al., 2011), and Toll-like receptors (West et al., 2011). Airway vagal nociceptor activation and hyperexcitability contribute to cough, dyspnea, bronchospasm, and hypersecretion (Carr and Undem, 2003). Given the abundance of mitochondria at the sensory nerve terminal and their susceptibility to various inflammatory mediators, we suggest that mitochondrial dysfunction-induced sensory nerve activation represents a novel mechanism by which inflammation is transduced into nociceptive electrical signaling and thus contributes to the symptoms of airway disease. Lastly, our data show that under the present conditions of acute mitochondrial dysfunction vagal bronchopulmonary C-fibers and vagal dissociated neurons respond adequately to further stimulation (mechanical, chemical, and electrical), suggesting that mitochondrial dysfunction (and subsequent oxidative stress) does not necessarily lead to cytotoxicity. Whether chronic mitochondrial dysfunction occurs in airway sensory nerves in inflammatory lung disease is a concept that requires further study.

Acknowledgments

The authors thank Dr. M. A. McAlexander (GlaxoSmithKline) for the kind gift of the stable cell lines and the BucMam virus encoding hTRPA1.

Authorship Contributions

Participated in research design: Nesuashvili, Bahia, Taylor-Clark.
Conducted experiments: Nesuashvili, Hadley, Bahia, Taylor-Clark.
Performed data analysis: Nesuashvili, Hadley, Bahia, Taylor-Clark.
Contributed to the writing of the manuscript: Nesuashvili, Bahia, Taylor-Clark.

References

Functionality Link between Mitochondria and TRPA1

Address correspondence to: Dr. Thomas Taylor-Clark, 12901 Bruce B. Downs Blvd, University of South Florida, Tampa, FL 33612. taylorc@health.usf.edu

Functional Link between Mitochondria and TRPA1

Downloaded from molpharm.aspetjournals.org on June 21, 2017