Overexpression of Mcl-1 Confers Multidrug Resistance, Whereas Topoisomerase IIβ Downregulation Introduces Mitoxantrone-Specific Drug Resistance in Acute Myeloid Leukemia

David L. Hermanson, Sonia G. Das, Yunfang Li, and Chengguo Xing

Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (D.L.H., S.G.D., Y.L., C.X.); and Department of Biochemistry, Tufts University School of Medicine, Boston, Massachusetts (S.G.D.)

Received March 12, 2013; accepted May 21, 2013

ABSTRACT

Drug resistance is a serious challenge in cancer treatment and can be acquired through multiple mechanisms. These molecular changes may introduce varied extents of resistance to different therapies and need to be characterized for optimal therapy choice. A recently discovered small molecule, ethyl-2-amino-6-(3,5-dimethoxyphenyl)-4-(2-ethoxy-2-oxoethyl)-4H-chromene-3-carboxylate (CXL017), reveals selective cytotoxicity toward drug-resistant leukemia. A drug-resistant acute myeloid leukemia cell line, HL60/MX2, also failed to acquire resistance to CXL017 upon chronic exposure and regained sensitivity toward standard therapies. In this study, we investigated the mechanisms responsible for HL60/MX2 cells’ drug resistance and the molecular basis for its resensitization. Results show that the HL60/MX2 cell line has an elevated level of Mcl-1 protein relative to the parental cell line, HL60, and its resensitized cell line, HL60/MX2/CXL017, whereas it has a reduced level of topoisomerase IIβ. Mcl-1 overexpression in HL60/MX2 cells is mainly regulated through phospho-extracellular signal-regulated protein kinases 1 and 2-mediated Mcl-1 stabilization, whereas the reduction of topoisomerase IIβ in HL60/MX2 cells is controlled through genetic downregulation. Upregulating Mcl-1 introduces multidrug resistance to standard therapies, whereas its downregulation results in significant cell death. Downregulating topoisomerase IIβ confers resistance specifically to mitoxantrone, not to other topoisomerase II inhibitors. Overall, these data suggest that Mcl-1 overexpression is a critical determinant for cross-resistance to standard therapies, whereas topoisomerase IIβ downregulation is specific to mitoxantrone resistance.

INTRODUCTION

Drug resistance is a serious problem in cancer therapy because it is an inevitable phenomenon among all malignancies during therapy treatment with no effective solution. For example, in acute myeloid leukemia (AML), although 60–80% of patients show an initial positive response to cancer therapies, only approximately 20% obtain long-term remission. The remaining patients relapse from residual disease that is typically drug resistant (Shipley and Butera, 2009). Therefore, there is an unmet clinical need for new therapies to treat drug-resistant malignancies.

One such mechanism is modulating a therapy-specific target/pathway, leading to reduction in damages induced by the therapy. For instance, cancer cells can mutate or downregulate topoisomerase (topo) upon treatment with topo inhibitor to gain resistance (Harker et al., 1991; Chen and Beck, 1995). Such resistance is unlikely cross-resistant to therapies with a different mechanism of action. Other mechanisms are more general that render cancer cells resistant to therapies of varied mechanisms, such as the overexpression of the antiapoptotic B-cell lymphoma 2 (Bcl-2) family proteins (Adams and Cory, 1998; Reed and Pellecchia, 2005; Kuroda and Taniwaki, 2009). Among the antiapoptotic family members, Mcl-1 has been reported to be essential to drug resistance in AML (Kaufmann et al., 1998; Breitenbuecher et al., 2009; Glaser et al., 2012). Another major mechanism for multidrug resistance is the overexpression of ATP-binding cassette (ABC) transporter proteins, such as P-glycoprotein. The overexpressed ABC proteins decrease the concentration of anticancer drugs in tumor cells via efflux, leading to multidrug resistance. Cancer cells can simultaneously use multiple mechanisms to acquire resistance (Deffie et al., 1992; Fodale et al., 2011; Wu and Singh, 2011). To design therapies that can effectively treat drug-resistant malignancies, a detailed characterization of the molecular basis contributing to drug resistance is required.

ABBREVIATIONS: ABC, ATP-binding cassette; ABT-737, 4-[(4'-chloro[1,1′-biphenyl]-2-yl)methyl]-1-piperazinyl]-N-[[4-[[1(R)-3-(dimethylamino)-1-[(phenylthio)methyl]propyl]amino]-3-nitrophenyl]sulfonyl]benzamide; AML, acute myeloid leukemia; Bcl-2, B-cell lymphoma 2; CXL017, ethyl-2-amino-6-(3,5-dimethoxyphenyl)-4-(2-ethoxy-2-oxoethyl)-4H-chromene-3-carboxylate; ERK1/2, extracellular signal-regulated protein kinases 1 and 2; MEK, mitogen-activated protein kinase; MG-132, N-benzyloxy carbonyl (Boc)-Leu-Leu-leucinal; qRT-PCR, quantitative real-time polymerase chain reaction; shRNA, small hairpin RNA; siRNA, small interfering RNA; topo, topoisomerase; U0126, 1,4-diamino-2,3-dicyano-1,4-bis(methylthio)butadiene.
We recently developed an anticancer drug candidate, ethyl-2-amino-6-(3,5-dimethoxyphenyl)-4-(2-ethoxy-2-oxoethyl)-4H-chromene-3-carboxylate (CXL017), derived from HA 14-1 (a putative antiapoptotic Bcl-2 family protein inhibitor). CXL017 reveals selective cytotoxicity toward several multidrug-resistant leukemia cell lines, including HL60/MX2 (Das et al., 2009, 2011; Aridoss et al., 2012). HL60/MX2 was developed from HL60 cells through chronic exposure to mitoxantrone, a topo II inhibitor. As expected, drug-resistant cancer cells overexpress antiapoptotic Bcl-2 family proteins (Das et al., 2009) and demonstrate cross-resistance to standard cancer therapies (Das et al., 2011; Aridoss et al., 2012). In the case of HL60/MX2, it overexpresses Mcl-1 protein (Das et al., 2009) and is cross-resistant to mitoxantrone, doxorubicin, etoposide, and 4-[4-[(4’-chloro[1,1’-biphenyl]-2-yl)methyl]-1-piperazinyl]-N-[(4’-[(1R)-3-(dimethylamino)-1-[(phenylthio)methyl]propyl]amino)-3-nitrophenyl]sulfanyl]benzamide (ABT-737) (a classic Bcl-2 inhibitor) (Aridoss et al., 2012). To explore CXL017’s potential in preventing drug resistance development, HL60/MX2 cells were exposed to CXL017 for 6 months. The resulting cell line, HL60/MX2/CXL017, reveals no resistance toward CXL017 (Das et al., 2013). In comparison, HL60/MX2 acquired 20-fold stable resistance to cytarabine with a 6-month exposure and >20-fold stable resistance to ABT-737 with a 3-month exposure (Das et al., 2013). More strikingly, HL60/MX2/CXL017 was 10- to 100-fold more sensitive to standard therapies than HL60/MX2. These data suggest that CXL017 targets unique pathways to overcome drug resistance and to prevent its development. CXL017 exposure had no impact on ABC transporter proteins or antiapoptotic Bcl-2 family proteins except for Mcl-1, which was reduced in HL60/MX2/CXL017 cells (Das et al., 2013). These results suggest that Mcl-1 protein may be involved in the drug resistance of HL60 cells to standard therapies.

In this study, we investigated the molecular mechanisms contributing to the drug resistance in HL60/MX2 cells and those responsible for the resensitization in HL60/MX2/CXL017 cells. Our data show that HL60/MX2 cells acquire part of their resistance to mitoxantrone via the downregulation of topo IIβ. Interestingly, such resistance is mitoxantrone specific that it even introduces no resistance to other topo II inhibitors. Our data also show that Mcl-1 overexpression is the major contributor to the cross-resistance of HL60/MX2 cells and its reduction in HL60/MX2/CXL017 cells contributes to the resensitization. We further demonstrate that phosphoextracellular signal-regulated protein kinases 1 and 2 (ERK1/2)–mediated post-translational stabilization of Mcl-1 is one major mechanism that controls the level of Mcl-1 protein in these cells.

Materials and Methods

CXL017 was synthesized as previously described (Das et al., 2009). ABT-737 was synthesized following published procedures (Oltersdorf et al., 2005). Standard anticancer drugs (mitoxantrone, vincristine, etoposide, and doxorubicin), cycloheximide, N-benzylxoycarbonyl (Z)-Leu-Leu-leucinal (MG-132), and 1,4-diamino-2,3-dicyano-1,4-bis(methylthio)butadiene (U0126) were obtained from Sigma-Aldrich (St. Louis, MO).

Cell Lines and Culturing Conditions. HL60 and HL60/MX2 were obtained from American Type Culture Collection (Manassas, VA). HL60/MX2/CXL017 cells were developed from HL60/MX2 (Das et al., 2013). The HL60 cell line was grown in Iscove’s modified Dulbecco’s media and Glutamax (Life Technologies, Grand Island, NY) media supplemented with 20% fetal bovine serum. HL60/MX2 and HL60/MX2/CXL017 cell lines were grown in RPMI 1640 media supplemented with 10% fetal bovine serum. All cells were maintained at 37°C with 5% CO₂ in air atmosphere.

Cell Viability Assays. Forty-eight–hour cell viability was evaluated following an established procedure (Das et al., 2011). In brief, tumor cells were plated in a 96-well plate at a density of 1 × 10⁴ cells/well. The cells were treated with a series of 3-fold dilutions of test compounds with final concentrations of 1% dimethylsulfoxide in the final volume. Cells treated with 1% dimethylsulfoxide served as controls. Cells were incubated for 48 hours at 37°C, and the relative viability was measured using CellTitier-Blue from Promega (Madison, WI). IC₅₀ values were determined by plotting the relative viability versus the drug concentration and fitting to a sigmoidal dose-response (variable slope) model in GraphPad Prism software (San Diego, CA). For Mcl-1 transient overexpression, drug treatment was 24 instead of 48 hours.

mRNA Isolation and Quantitative Real-Time Polymerase Chain Reaction. Total RNA was isolated from cells using TRIzol Reagent from Invitrogen (Grand Island, NY) followed by the PureLink RNA Mini Kit from Life Technologies following the manufacturers’ protocols. The isolated RNA was quantified by measuring absorbance at 260 nm. Purity was assessed using A260/A280 nm. Quantitative real-time polymerase chain reaction (qRT-PCR) for genes of interest was performed by the Biomedical Genomics Center at the University of Minnesota (Minneapolis, MN) following established procedures. Data were processed using the 2⁻ΔΔCt method as described (Livak and Schmittgen, 2001).

Topo IIβ and Mcl-1 Small Hairpin RNA Transfection. 1 × 10⁵ cells in 1 ml complete media containing 5 μg/ml polybrene (Santa Cruz Biotechnology, Santa Cruz, CA) were plated in a 12-well tissue culture plate. Cells were transduced with lentivirus containing either scrambled small hairpin RNA (shRNA) or shRNA targeting topo IIβ at a multiplicity of infection of 3. Lentivirus was obtained from Santa Cruz Biotechnology. After 8 hours, the cells were centrifuged and resuspended in 1 ml fresh media. Forty-eight hours after transduction, cells were selected with 3 μg/ml puromycin for a period of 72 hours. One to two weeks after transduction, cells were analyzed via qRT-PCR to evaluate the extent of target downregulation. Similar protocols were used for Mcl-1 as well.

Mcl-1 Small Interfering RNA and Open Reading Frame Transfection. Cells were transduced using the Neon electroporation system from Life Technologies (Grand Island, NY) following manufacturer protocols. Briefly, 1 × 10⁶ cells were suspended in 100 μl phosphate-buffered saline. Cells were electroporated with one pulse at 1350 V, pulse width of 35 milliseconds, and then resuspended in 2.5 ml media in a 6-well plate. Cells were either transfected with 12.5 nM small interfering (siRNA) (based on 2.5 ml resuspension volume) from Life Technologies or 5 μg plasmid containing the Mcl-1 open reading frame (SC315538) from OriGene (Rockville, MD). Downregulation was assessed after 3 hours and upregulation was assessed after 24 hours via Western blotting.

Western Blotting. Cells were lysed in radio-immunoprecipitation assay buffer containing 1% protease inhibitor from Sigma-Aldrich and the protein concentration was determined by bicinchoninic acid assay from Pierce (ThermoScientific, Rockford, IL). Forty micrograms of total protein was separated at 150 V on a NuPAGE 4–12% Bis-Tris Gel from Invitrogen (Carlsbad, CA). Proteins were then transferred to a polyvinylidene difluoride membrane from Millipore (Billerica, MA). Membranes were blocked in 5% milk in Tris-buffered saline/Tween 20 for 1 hour at room temperature followed by incubation with primary antibody overnight at 4°C. Membranes were washed three times in Tris-buffered saline/Tween 20 and then incubated in the appropriate horseradish peroxidase–conjugated secondary antibody (1:3000) for 3 hours at room temperature. Detection was performed using a supersignal chemiluminescence
system from Pierce. Mcl-1 S-19 antibody (1:400) was from Santa Cruz Biotechnology. Phospho-ERK1/2 antibody and total ERK1/2 antibody (1:1000) were from Cell Signaling (Danvers, MA). β-actin antibody (1:40,000) and all secondary antibodies (1:2000–1:20,000) were from Sigma-Aldrich. The relative level of a protein was quantified via densitometry using Image J software (NIH, Bethesda, MD) and corrected by β-actin level in the same sample.

The Rate of Mcl-1 Translation. HL60, HL60/MX, and HL60/MX/CXL017 were incubated with cycloheximide (10 μg/ml) for 6 hours. Upon removal of cycloheximide, cells were treated with the proteasome inhibitor MG-132 (10 μM) for 1, 2, and 4 hours. Cell lysates were prepared as detailed above and Mcl-1 protein was analyzed by Western blotting. To compare the absolute translation rate among these cell lines, different cell lysate samples were analyzed on the same SDS-PAGE and blotted under identical conditions.

The Half-Life of Mcl-1 Protein. HL60, HL60/MX, and HL60/MX/CXL017 cells were incubated with cycloheximide (10 μg/ml) for 1, 2, 4, and 6 hours. Cell lysates were prepared as detailed above and Mcl-1 protein was analyzed by Western blotting. Densitometry was performed and GraphPad Prism 4 software was used to fit the data and determine the half-life.

The Impact of ERK1/2 Inhibition on Mcl-1 Half-Life. HL60/MX cells were incubated with U0126 [a mitogen-activated protein kinase (MEK) inhibitor, 3 μM] for 2 hours, followed by cycloheximide treatment (10 μg/ml) for 1, 2, 4, and 6 hours in the presence of U0126. Cell lysates were prepared as detailed above and Mcl-1 protein was analyzed by Western blotting.

Statistical Analysis. All biologic experiments were performed at least twice with representative results shown in this report. Quantitative data are presented as means ± S.E.M., and comparisons were made using unpaired t test in GraphPad Prism 4 software. A P value of ≤0.05 was considered statistically significant.

Results

Topo IIβ is Downregulated in HL60/MX2 Cells and Upregulated in HL60/MX2/CXL017 Cells Relative to HL60. Topo IIβ has been reported to be downregulated in HL60/MX2 cells (Harker et al., 1991), which may contribute to HL60/MX2 cells’ resistance to mitoxantrone and other topo II inhibitors. To validate the function of topo IIβ reduction in HL60/MX2 for its cross-resistance, as well as to explore its potential contribution to drug resensitization in HL60/MX2/CXL017 cells, qRT-PCR was performed to measure the mRNA levels of topo IIβ among these cell lines. HL60 cells were found to have a 12-fold increase in topo IIβ mRNA relative to HL60/MX2 cells (Fig. 1A). A 28-fold increase was observed in HL60/MX2/CXL017 cells (Fig. 1A).

Downregulation of Topo IIβ in HL60 and HL60/MX2/CXL017 Leads to Drug-Resistance Specific to Mitoxantrone. Next, shRNA was used to stably downregulate topo IIβ in HL60 and HL60/MX2/CXL017 cells, respectively. Knockdown efficiency was measured by qRT-PCR. Levels of topo IIβ mRNA were reduced by 5-fold in HL60/TOP2B cells and 3-fold in HL60/MX2/CXL017/TOP2B when compared with their respective parental control cells with scrambled shRNA treatment (Fig. 1B). Nonetheless, HL60/TOP2B and HL60/MX2/CXL017/TOP2B still retained a 1.8- and a 6-fold increase in the level of topo IIβ mRNA relative to HL60/MX2.

The transduced cell lines were then tested for their sensitivity to mitoxantrone. HL60/TOP2B and HL60/MX2/CXL017/TOP2B demonstrated a 3.0- and 1.8-fold resistance to mitoxantrone, relative to their scrambled shRNA controls (Fig. 1C). To explore the potential contribution of topo IIβ reduction to
cross-resistance in HL60/MX2 cells, the transduced cell lines were evaluated against a number of standard therapies as well as CXL017. Knockdown of topo IIβ had no effect on therapies with nontopo II mechanisms, including cytarabine, vincristine, and CXL017. The topo IIβ knockdown cell lines also failed to exhibit resistance against two other topo II inhibitors: etoposide and doxorubicin (Table 1).

Mcl-1 Protein Is Differentially Regulated in HL60 and HL60/MX2/CXL017 for Its Reduced Levels Relative to HL60/MX2. Western blotting analyses revealed that the level of Mcl-1 protein in HL60/MX2 was approximately 10-fold higher relative to that in HL60 and was approximately 4-fold higher relative to HL60/MX2/CXL017 (Fig. 2A). qRT-PCR analyses were performed to determine whether Mcl-1 protein abundance was mediated through changes at the transcription level. Mcl-1 mRNA in HL60/MX2 cells was 2-fold higher relative to that in HL60 cells, whereas Mcl-1 mRNA in HL60/MX2/CXL017 was approximately 6-fold higher (Fig. 2B). These data suggest that the low level of Mcl-1 protein in HL60/MX2/CXL017 cells is not transcriptionally regulated, whereas Mcl-1 mRNA levels may partially account for the lower abundance of Mcl-1 protein in HL60 cells relative to HL60/MX2. Other mechanisms, such as the rate of translation or the stability of Mcl-1 protein, may be more important, particularly in HL60/MX2/CXL017 cells, where increased Mcl-1 mRNA was observed but its protein level was reduced relative to HL60/MX2 cells.

Downregulation of Mcl-1 in HL60/MX2 and HL60 Cells Results in Cell Death. To characterize the function of Mcl-1 protein in drug resistance, Mcl-1 protein was first attempted to be downregulated in HL60/MX2 via the shRNA approach as demonstrated for topo IIβ. Massive cell death was observed during the transfection period when Mcl-1 shRNA was applied, suggesting that Mcl-1 downregulation leads to decreased cell survival in HL60/MX2 cells. Therefore, siRNA was tried to transiently downregulate Mcl-1 protein. As shown in Fig. 2C, Mcl-1 siRNA treatment successfully downregulated Mcl-1 protein within 3 hours in both HL60 and HL60/MX2 cells. However, reduced cell viability was observed 2 hours after transfection in HL60/MX2 cells with nearly 80% reduction by 48 hours (Fig. 2D). The amount of viable cells in HL60 was also reduced upon Mcl-1 siRNA treatment although only an approximately 30% reduction was observed after 48 hours. These data suggest that HL60/MX2 cells are more dependent on its upregulated Mcl-1 protein for survival and that Mcl-1 downregulation is not a feasible approach to delineate its function in drug resistance in HL60/MX2 cells.

Transient Overexpression of Mcl-1 in HL60 Confers Cross-Resistance to Standard Therapies. Overexpression of Mcl-1 was then attempted in HL60 and HL60/MX2/ CXL017 cells to evaluate its contribution to drug resistance. The overexpression of Mcl-1 in HL60/MX2/CXL017 cells was unsuccessful (unpublished data), potentially because the reduction of Mcl-1 protein in HL60/MX2/CXL017 cells is not due to the shortage of Mcl-1 mRNA—HL60/MX2/CXL017 has the highest level of endogenous Mcl-1 mRNA (Fig. 2B). On the other hand, Mcl-1 protein was successfully overexpressed in HL60 cells (Fig. 3A). The transfected cells were evaluated for their sensitivity to a panel of therapies, including mitoxantrone, ABT-737, and CXL017. Mitoxantrone was selected for evaluation as a standard therapy, whereas ABT-737 was selected because overexpression of Mcl-1 is known to induce resistance to ABT-737 (Oltersdorf et al., 2005; Lucas et al., 2012; Mazumder et al., 2012; Tromp et al., 2012). CXL017 was evaluated to explore whether Mcl-1 may be less effective in conferring resistance to CXL017. As shown in Fig. 3, B–D, HL60/Mcl-1 cells gained significant resistance to mitoxantrone (approximately 8-fold) and ABT-737 (23-fold), whereas it conferred slight resistance to CXL017 (2-fold). Of note, drug treatment period was short (24 hours) because of the nature of transient Mcl-1 upregulation, which resulted in incomplete dose-response curves.

HL60/MX2/CXL017 Has the Slowest Rate of Mcl-1 Translation, Whereas HL60 Has the Fast Rate. Given that Mcl-1 protein abundance among these cells does not correlate with its transcriptional level, we next characterized the impact of Mcl-1 translation rate on protein abundance. These cells were first treated with cycloheximide, a eukaryotic translation inhibitor (Schneider-Poetsch et al., 2010), for 6 hours to stop Mcl-1 synthesis and to allow for the existing Mcl-1 to degrade. Upon removing cycloheximide, newly synthesized Mcl-1 was allowed to accumulate in the presence of MG-132, a proteasome inhibitor, and quantified (Fig. 4A). Surprisingly, the translation rate for Mcl-1 was the highest in HL60 cells, whereas that in HL60/MX2/CXL017 was slightly lower than HL60/MX2 cells, which cannot account for their protein level differences. These data in combination with Mcl-1 mRNA information suggest that the abundance difference of Mcl-1 protein among these cell lines is likely controlled via post-translational regulation.

Mcl-1 Has the Shortest Half-Life in HL60/MX2/CXL017 Cells. Among the antiapoptotic Bcl-2 family proteins, Mcl-1 is unique in that it can be rapidly degraded via a proteasome-dependent mechanism (Inuzuka et al., 2011). Its turnover rate is delicately regulated through various mechanisms, resulting in significantly different half-lives of Mcl-1 protein under different conditions (Thomas et al., 2010). We therefore characterized the half-life of Mcl-1 protein among these cells. Cells were treated with cycloheximide for varying times and remaining Mcl-1 protein was quantified (Fig. 4B).

TABLE 1

<table>
<thead>
<tr>
<th>Drug</th>
<th>HL60/Ctrl</th>
<th>HL60/TOP2B</th>
<th>HL60/MX2/CXL017/Ctrl</th>
<th>HL60/MX2/CXL017/TOP2B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mitoxantrone (nM)</td>
<td>14 ± 3</td>
<td>44 ± 1</td>
<td>6.7 ± 0.5</td>
<td>10.7 ± 0.2</td>
</tr>
<tr>
<td>CXL017 (μM)</td>
<td>10 ± 1</td>
<td>10 ± 0.2</td>
<td>3.5 ± 0.1</td>
<td>3.5 ± 0.1</td>
</tr>
<tr>
<td>Etoposide (μM)</td>
<td>1.7 ± 0.4</td>
<td>2.5 ± 0.2</td>
<td>0.23 ± 0.04</td>
<td>0.27 ± 0.01</td>
</tr>
<tr>
<td>Doxorubicin (μM)</td>
<td>0.15 ± 0.05</td>
<td>0.18 ± 0.03</td>
<td>0.036 ± 0.003</td>
<td>0.042 ± 0.006</td>
</tr>
<tr>
<td>Cytarabine (μM)</td>
<td>5.6 ± 0.5</td>
<td>3.8 ± 0.1</td>
<td>0.034 ± 0.006</td>
<td>0.044 ± 0.006</td>
</tr>
<tr>
<td>Vincristine (nM)</td>
<td>2.8 ± 0.2</td>
<td>2.5 ± 0.5</td>
<td>0.60 ± 0.01</td>
<td>0.65 ± 0.05</td>
</tr>
</tbody>
</table>
The half-life of Mcl-1 in HL60/MX2 cells was the longest (2.1 hours), whereas HL60 cells had a slightly shorter Mcl-1 half-life (1.8 hours). The half-life of Mcl-1 in HL60/MX2/CXL017 cells (1.2 hours) was the shortest.

ERK1/2 Activation Contributes to the Increased Mcl-1 Stability in HL60/MX2 Cells. Phospho-ERK1/2 has been reported to improve Mcl-1 stability (Nishioka et al., 2010; Liao et al., 2011). Therefore, the level of phospho-ERK1/2 in these cell lines was characterized (Fig. 5A). HL60/MX2 cells had an elevated level of phospho-ERK1/2 relative to HL60 cells, whereas HL60/MX2/CXL017 cells completely lacked phospho-ERK1/2, despite similar levels of total ERK1/2 among these cell lines.
lines. Before investigating the role of phospho-ERK1/2 in stabilizing Mcl-1, we first explored whether phospho-ERK1/2 is essential to cell survival. HL60, HL60/MX2, and HL60/MX2/CXL017 were treated with U0126, a MEK inhibitor that leads to rapid inhibition of ERK1/2 phosphorylation (Fig. 5C). It was found that U0126 was equally cytotoxic to HL60 and HL60/MX2 cells but was nontoxic to HL60/MX2/CXL017 cells (Fig. 5B). These results suggest that phospho-ERK1/2 is essential to the survival of HL60 and HL60/MX2 cells and inhibiting ERK1/2 is equally cytotoxic in these cell lines and is independent of their endogenous Mcl-1 levels. HL60/MX2/CXL017, despite being more sensitive to standard therapies (Das et al., 2013), is uniquely resistant to ERK1/2 inhibition, likely because of its lack of phospho-ERK1/2 regulation of Mcl-1. These data suggest that phospho-ERK1/2 may be an upstream regulator in controlling Mcl-1 abundance and function, possibly via influencing its stability. To characterize the impact of phospho-ERK1/2 on Mcl-1 stability, we pretreated HL60/MX2 cells with U0126 for 30 minutes to achieve complete inhibition of ERK1/2 phosphorylation and then measured Mcl-1 stability, in the presence of U0126 to maintain complete ERK1/2 inhibition. As shown in Fig. 5C, the half-life of Mcl-1 in HL60/MX2 cells was reduced to approximately 1 hour upon ERK1/2 inhibition, similar to that in HL60/MX2/CXL017 cells. This suggests that the reduced half-life of Mcl-1 in HL60/MX2/CXL017 cells is primarily due to its lack of phospho-ERK1/2.

Discussion

CXL017 is a unique anticancer drug candidate because of its selective cytotoxicity toward drug-resistant leukemia and the inability of leukemia cells to acquire resistance. In addition, chronic CXL017 treatment resensitized leukemia cells toward standard therapies (Das et al., 2013). These data prompted investigation into the molecular mechanisms responsible for multidrug resistance and for CXL017-induced resensitization, using HL60 cells as the model system.

Fig. 4. The regulation of Mcl-1 protein among HL60, HL60/MX2, and HL60/MX2/CXL017 cells. (A) Western Blot of Mcl-1 translation after addition of the proteasome inhibitor MG-132 for the indicated time points. Densitometry was performed and normalized to β-actin with relative abundance to time 0 reported. (B) Cells were treated with the translation inhibitor, cycloheximide (CHI), for the indicated time points followed by Western blotting for Mcl-1 levels. Densitometry was performed on three independent experiments and half-life was determined using GraphPad Prism. Statistical analysis was performed using the unpaired t test. *P < 0.05.

Fig. 5. The regulation of Mcl-1 stability by ERK1/2 and the sensitivity of cells to U0126. (A) The levels of phospho-ERK1/2 (p-ERK1/2) and total ERK1/2 (t-ERK1/2) as determined by Western blot. A representative example of three blots is shown. (B) Drug sensitivity to U0126, a MEK inhibitor. (C) The effect of U0126 treatment on the half-life of Mcl-1 in HL60/MX2 cells. Cells were treated with cycloheximide (CHI) alone or with U0126 pretreatment for 30 minutes followed by CHI for varying time points. Densitometry was performed on Western blots to determine Mcl-1 half-life in GraphPad Prism software. Three independent experiments were performed and unpaired t test was applied. *P < 0.05.
Previous work has characterized the reduction of topo IIβ in HL60/MX2 cells, which may contribute to drug resistance (Harker et al., 1991). Our results confirmed the reduction of topo IIβ in HL60/MX2 cells relative to HL60 and revealed a significant increase of its level in HL60/MX2/CXL017 (Fig. 1A). Upon downregulation of topo IIβ, HL60/TOP2B cells gain a 3-fold resistance to mitoxantrone, whereas HL60/MX2/CXL017/TOP2B cells gain a 1.8-fold resistance (Fig. 1C). The difference in the extent of resistance in these two cell lines likely results from the varied level of topo IIβ downregulation in these cells (Fig. 1B). The limited level of resistance to mitoxantrone in both transfected cells may be partially due to the fact that topo IIβ level remained higher in HL60/MX2/CXL017/TOP2B cells and HL60/TOP2B cells relative to HL60/MX2 cells. Nevertheless, these data confirm that the downregulation of topo IIβ in HL60/MX2 cells contributes to its resistance to mitoxantrone. The extent of resistance induced by topo IIβ knockdown to mitoxantrone is moderate compared with the 45-fold resistance observed in HL60/MX2 cells (Das et al., 2013), suggesting that alternative pathways contribute to mitoxantrone resistance in HL60/MX2 cells as well.

The downregulation of topo IIβ was also investigated for its role in cross-resistance. As expected, downregulation of topo IIβ introduced no resistance to arabinofuranosyl cytidine, vincristine, or CXL017 because of their topo-independent mechanisms (Table 1). Surprisingly, topo IIβ downregulated cells revealed no resistance to two other topo II inhibitors, etoposide and doxorubicin, suggesting that topo IIβ is not essential for etoposide and doxorubicin. Because these two topo II inhibitors vary significantly in structure, they may have varied dependence on topo IIα and topo IIβ. Indeed, topo IIα seems to be more responsible for the anticancer activity of etoposide and doxorubicin than topo IIβ because several studies have demonstrated that topo IIα is downregulated, whereas topo IIβ remains unchanged in etoposide/doxorubicin-resistant cancer cells (Drake et al., 1989; Mirski et al., 1993; Eijndens et al., 1995; Andoh et al., 1996; Jain et al., 1996; Wessel et al., 1997; Meliksetian et al., 1999; Matsumoto et al., 2001). Mirski et al. (1993) and Jain et al. (1996) also demonstrated that topo IIα downregulated etoposide-resistant cell lines reveal no cross-resistance to mitoxantrone, indicating that topo IIα is not essential to the anticancer mechanism of mitoxantrone. Our data, together with these reports, suggest that mitoxantrone preferentially targets topo IIβ, whereas etoposide and doxorubicin mainly target topo IIα. The independence of etoposide and doxorubicin on topo IIβ in HL60/MX2 cells is also consistent with the different extent of cross-resistance of HL60/MX2 to these topo II inhibitors (Das et al., 2013) and further supports a topo IIβ-independent drug resistance mechanism.

Given the reported function of Mcl-1 in preventing apoptosis and in conferring drug resistance in AMLs (Kaufmann et al., 1998; Breitenbuecher et al., 2009; Glaser et al., 2012), the overexpression of Mcl-1 in HL60/MX2 cells represented another possible resistance mechanism. Knockdown of Mcl-1 by siRNA resulted in 80% cell death in HL60/MX2 cells and 30% cell death in HL60 cells, revealing that Mcl-1 is essential to cell survival in HL60/MX2 and, to a lesser extent, in HL60 cells (Fig. 2D). The increased sensitivity in HL60/MX2 cells to Mcl-1 siRNA treatment suggests that the elevated Mcl-1 protein is critical to the survival of HL60/MX2 cells and is potentially involved in multidrug resistance.

Transient overexpression of Mcl-1 in HL60 cells introduced cross-resistance to mitoxantrone and ABT-737, respectively (Fig. 3, A–C). These data confirm the contribution of the overexpressed Mcl-1 protein to the cross-resistance observed in HL60/MX2 cells. On the other hand, HL60/Mcl-1 cells only showed a 2-fold increase to CXL017 (Fig. 3D), further supporting the potential of CXL017 to overcome drug resistance induced by antiapoptotic Bcl-2 family proteins.

Upon confirming the function of Mcl-1 in drug cross-resistance, we characterized the molecular basis for the different levels of Mcl-1 proteins among these leukemia cells. Despite the 10-fold increase in protein level, HL60/MX2 cells only had a 2-fold increase in Mcl-1 mRNA relative to HL60 cells (Fig. 2, A and B). Furthermore, HL60/MX2/CXL017 cells expressed the highest level of Mcl-1 mRNA (approximately 6-fold), but only had a 2.5-fold increase in protein levels relative to HL60 cells. Because the translation rate of Mcl-1 protein was highest in HL60 cells than those in HL60/MX2 and HL60/MX2/CXL017 (Fig. 4A), Mcl-1 translation also does not explain the low abundance of Mcl-1 protein in HL60 and HL60/MX2/CXL017 relative to HL60/MX2 cells, indicating the contribution of post-translational regulation of Mcl-1 protein. We therefore determined the half-life of Mcl-1 protein among these cells (Fig. 4B) and found that HL60/MX2/CXL017 cells have a much shorter Mcl-1 half-life than HL60 and HL60/MX2 cells, likely contributing to its low static Mcl-1 level. The slightly shorter half-life of Mcl-1 in HL60 cells may contribute to its low abundance of Mcl-1 protein as well.

Consistent with previous reports that phospho-ERK1/2 can increase Mcl-1 stability (Nishioka et al., 2010; Liao et al., 2011), the level of phospho-ERK1/2 was proportional to the half-life of Mcl-1 proteins among these HL60 cell lines (Figs. 4B and 5A). HL60/MX2 cells expressed the highest level of phospho-ERK1/2 and possessed the longest Mcl-1 half-life, whereas HL60/MX2/CXL017 cells had the shortest Mcl-1 half-life with undetectable phospho-ERK1/2. We then confirmed that phospho-ERK1/2 is the key regulator for Mcl-1’s stability since inhibiting ERK1/2 phosphorylation via U0126 treatment shortens the half-life of Mcl-1 in HL60/MX2 cells to the same level as that in HL60/MX2/CXL017 cells (Fig. 5C). Consistent with its impact on Mcl-1 stability and the protective function of Mcl-1 protein, U0126 also revealed selective cytotoxicity toward HL60 and HL60/MX2, but was completely nontoxic to HL60/MX2/CXL017 cells (Fig. 5B). These data overall support the mechanism by which the Mcl-1 protein level is reduced in HL60/MX2/CXL017 cells and the role of phospho-ERK1/2 in stabilizing Mcl-1 in HL60/MX2 cells.

In summary, our study characterizes the mechanisms responsible for the resistance of HL60/MX2 to standard therapies and rationalizes the resensitization of CXL017 exposed HL60/MX2/CXL017 cells, which involves two pathways: 1) topo IIβ downregulation, which confers resistance specific to mitoxantrone; and 2) Mcl-1 overexpression, which introduces cross-resistance to various cancer therapies. Mcl-1 overexpression in HL60/MX2 cells mainly results from its increased stability. Resensitization in HL60/MX2/CXL017 cells is a result of increased topo IIβ gene expression and decreased Mcl-1 protein stability. The stability of Mcl-1 protein was mainly regulated by ERK1/2 in these cells, which is likely regulated by the MEK pathway (Huang et al., 2000). The topo II isoform knowledge that topo IIβ is the primary target for mitoxantrone, whereas topo IIα is the primary
target for doxorubicin and etoposide suggests that information about patients' topo II isoform should be considered for the selection of specific topo II inhibitors and that the combination of topo II inhibitors targeting both isoforms may produce a more pronounced anticancer effect. Research is ongoing to validate these discoveries in primary AML cell samples from patients.

Acknowledgments

The authors are grateful to Kevin A. T. Silverstein at the Super-computing Institute for Advanced Computational Research for useful discussions and reviewing the manuscript.

Authorship Contributions

Participated in research design: Hermanson, Xing.

Conducted experiments: Hermanson, Das, Li.

Performed data analysis: Hermanson, Li, Xing.

Wrote or contributed to the writing of the manuscript: Hermanson, Das, Li, Xing.

References

Thomas LW, Lam C, and Edwards SW (2010) Mcl-1; the molecular regulation of the role of DNA topoisomerase II. Biochim Biophys Acta 170:354–362.

Address correspondence to: Dr. Chengguo Xing, Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, 308 Harvard St SE, Minneapolis, MN 55455. E-mail: xingcx06@umn.edu

Drug-Resistant Mechanisms in AML 243

