Role of Human Hypoxanthine Guanine Phosphoribosyltransferase in Activation of the Antiviral Agent T-705 (Favipiravir)

Lieve Naesens, Luke W. Guddat, Dianne T. Keough, André B. P. van Kuilenburg, Judith Meijer, Johan Vande Voorde, and Jan Balzarini

Rega Institute for Medical Research, KU Leuven, Leuven, Belgium (L.N., J.V.V., J.B.); School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia (L.W.G., D.T.K.); and Laboratory of Genetic Metabolic Diseases, Academic Medical Center, Amsterdam, The Netherlands (A.B.P.v.K., J.M.)

Received May 11, 2013; accepted August 1, 2013

ABSTRACT

6-Fluoro-3-hydroxy-2-pyrazinecarboxamide (T-705) is a novel antiviral compound with broad activity against influenza virus and diverse RNA viruses. Its active metabolite, T-705-ribose-5‘-triphosphate (T-705-RTP), is recognized by influenza virus RNA polymerase as a substrate competing with GTP, giving inhibition of viral RNA synthesis and lethal virus mutagenesis. Which enzymes perform the activation of T-705 is unknown. We here demonstrate that human hypoxanthine guanine phosphoribosyltransferase (HGPRT) converts T-705 into its ribose-5‘-monophosphate (RMP) prior to formation of T-705-RTP. The anti-influenza virus activity of T-705 and T-1105 (3-hydroxy-2-pyrazinecarboxamide; the analog lacking the 6-fluoro atom) was lost in HGPRT-deficient Madin-Darby canine kidney cells. This HGPRT dependency was confirmed in human embryonic kidney 293T cells undergoing HGPRT-specific gene knockdown followed by influenza virus ribonucleoprotein reconstitution.

Knockdown for adenine phosphoribosyltransferase (APRT) or nicotinamide phosphoribosyltransferase did not change the antiviral activity of T-705 and T-1105. Enzymatic assays showed that T-705 and T-1105 are poor substrates for human HGPRT having \(K_m \) values of 6.4 and 4.1 mM, respectively. Formation of the RMP metabolites by APRT was negligible, and so was the formation of the ribosylated metabolites by human purine nucleoside phosphorylase. Phosphoribosylation and antiviral activity of the 2-pyrazinecarboxamide derivatives was shown to require the presence of the 3-hydroxyl but not the 6-fluoro substituent. The crystal structure of T-705-RMP in complex with human HGPRT showed how this compound binds in the active site. Since conversion of T-705 by HGPRT appears to be inefficient, T-705-RMP prodrugs may be designed to increase the antiviral potency of this new antiviral agent.

Introduction

Influenza viruses cause considerable medical and socioeconomic burden, which is only partially addressed by current influenza vaccines (Osterhaus et al., 2011). Two classes of antiviral drugs are currently available: the M2 channel blockers amantadine and rimantadine, and the neuraminidase inhibitors oseltamivir and zanamivir. Global spread of amantadine-resistant influenza viruses has largely excluded further use of this drug (Moscona, 2008). Moreover, virus resistance to oseltamivir is steadily rising (Moscona, 2009).

Thus, new antiviral drugs with a different mode of action are needed to protect the population against seasonal influenza and sporadic pandemic outbreaks (Hayden, 2009). The novel antiviral compound T-705 (6-fluoro-3-hydroxy-2-pyrazinecarboxamide; Fig. 1), also called favipiravir, is recognized as particularly promising. This agent has broad in vitro activity against influenza A, B, and C viruses (Furuta et al., 2002), including the highly pathogenic avian influenza H5N1 virus (Kiso et al., 2010), and virus strains with resistance to M2 blockers or neuraminidase inhibitors (Sleeman et al., 2010). T-705 produced strong protective effect when orally administered to mice infected with a lethal dose of H5N1 virus (Sidwell et al., 2007). The compound also appears to have a high barrier for selecting resistance, since no T-705-resistant influenza virus was obtained after thirty serial passages with T-705 in cell culture (Furuta et al., 2009).

ABBREVIATIONS: ADK, adenosine kinase; APRT, adenine phosphoribosyltransferase; CPE, cytopathic effect; DMSO, dimethylsulfoxide; gDNA, genomic DNA; HEK, human embryonic kidney; HGPRT, hypoxanthine guanine phosphoribosyltransferase; HPLC, high-performance liquid chromatography; MDCK, Madin-Darby canine kidney; MTS, 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxphenyl)-2-(4-sulfophenyl)-2H-tetrazolium; NAMPT, nicotinamide phosphoribosyltransferase; PNP, purine nucleoside phosphorylase; PP, inorganic pyrophosphate; PrBP-PP, 5-phospho-α-o-riboisyl-1-pyrophosphate; qRT-PCR, real-time quantitative reverse-transcription polymerase chain reaction; RMP, ribose-5‘-monophosphate metabolite; RT, retention time; RTP, ribose-5‘-triphosphate metabolite; siRNAs, small interfering RNAs; T-705, 6-fluoro-3-hydroxy-2-pyrazinecarboxamide; T-1105, 3-hydroxy-2-pyrazinecarboxamide; TG, 6-thioguanine; TGres, TG-resistant; vRNP, influenza virus ribonucleoprotein.
chemical analogs.

T-705 is currently undergoing Phase 2/3 trials for the treatment of uncomplicated influenza virus infections. Besides its activity against influenza virus, T-705 suppresses diverse RNA viruses such as arenaviruses (Gowen et al., 2007), bunyaviruses (Gowen et al., 2007), West Nile virus (Morrey et al., 2008), and norovirus (Rocha-Pereira et al., 2012), and T-705 therefore is classified as a broad anti-RNA virus agent (Furuta et al., 2009).

To exert its antiviral effect, T-705 acts as a nucleobase analog that functions, after metabolic conversion into T-705-ribose-5'-triphosphate (T-705-RTP), as a competitive inhibitor of the influenza virus RNA polymerase (Furuta et al., 2005). Cell culture metabolism studies with radiolabeled T-705 indicated that it is first converted into its ribose-5'-monophosphate (T-705-RMP) metabolite, followed by phosphorylation to T-705-RTP (Furuta et al., 2005). The latter is the assumed antivirally active form since it was shown, in an enzymatic assay, to be a GTP-competitive inhibitor of the influenza virus RNA polymerase having a 50% inhibitory concentration of 0.14 μM (Furuta et al., 2005). Since T-705-RTP has a natural ribose moiety, its incorporation into viral RNA may possibly allow further RNA chain elongation and drive the virus into lethal mutagenesis. Like the broad antiviral nucleoside analog ribavirin, T-705 possesses a rotating carboxamide function that makes it a potential “pseudobase” mimicking both guanine and adenine (Fig. 2). Thus, the lethal virus mutagenesis concept first described for ribavirin (Crotty et al., 2000) may also apply to T-705. It was recently demonstrated that serial cell culture passage of influenza virus in the presence of T-705 gives rise to a nonviable virus phenotype with marked enrichment in G-to-A and C-to-T mutations (Baranovich et al., 2013).

The enzymes that are responsible for activation of T-705 remain to be established. A quantitative analysis of the intracellular conversion of T-705 into T-705-RTP was performed by Smee et al. (2009), who showed that the formation of T-705-RTP in Madin-Darby canine kidney (MDCK) cells is dose-proportional and reaches a plateau after about 9 hours incubation with compound. The efficiency of T-705-RTP formation was similar in uninfected versus influenza virus–infected MDCK cells. These authors proposed that hypoxanthine guanine phosphoribosyltransferase (HGPRT) could perform the first step in the activation pathway of T-705, but no experimental data were provided to substantiate this hypothesis. In the study presented here, we demonstrate for the first time that T-705 absolutely depends on the cellular HGPRT enzyme to exert its anti-influenza virus activity in mammalian cells. Two other phosphoribosyltransferases, adenine phosphoribosyltransferase (APRT) and nicotinamide phosphoribosyltransferase (NAMPT) were shown to play no relevant role in the cellular activation of T-705. Two distantly related carboxamide compounds (Fig. 1) were examined in parallel: ribavirin, which is activated by adenosine kinase (ADK) (Willis et al., 1978) [although other enzymes such as cytosolic 5’-nucleotidase II (Wu et al., 2005) may also be involved]; and the base of ribavirin, which was reported to be a substrate for purine nucleoside phosphorylase (PNP) (Streeter et al., 1977). We determined the structural requirements for recognition of T-705 and related 2-pyrazinecarboxamide compounds by human HGPRT, and the catalytic efficiency for conversion of T-705 and its nonfluorinated analog T-1105 into their phosphoribosylated metabolites. The crystal structure of human HGPRT in complex with T-705-RMP was obtained and revealed how this compound interacts with active-site amino acid residues.

Materials and Methods

Chemical Compounds. The chemical structures of T-705 and its structural analogs are shown in Fig. 1. The sources of these compounds were: T-705 from YouChemicals (Shanghai, China); T-1105 (3-hydroxy-2-pyrazinecarboxamide) from Santa Cruz Biotechnology (Dallas, TX); 2-pyrazinecarboxamide and 6-chloro-3,5-diamino-2-pyrazinecarboxamide, both from Sigma-Aldrich (St. Louis, MO). Ribavirin (Virazole) was from ICN Pharmaceuticals (Valeant, Laval, QC, Canada), whereas its free base (1,2,4-triazole-3-carboxamide) was purchased from TCI Europe (Zwijndrecht, Belgium). 6-Thioguanine (TG) and all other cytostatic agents were from Sigma-Aldrich. Stock solutions of these chemical agents were prepared in 100% dimethylsulfoxide (DMSO) at a concentration of 10–50 mM. For experiments requiring high concentrations of T-705 or T-1105 (i.e., K_m^{app} determinations), a 500 mM stock solution was used. DMSO concentrations were ≤0.1% in the cellular assays, and ≤1% in the enzymatic tests; it was ascertained that these DMSO concentrations had no effect on the outcome of the cellular or enzymatic experiments.

Anti-Influenza Virus and Cytotoxicity Assays. The detailed procedures to determine the anti-influenza virus activity in MDCK cells can be found elsewhere (Vanderlinden et al., 2010). The cell culture medium consisted of Dulbecco's modified Eagle's medium (Invitrogen, Carlsbad, CA), supplemented with 10% fetal calf serum, 1 mM sodium pyruvate, and 0.075% sodium bicarbonate. The medium used during virus infections consisted of Ultra MDCK medium (Lonza, Allendale, NJ), supplemented with 0.0225% sodium bicarbonate, 2 mM l-glutamine and 2 μg/ml tryosylphenylalanylchloromethyl...
ketone-treated trypsin (from Sigma-Aldrich). The influenza virus strains used were: A/PR/8/34 (A/H1N1); A/X-31 and A/HK/7/87 (A/H3N2); and B/HK/5/72 (Vanderlinden et al., 2012). MDCK cells, seeded in 96-well plates, were infected with virus at a multiplicity-of-infection of 0.0004 plaque-forming units per cell. At the same time, serial dilutions of the test compounds were added. After 3 days incubation at 37°C, microscopy was performed to estimate the inhibitory effect of the compounds on virus-induced cytopathic effect (CPE), as well as their cytotoxic activity. These microscopic data were confirmed by the spectrophotometric formazan-based 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) cell viability assay. Antiviral activity was expressed as the EC\textsubscript{50} value, or compound concentration producing 50% inhibition of cell proliferation, was calculated by interpolation.

Selection and Characterization of HGPRT-Deficient MDCK Cells. MDCK cells were seeded in 6-well plates and treated with TG at a final concentration of 25–100 μM. After 10 days incubation at 37°C, floating dead cells were removed, and surviving cells were detached with trypsin-EDTA and subcultivated in 100 or 200 μM TG. After another 10 days, the surviving cells were transferred to a 96-well plate and incubated with 100 or 200 μM 6-thioguanine in conditioned culture medium. After allowing cell proliferation for a total of 6 weeks, the cells were seeded in 96-well plates at an estimated density of 1 cell per well. Eleven individual TG-resistant cell clones were selected, expanded, and characterized (see below). One selected clone (designated MDCK-TGres) was kept in culture with continuous addition of 200 μM 6-thioguanine. No signs of reversal of the TGres phenotype were seen during the course of the study (∼50 serial passages). Prior to their use in experiments, the cells were grown for one passage in the absence of TG.

HGPRT protein expression in the TGres cell clones was assessed by Western blot analysis under denaturing and reducing conditions. Total cell lysates were prepared with the protein extraction buffer described by De Bolle et al. (2002). Twelve micrograms of total protein was loaded on 12% Tris-glycine gels. After electrophoresis and transfer to polyvinylidene fluoride membranes, the blots were stained with anti-HGPRT antibody [rabbit polyclonal: ab10479; Abcam (Cambridge, MA); final dilution 1/5000], or anti-mouse: P0477; Dako (Carpinteria, CA); final dilution 1/1000], or anti-actin antibody –actin antibody [rabbit polyclonal: ab1600; Abcam (Cambridge, MA); final dilution 1/10000], or anti–β-actin antibody (A5441; Sigma-Aldrich; dilution 1/5000), followed by a horseradish peroxidase-linked secondary antibody [anti-rabbit: P0399; Dako (Carpinteria, CA); dilution 1/4000; or anti-mouse: P0477; Dako; dilution 1/1000]. The antibodies were diluted in 2% nonfat dry milk in phosphate-buffered saline with 0.1% Tween. Visualization of the protein bands was done with the ECLplus reagent from GE Healthcare (Waukesha, WI), followed by exposure to X-ray film.

To assess the HGPRT enzymatic activity in the TGres MDCK cell clones, monolayer cultures of wild-type and MDCK-TGres cells were exposed to [2,8-3H]Hx (specific radioactivity: 15 Ci/mmol) at 2 μCi per 5 ml culture medium (final concentration: 0.027 μM). After 24 hours
incubation at 37°C, the cultures were washed three times with serum-free culture medium at room temperature, and then trypsinized. The cells were centrifuged, washed once with culture medium, and the cell pellet was extracted with ice-cold methanol (66%). After standing on ice for 15 minutes, the methanol-insoluble fraction was collected by centrifugation (13,400 g, 10 minutes, 4°C) and then counted for radioactivity. The supernatants were subjected to high-performance liquid chromatography (HPLC) analysis to separate [2,8-3H]Hx-derived metabolites and collected eluate fractions were submitted to scintillation counting.

To determine the genetic basis for the HGPRT deficiency of the selected MDCK-TG™ cell clone, sequence analysis of HGPRT-encoding cDNA and genomic DNA (gDNA) was performed. DNA was isolated from wild-type and MDCK-TG™ cells using standard techniques. PCR amplification of all nine coding exons and flanking intronic regions of HPRTI (dog) was carried out using intronic primer sets (primer sequences available upon request). Amplification of gDNA of HPRTI (dog) exons 1–2 was carried out in 25-μl reaction mixtures containing 25 mM 3-[[(2-hydroxy-1,1-bis(hydroxymethyl)ethyl)amino]-1-propanesulfonic acid hydrochloride pH 9.3; 50 mM KCl, 2 mM MgCl2, 1 mM β-mercaptoethanol, 0.5 μM of each primer, 0.2 mM 2′-deoxynucleoside 5′-triphosphates, and 0.012 IU of QS Hot Start High-Fidelity polymerase (New England Biolabs, Ipswich, MA). After initial denaturation for 5 minutes at 98°C, amplification was carried out for 35 cycles (10 seconds 98°C, 30 seconds 65°C, 15 seconds 72°C) with a final extension step of 2 minutes at 72°C. Amplification of gDNA of HPRTI (dog) exons 3–9 was carried out in 25-μl reaction mixtures containing 20 mM Tris-HCl, pH 8.4, 50 mM KCl, 1.5 mM MgCl2, 0.4 μM of each primer, 0.2 mM 2′-deoxynucleoside 5′-triphosphates, and 0.025 IU of Platinum Taq polymerase (Invitrogen). After initial denaturation for 5 minutes at 95°C, amplification was carried out for 30 cycles (30 seconds 95°C, 30 seconds 55°C, 1 minutes 72°C) with a final extension step of 10 minutes at 72°C. In parallel, total RNA was isolated from wild-type and MDCK-TG™ cells using Trizol extraction (Invitrogen). DNA was prepared by RT-PCR using a transcript first strand cDNA synthesis kit (Roche, Basel, Switzerland). PCR amplification of cDNA of HPRTI (dog) was performed using primer sets spanning exons 1–3, exons 4–8, or exon 9 (sequences available upon request). Amplification of cDNA was carried with Platinum Taq polymerase in 25-μl reaction mixtures and using the PCR protocol as described above. PCR products were separated on a 1.5% agarose gel and visualized with ethidium bromide, or used for direct sequencing.

vRNP Reconstitution Assay after Gene Knockdown. Gene knockdown was performed with ON-TARGETplus SMARTpool small interfering RNAs (siRNAs) from Dharmacon (Thermo Scientific, Pittsburgh, PA), directed toward the human genes HPRTI, ADK, APRT, or NAMPT, or with a nontargeting negative control. The siRNAs were reconstituted and frozen in aliquots as recommended by the manufacturer. The pHW2000-based bidirectional plasmids for reconstitution of the influenza virus ribonucleoprotein (vRNP) segments (i.e., encoding PA, PB1, PB2, and NP) from influenza A/WSN/33 were a kind gift from Dr. R. Webster (St. Jude Children’s Research Institute, Memphis, TN) (Hoffmann et al., 2000). The firefly luciferase reporter plasmid, which contains the firefly luciferase coding sequence flanked by the 5′- and 3′-UTR sequences from the A/Puerto Rico/8/34 NS gene, was kindly provided by Dr. M. Kim (Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea), while the Renilla luciferase reporter plasmid was the pRL-TK plasmid (containing an HSV TK promoter) from Promega (Madison, WI).

To transfect the siRNAs into human embryonic kidney (HEK) 293T cells, the cells were seeded in 2 ml of culture medium, at 700,000 cells per well in 6-well plates. One day later, the siRNAs were mixed with Lipofectamine RNAiMAX, which was first diluted in Opti-MEM I (both from Invitrogen). After 20 minutes incubation at room temperature, 500 μl transfection mixture was slowly added to the cells at a final siRNA concentration of 40 mM and a volume of 5 μl Lipofectamine RNAiMAX per well. An extra condition of untransfected control cells was included. After 48 hours incubation at 37°C, the cells were trypsinized, resuspended in culture medium at 15 × 10⁴ cells per ml, and transfected with the four vRNP reconstituting plasmids and the firefly and Renilla luciferase reporter plasmids. The procedure (Meneghesso et al., 2013) was adapted from the reverse genetics protocol published by Martinez-Sobrido and Garcia-Sastre (2010).

Specifically, 1 ml of the transfection mixture contained: 2.4 × 10⁵ siRNA-treated HEK293T cells; 5 μl Lipofectamine-2000 (Invitrogen); 0.22 μg of each of the four vRNP-reconstituting plasmids; 0.086 μg of the firefly luciferase plasmid, and 0.020 μg of the Renilla luciferase plasmid. This mixture was transferred to a 96-well plate (50 μl per well) containing 10 μl of the antiviral compounds at serial dilutions, and the plate was incubated for 24 hours at 37°C. Luciferase activity was determined using the Dual-Glo assay system from Promega.

To determine the gene knockdown efficiency, protein extracts were prepared at 48 hours after siRNA transfection. The extraction buffer and SDS-PAGE conditions were the same as mentioned above. The blots were stained with the primary antibodies: anti-HGPRT and anti-β-actin, same as above; anti-APRT (mouse polyclonal: ab72782; Abcam; 1:1000); anti-NAMPT (rabbit polyclonal: ab24419; Abcam; 1:1000); and anti-ADK (a rabbit polyclonal that was generously donated by D. Boison, Portland, OR; 1:5000) (Masino et al., 2011). Exposure to the secondary antibodies and detection of the protein bands was done as described above. The band intensity was quantified with ImageQuant TL 7.0 software from GE Healthcare.

In addition, gene knockdown efficiency for HGPRT and APRT was estimated by determining the cytostatic activity of 6-thioguainine and 2,6-diaminopurine in HEK293T cells following siRNA transfection. First, the HEK293T cells were seeded in 6-well plates and transfected with siRNA for HGPRT, APRT, or nontargeting negative control, as described above. At 24 hours after transfection, the cells were trypsinized, resuspended in culture medium at 0.8 × 10⁶ cells per ml, and transferred to a 96-well plate (100 μl per well) containing 20 μl of 6-thioguainine or 2,6-diaminopurine at serial dilutions. After 48 hours incubation at 37°C, the cells were counted with a Coulter Counter and the IC₅₀ values were calculated as described above.

Enzymatic Assays with HGPRT, APRT, and PNP. The following recombinant enzymes, produced in *E. coli*, were purchased from Prospec Bio (Rehovot, Israel): N-terminal His-tagged human HGPRT (EC 2.4.2.8), human APRT (EC 2.4.2.7), and N-terminal His-tagged PNP (EC 2.4.2.1). In the case of HGPRT, the reaction mixture contained 100 mM Tris-HCl at pH 7.4, 10 mM MgCl₂, and, depending on the base substrate, 0.2 or 7 mM 5-phospho-α-d-riboyl-1-pyrophosphate (PRib-P) and 0.019 or 0.37 μM enzyme. For APRT, the reaction conditions were 50 mM Tris-HCl at pH 7.4, 5 mM MgCl₂, 1 μg per μl bovine serum albumin and, depending on the base substrate, 0.05 or 7 mM PRib-P, and 0.051 or 0.77 μl enzyme. The samples (50 μl total volume) were incubated at 37°C during the indicated times. After stopping the reaction with 100 μl ice-cold methanol and sample clarification by centrifugation (13,400g, 10 minutes, 4°C), the samples were analyzed by anion-exchange HPLC using a Partisphere SAX column (4.6 × 125 mm) from Whatman (GE Healthcare). Elution was performed with buffer A and buffer B, containing 5 mM and 0.3 M ammonium dihydrogen phosphate, respectively (both at pH 5.0), a flow rate of 1.5 ml per minute, and the following gradient system: 0–5 minutes, 100% A; 5–13 minutes, to 90% A and 10% B; 13–15 minutes, 90% A and 10% B; 15–20 minutes, to 100% A; 20–30 minutes, 100% A. UV absorbance was measured with a Waters 996 photodiode array detector. The retention times and λmax values of the enzyme reaction products were: for T-705-RMP, 12.1 minutes and 372 nm; for T-1105-RMP, 12.1 minutes and 348 nm; for GMP, 20.2 minutes and 252 nm; for IMP, 16.0 minutes and 247 nm; and for AMP, 16.3 minutes and 258 nm. The formation of GMP or IMP (by HGPRT), or AMP (by APRT) was calculated by constructing standard curves from external standards of GMP, IMP, or AMP. Since...
standards of T-705-RMP and T-1105-RMP were not available, the amounts of T-705 and T-1105 converted were determined by quantifying the amount of parent compound remaining after the enzyme reaction. To this purpose, the extracts were also separated on a Superspher 100 RP-18 reverse-phase column (4 μm; 4 x 250 mm) from Merck (Darmstadt, Germany). Elution was performed (at 1 mL/min) with acetonitrile (D) and buffer: C. 50 mM ammonium dihydrogen phosphate and 5 mM 1-heptane sulfonic acid, pH 3.2. The gradient system was: 0–5 minutes: 100% D; 5–35 minutes: to 60% C and 40% D; 35–40 minutes: 60% C and 40% D; 40–50 minutes: to 100% C; 50–60 minutes: 100% C. The retention time (RT) of T-705 was 220 minutes and its λmax was 321 nm; for T-1105, the corresponding parameters were: 4.7 minutes and 348 nm.

To determine the apparent K_m and k_{cat} values for phosphoribosylation of T-705 and T-1105 by HGPRT, the compounds were incubated with 7 mM PrRib-PP and 0.37 μM enzyme for 6 hours, at substrate concentrations ranging from 0.156 to 5 mM (the highest concentration attainable). The K_m and k_{cat} values of hypoxanthine and guanine were determined under conditions of 0.2 mM PrRib-PP and 0.019 μM HGPRT, different concentrations of hypoxanthine or guanine (in the range of 0.9–77 μM), and an incubation time of 5 minutes. Similar experiments were done with the APRT enzyme. T-705 or T-1105 (at 0.156 to 5 mM concentrations) were incubated for 6 hours with 7 mM PrRib-PP and 0.77 μM APRT enzyme. The K_m value for adenine was determined under conditions of 0.9–77 μM adenine, 0.05 mM PrRib-PP, and 0.051 μM enzyme, and an incubation time of 2.5 minutes. Kinetic parameters (K_m^{app} and k_{cat}^{app}) were calculated by nonlinear regression analysis, using GraphPad (6.02) software (La Jolla, CA).

To identify the T-705-RMP metabolite, T-705 was first incubated with 0.37 μM of the HGPRT enzyme during 24 hours. Then, calf intestine alkaline phosphatase (from Roche; final concentration: 10 units per 100 μL) and dephosphorylation buffer (pH 8.5; also from Roche) were added and the samples were again incubated during 60 minutes. After addition of methanol and sample clarification, the extracts were subjected to RP-18-HPLC analysis as described above.

The PNP assay conditions to estimate ribosylation of T-705 or T-1105 (at a concentration of 5 mM) were: 50 mM HEPES pHi 7.5, 7.5 mM ribose-1-phosphate and 0.055 μM human PNP. After 6 or 24 hours incubation at 37°C, the reaction was stopped by heat inactivation of the enzyme (3 minutes at 95°C). The samples were clarified (13,400 x g, 10 minutes), 100 μM hypoxanthine and 1 mM ribose-1-phosphate, and 0.0029 μM PNP enzyme.

Crystallization and Structure Determination of Human HGPRT in Complex with T-705-RMP. To perform crystallization experiments, purified recombinant hexa-histidine–tagged human HGPRT was concentrated to 0.67 mM, in terms of subunits. The enzyme was stored at −70°C in 0.1 M Tris-HCl pH 7.4, 0.01 M MgCl2, 1 mM dithiothreitol and 300 mM PrRib-PP. Prior to crystallization, the enzyme (Ei, in terms of subunits, 0.67 mM) was preincubated with T-705 (7.2 mM), PrRib-PP (at 3 mM), and a final DMSO concentration of 5%, for 10 minutes at 5°C. Crystals were obtained by the hanging drop method, where 1 μL of reservoir solution and 1 μL of the complex were combined and incubated at 18°C. The reservoir solution was composed of 0.2 M NaCl, 1 M sodium/potassium tartrate, 0.1 M imidazole, pH 8.0. Crystals appeared within 2 weeks. For crystallization in the absence of T-705, human HGPRT was incubated with 3 mM PrRib-PP and 5% DMSO.

After cryo-cooling the crystals at 100 K, the X-ray data were collected using Beamline MX1 of the Australian Synchrotron. The data sets were scaled and merged using Xds (Kabsch, 2010). The structure was solved by molecular replacement using the program Phaser (McCoy et al., 2007) within PHENIX 1.7.3 and the protein coordinates of human HGPRT in complex with GMP (PDB ID 1HMP). Subsequent refinement of the coordinates was with PHENIX (www.phenix-online.org) (Adams et al., 2010) and model building with Crystallographic Object-Oriented Toolkit (COOT; http://www2. mrc-lmb.cam.ac.uk/personal/pemsey/coot/) (Emsley et al., 2010). The structural restraints for the ligand were generated using the PRODRG2 Dundee server (Schottelkopf and van Aalten, 2004). The coordinates and structure factors were submitted to the Protein Data Bank (PDB ID 4KN6).

Results

Anti-Influenza Virus Activity of T-705 and Related Structural Analogs. We first verified whether T-705 has selective antiviral activity in our stringent CPE reduction assay in MDCK cells, using three influenza virus strains belonging to the A/H1N1, A/H3N2, or B (subtypes). Three commercially available structural analogs of T-705 (see Fig. 1 for chemical structures) were tested in parallel. As shown in Table 1, the antiviral EC50 values of T-705 were similar for the three influenza viruses, and comparable values were obtained by the CPE and MTS assay, yielding an average EC50 value of 10 μM for T-705. This value is ~10-fold higher compared with the EC50 value reported by Furuta et al. (2002) but in the same range as recently reported by Baranovich et al. (2013). No signs of cytotoxicity were observed at 500 μM T-705 (the highest concentration tested), yielding a selectivity index (ratio of cytotoxic to antiviral concentration) of at least 50. The reference compound ribavirin, a nucleoside analog which like T-705 possesses a carboxamide function and broad anti-RNA virus activity, displayed EC50 values comparable to T-705 but considerably higher cytotoxicity. Interestingly, T-1105 was ~4-fold more potent than T-705 and also not cytotoxic at 500 μM, meaning that the 6-fluoro atom of T-705 is not required to obtain selective anti-influenza virus activity. On the other hand, no antiviral activity was noted for 2-pyrazinamide (which lacks the 3-hydroxyl group) and the 6-chloro-3,5-diamino-2-pyrazinamide analog. Also, the free ribavirin base (i.e., lacking the ribose moiety; Fig. 1) did not display anti-influenza virus activity. The antiviral EC50 values of nucleozin, a non-nucleoside analog which acts by aggregating the influenza virus nucleoprotein, were in the same range as the values reported in the literature (Kao et al., 2010); this compound proved to be inactive against influenza B virus.

Anti-Influenza Virus Activity of T-705 in Wild-Type Versus HGPRT-Deficient Cells. Cells lacking a functional HGPRT enzyme were considered well suited to assess the role of HGPRT in the potential metabolic activation and antiviral activity of T-705 (Fig. 2). We initially performed experiments with HGPRT-deficient human melanoma C32-TG cells (Chen, 1983). In these cells, T-705 was not active against respiratory syncytial virus, vesicular stomatitis virus, and Punta Toro virus, while being moderately active (EC50 values in the range of 40 μM) in wild-type C32 cells (data not shown). Since the C32-TG cells did not support influenza virus replication, we decided to select an HGPRT-deficient MDCK cell clone using the HGPRT-dependent cytotoxic agent 6-thioguanine (Chen, 1983). After eight serial passages of MDCK cells in the presence of 100–200 μM 6-thioguanine, followed by subcloning of the surviving cells, one 6-thioguanine-resistant MDCK cell clone was designated MDCK-TGres and selected for further experiments. First, a detailed phenotypic and genotypic analysis was undertaken. The absence of HGPRT protein in the
MDCK-TGres cells were demonstrated by Western blot analysis, using an antibody directed to the C-terminal part of HGPRT (Fig. 3A). Wild-type MDCK (MDCK-WT) cells showed efficient incorporation of [2,8-3H]Hx into their purine nucleotide pools (Fig. 3C, left), resulting in marked incorporation of radioactivity into cellular nucleic acids contained in the methanol-insoluble fraction (Fig. 3C, right). In contrast, the MDCK-TGres cells were heavily compromised in their capacity to use hypoxanthine as a metabolic precursor for their purine nucleotide synthesis.

The MDCK-TGres cells were further characterized by comparing their HPRT gDNA and cDNA sequences to those of MDCK-WT cells. Analysis of the genomic sequences of exons 1–9 of HPRT1 (dog) and flanking intronic sequences showed that the MDCK-TGres cells were heterozygous for a c.119G>A (p.G40E) mutation in exon 2. The glycine at position 40 proved to be highly conserved in HPRT1 from mammals and other eukaryotes and the G40E mutation can thus be predicted to be deleterious, consistent with the clinical observation that substitution of this Gly-40 or its surrounding residues leads to severe HGPRT deficiency (Jinnah et al., 2000).

In parallel, RNA isolated from MDCK-WT and MDCK-TGres residues leads to severe HGPRT deficiency (Jinnah et al., 2000). This exon 2 deletion leads to a 354-bp fragment together with a smaller sized fragment of 461 bp (Fig. 3B). Sequence analysis of the PCR fragments showed that the 354-bp fragment originated from the 461-bp fragment by a deletion of 107 bp, corresponding to the nucleotides c.28–134 of exon 2. This exon 2 deletion leads to a shifted reading frame resulting in a premature stop codon shortly afterward (p.Ile10AspfsX2).

Finally, to further characterize the mutant MDCK cells, the MDCK-TGres and MDCK-WT cells were compared for their sensitivity to a variety of cytostatic nucleoside analogs. The IC50 values (compound concentrations affording 50% inhibition of cell proliferation) obtained in the two cell lines are given in Table 2. As expected, the MDCK-TGres cells were strongly resistant (IC50 ≥ 440 μM) to the cytostatic effect of HGPRT-dependent nucleoside analogs, i.e., 6-thioguanine, 6-mercaptopurine, and 6-thioguanosine. Presumably, the latter compound is preferentially hydrolyzed to 6-thioguanine by PNP prior to its HGPRT-directed conversion to 6-thioguanosine-5'-monophosphate. For the other nucleoside analogs, which use different mechanisms for their metabolic activation or cytotoxic action (see caption of Table 2), the IC50 values were virtually identical in the WT and HGPRT-deficient MDCK cells. Thus, the 6-thioguanine resistant phenotype of the MDCK-TGres cells was proven to be solely based on the lack of a functional HGPRT enzyme.

To investigate whether the HGPRT deficiency of the MDCK-TGres cells renders them less sensitive to the antiviral action of T-705 and T-1105, a PCR-based virus yield assay was performed (Stevaert et al., 2013). The compounds were added to MDCK-TGres or MDCK-WT cells together with influenza virus and, after 24 hours incubation, the virions released in the supernatant were quantified by qRT-PCR. Viral copy numbers in the untreated virus controls were similar for MDCK-TGres and MDCK-WT cells (data not shown), meaning that the virus replicated with comparable efficiency in both cell lines. In MDCK-WT cells, the EC99 values of T-705, T-1105, and ribavirin obtained by the virus yield assay were 12, 2.5, and 3.6 μM, respectively (Table 3); these data are similar to the corresponding EC50 values obtained in the CPE reduction assay (see above). Of these three compounds, only ribavirin retained its antiviral activity in MDCK-TGres cells. Its EC50 and EC99 values were about 3-fold lower in MDCK-TGres compared with MDCK-WT cells, which might be explained by the fact that the MDCK-TGres cells are unable to salvage IMP from hypoxanthine, increasing their sensitivity to the inhibitory effect of ribavirin 5’-monophosphate on IMP dehydrogenase. The finding that T-705 and T-1105 are totally devoid of antiviral activity in the HGPRT-deficient cells indicates that these two compounds are strictly dependent on activation by HGPRT. The other three carboxamide analogs, i.e., 2-pyrazinamide, 6-chloro-3,5-diamino-2-pyrazinamide, and the ribavirin base, had no anti-influenza virus activity in the virus yield assay, confirming the results obtained in the CPE assay.

Effect of siRNA-Mediated HGPRT Knockdown on the Inhibitory Activity of T-705 toward Influenza Virus Polymerase. The vRNP reconstitution assay represents a convenient cell-based method to estimate the activity of compounds toward the influenza virus polymerase (Meneghesso et al., 2013). In this plasmid-based assay, the four influenza virus proteins constituting the vRNP complexes are generated in human

TABLE 1

<table>
<thead>
<tr>
<th>Compound</th>
<th>Antiviral EC50a</th>
<th>Cytotoxicity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Influenza A/H1N1</td>
<td>Influenza A/H3N2</td>
</tr>
<tr>
<td></td>
<td>CPE</td>
<td>MTS</td>
</tr>
<tr>
<td>T-705</td>
<td>12 ± 1</td>
<td>14 ± 2</td>
</tr>
<tr>
<td>T-1105</td>
<td>3.4 ± 1.4</td>
<td>3.5 ± 0.6</td>
</tr>
<tr>
<td>2-Pyrazinamide</td>
<td>>500</td>
<td>>500</td>
</tr>
<tr>
<td>6-Cl-3,5-diamino-2-pyrazinamide</td>
<td>>500</td>
<td>>500</td>
</tr>
<tr>
<td>Ribavirin base</td>
<td>>500</td>
<td>>500</td>
</tr>
<tr>
<td>Ribavirin</td>
<td>9.6 ± 0.5</td>
<td>18 ± 5</td>
</tr>
<tr>
<td>Nucleozin</td>
<td>0.017 ± 0.010</td>
<td>0.024 ± 0.018</td>
</tr>
</tbody>
</table>

aEC50, compound concentration causing 50% reduction in virus replication at 72 hours postinfection, as estimated by the microscopic CPE reduction assay or the MTS cell viability assay.
bCC50 (minimum cytotoxic concentration), compound concentration causing minimal changes in cell morphology after 72 hours incubation with compound.
cCC50, 50% cytotoxic concentration, i.e., compound concentration causing 50% reduction in cell viability, as estimated by the MTS assay.

Influenza virus strains used: A/PR/8/34 (A/H1N1); A/HK/7/87 (A/H3N2); and B/HK/5/72. Data are the mean ± S.E.M. of three to five independent tests.
HEK293T cells. The transfection mixture also contains two reporter plasmids, i.e., a firefly luciferase encoding plasmid, for which transcription depends on the activity of the viral vRNP, and a *Renilla* luciferase control plasmid, for which transcription is solely dependent on cellular RNA polymerase II. Upon addition of a test compound, the firefly luciferase and *Renilla* luciferase signals are indicators for its inhibitory effect on the viral vRNP and cellular RNA polymerase II, respectively, thus corresponding to its antiviral activity and cytotoxicity, respectively. T-705 and T-1105 were shown to suppress influenza virus vRNP activity in a concentration-dependent manner, with EC50 values of 11 and 38 μM, respectively (see non-siRNA-transfected control cells in Table 4), and no inhibition of cellular RNA polymerase II at 500 μM (the highest concentration tested). Ribavirin was two times more potent than T-705 (EC50 of 5.2 μM) with no apparent toxicity at 500 μM. The viral nucleoprotein–aggregating agent nucleozin (for which vRNP inhibition is unrelated to an effect on the viral polymerase) (Kao et al., 2010) had an EC50 of 1.8 μM and an IC50 (concentration causing 50% reduction of the *Renilla* luciferase signal) of 43 μM.

The vRNP assay was used in gene knockdown experiments to verify that, among the three phosphoribosyltransferases that could be considered (i.e., HGPRT, APRT, or NAMPT), HGPRT is the sole enzyme involved in intracellular activation of T-705. HEK293T cells were subjected to siRNA-mediated gene silencing for HGPRT, APRT, or NAMPT; as controls, we included siRNA for ADK, reported to perform the first phosphorylation of ribavirin (Willis et al., 1978), or a negative control siRNA provided by the manufacturer. At 48 hours after siRNA transfection, the cells were trypsinized to reconstitute the influenza vRNP and the compounds were added. After an additional 24 hours, the dual luciferase assay was performed. In parallel, gene knockdown efficiency was measured at 48 hours after siRNA transfection, using Western blot analysis. As shown in Fig. 4A, the gene knockdown was efficient and specific, producing a ∼3-fold reduction in protein band intensity for HGPRT, NAMPT, or ADK. The anti-APRT antibody produced several aspecific bands (data not shown), making it impossible to estimate the APRT gene knockdown efficiency by Western blot. We therefore did an additional experiment to determine whether the cytostatic activity of the APRT-dependent 2,6-diaminopurine was altered after transfection of HEK293T cells with APRT-targeting siRNA, and we included the HGPRT-dependent compound 6-thioguanine as a control. In the APRT-siRNA condition, the IC50 value for 2,6-diaminopurine was ∼1.8-fold increased compared with the IC50 value obtained in non-siRNA-transfected control cells (indicated as CC in Fig. 4B). For 6-thioguanine, no difference in IC50 value was seen among the three siRNA- and non-transfected conditions. This may be explained by the fact that 6-thioguanine is a very efficient substrate for HGPRT, since its k_{cat}/K_m value is 5.1 sec$^{-1} \cdot \mu$M$^{-1}$.
In Table 4 and Fig. 4C, after knockdown for HGPRT, the EC50 after APRT-specific gene knockdown. Hence, a 3-fold reduction in expression of the HGPRT enzyme (as evidenced by our Western blot analysis; Fig. 4A) for 6-thioguanine and 6-mercaptopurine; APRT for 2,6-diaminopurine and 6-methylpurine; ADK for ribavirin, tubercidin, and pyrazofurin; 2'-deoxycytidine kinase for cytarabine and gemcitabine, orotate phosphoribosyltransferase, or thymidine phosphorylase for 5-fluorouracil; and thymidine kinase for 5-fluoro-2'-deoxuryridine and 5-trifluorothymidine.

TABLE 2
Sensitivity of WT- and HGPRT-deficient MDCK cells to diverse cytostatic agents

<table>
<thead>
<tr>
<th>Compound</th>
<th>IC50<sup>a</sup> (µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MDCK-WT</td>
</tr>
<tr>
<td>6-Thioguanine</td>
<td>8.1 ± 2.9</td>
</tr>
<tr>
<td>6-Thioguanosine</td>
<td>1.3 ± 0.0</td>
</tr>
<tr>
<td>6-Mercaptopurine</td>
<td>8.4 ± 1.1</td>
</tr>
<tr>
<td>2,6-Diaminopurine</td>
<td>10 ± 2</td>
</tr>
<tr>
<td>6-Methylpurine</td>
<td>4.2 ± 0.4</td>
</tr>
<tr>
<td>Ribavirin</td>
<td>8.9 ± 0.2</td>
</tr>
<tr>
<td>Tubercidin</td>
<td>0.13 ± 0.04</td>
</tr>
<tr>
<td>Pyrazofurin</td>
<td>0.48 ± 0.58</td>
</tr>
<tr>
<td>Cytarabine</td>
<td>1.9 ± 0.0</td>
</tr>
<tr>
<td>Gemcitabine</td>
<td>0.090 ± 0.003</td>
</tr>
<tr>
<td>5-Fluorouracil</td>
<td>0.073 ± 0.021</td>
</tr>
<tr>
<td>5-Fluoro-2'-deoxuryridine</td>
<td>0.0058 ± 0.0017</td>
</tr>
<tr>
<td>5-Trifluorothymidine</td>
<td>1.0 ± 0.5</td>
</tr>
</tbody>
</table>

^aIC50, concentration causing 50% inhibition of cell proliferation.

which is similar to the value for guanine (4.3 sec^{−1} · µM^{−1}). Hence, a 3-fold reduction in expression of the HGPRT enzyme (as evidenced by our Western blot analysis; Fig. 4A) appears not to be sufficient to alter the cytostatic effect of 6-thioguanine. On the other hand, the conversion of 2,6-diaminopurine by APRT was reported to be 10-fold less efficient than that of adenine (Thomas et al., 1973), explaining the decreased cytostatic activity of 2,6-diaminopurine after APRT-specific gene knockdown.

The effect of the siRNA-mediated gene knockdown on the anti-vRNP activity of T-705, T-1105, and ribavirin is presented in Table 4 and Fig. 4C. After knockdown for HGPRT, the EC50 values for suppression of influenza virus vRNP were significantly (P < 0.01) increased, i.e., 8- and 5-fold for T-705 and T-1105, respectively, when compared with the EC50 values in the non–siRNA-treated cell control. The other siRNA treatments (including those for APRT and NAMPT) had no effect on the EC50 values of T-705 and its nonfluorinated analog. In the case of ribavirin, a significant (P < 0.05) 6-fold increase in EC50 value was seen after gene knockdown for ADK, whereas its EC50 value was unaltered after gene knockdown for HGPRT, APRT, or NAMPT.

Substrate Efficiency of T-705 for Human HGPRT and APRT. The above data provide strong evidence that T-705 and T-1105 require phosphoribosylation by mammalian HGPRT to exert their anti-influenza virus effect, whereas APRT and NAMPT appear not to be involved. The substrate efficiency of T-705 and T-1105 for conversion by HGPRT was investigated in enzymatic assays with human HGPRT, using UV-HPLC analysis to separate and quantify the base and RMP metabolite. The naturally occurring HGPRT substrates guanine and hypoxanthine (at a concentration of 8 µM) were 90–100% converted to GMP and IMP, respectively, after 30 minutes incubation in the presence of 200 µM PRib-PP and 0.019 µM enzyme (hereafter referred to as “condition A”). At these substrate concentrations, V_{max} for the reaction will have been achieved since the K_m^{app} values for guanine, hypoxanthine, and PRib-PP are 1.9, 3.4, and 65 µM, respectively. Under these assay conditions, no conversion of T-705 (at a concentration of 200 µM) was observed, even after 24 hours. When exposing the compound to a 20-fold higher concentration of enzyme (i.e., 0.37 µM) and a 35-fold higher concentration of PRib-PP (i.e., 7 mM) (“condition B”), T-705-RMP was already formed after 1 hour incubation, and its peak area linearly increased in time until 24 hours incubation, the last time-point measured (Fig. 5A). “Condition B” was used in subsequent experiments to estimate the K_m^{app} values for T-705 and T-1105, using an incubation time of 6 hours. The reaction velocity increased with compound concentration (Fig. 5B), yet saturation of the Michaelis-Menten curve was not obtained at 5 mM, the highest concentration attainable due to restricted compound solubility and percentage DMSO allowed. However, the data allowed to calculate estimated K_m^{app} values of 6.4 mM for T-705 and 4.1 mM for T-1105, and catalytic efficiency (k_{cat}/K_m^{app}) values of 0.000027 and 0.00014 sec^{−1} · µM^{−1}, respectively. A parallel experiment with hypoxanthine and guanine under “condition A” yielded a K_m^{app} value of 3.6 µM for hypoxanthine and 5.4 µM for guanine, which is similar to published data (Raman et al., 2004; Keough et al., 2006). The k_{cat}/K_m^{app} values were calculated to be 0.13 sec^{−1} · µM^{−1}.

TABLE 3
Anti-influenza virus activity of T-705 and related carboxamide analogs in WT- and HGPRT-deficient MDCK cells

Data are the mean ± S.E.M. of two independent tests.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Antiviral Activity Determined by qRT-PCR<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MDCK-WT Cells</td>
</tr>
<tr>
<td></td>
<td>EC<sub>50</sub></td>
</tr>
<tr>
<td></td>
<td>µM</td>
</tr>
<tr>
<td>T-705</td>
<td>6.2 ± 0.6</td>
</tr>
<tr>
<td>T-1105</td>
<td>0.98 ± 0.32</td>
</tr>
<tr>
<td>2-Pyrazinamide</td>
<td>>500</td>
</tr>
<tr>
<td>6-Cl-3,5-diamino-2-pyrazinamide</td>
<td>>500</td>
</tr>
<tr>
<td>Ribavirin base</td>
<td>>500</td>
</tr>
<tr>
<td>Ribavirin</td>
<td>1.9 ± 0.2</td>
</tr>
</tbody>
</table>

^aAntiviral activity determined by qRT-PCR-based virus yield assay with influenza virus strain A/X-31, and expressed as EC₅₀ or EC₉₀, i.e., compound concentration causing a 1 log₁₀ or 2 log₁₀ reduction in virus titer, respectively.

^bMDCK-TG^b cells selected for resistance against 6-thioguanine, and shown to be HGPRT-deficient by phenotypic and genotypic characterization (see Fig. 3).
for hypoxanthine and 0.14 sec$^{-1} \cdot \mu$M$^{-1}$ for guanine, which is 12- to 32-fold lower than published values (Keough et al., 2006). Hence, it is possible that the k_{cat}/K_m values calculated for T-705 and T-1105 may be somewhat underestimated. However, our data clearly demonstrate that T-705 and T-1105 are both poor substrates of HGPRT under steady-state conditions, although the nonfluorinated compound still performs 5-fold better in terms of catalytic efficiency. This also demonstrates our finding that, after 6 hours incubation of the HGPRT enzyme with 5 mM T-705 or T-1105, there is still 88% of parent T-705 and 50% of T-1105 left. We further found that unsubstituted 2-pyrazinocarboxamide and 6-chloro-3,5-diamino-2-pyrazinocarboxamide were not detectably converted by HGPRT (data not shown), indicating that the 3-hydroxyl function present in T-705 and T-1105 is critical for their substrate recognition by HGPRT.

Due to the absence of external standards of the RMP metabolites of T-705 and T-1105, additional experiments were performed to confirm their peak identity on our chromatograms. A first indication that these peaks represented T-705-RMP and T-1105-RMP came from their high retention time (12.1 minutes in both cases) on an anion-exchange column. Secondly, samples obtained after 24-hours incubation of T-705 or T-1105 with HGPRT (to form considerable amounts of the presumed RMP metabolites) were incubated with alkaline phosphatase at pH 8.5 during 60 minutes, and then submitted to HPLC analysis. The phosphatase treatment resulted in a total loss of the presumed T-705-RMP peak as evidenced by anion-exchange HPLC, and RP-18 analysis revealed the formation of a new metabolite with a retention time of 21.5 minutes and a λ_{max} of 372 nm; for parent T-705, the respective data were 22.0 minutes and 320 nm. In the case of T-1105, the new metabolite had an RT of 19.8 minutes and λ_{max} of 348 nm, compared with 4.7 minutes and 348 nm for parent T-1105. This more lipophilic behavior is consistent with the identification of the alkaline phosphatase product as ribosylated T-1105. Regarding T-705, we noticed only a 0.5 minutes difference in the RP-18 retention times for the nucleobase and ribosylated metabolite. The markedly higher RT for parent T-705 compared with T-1105 (i.e., 22.0 versus 4.7 minutes) might indicate that T-705 is more lipophilic due to the presence of the fluoro at the C-6 position. Alternatively, since

Table 4

<table>
<thead>
<tr>
<th>Compound</th>
<th>EC$_{50}^{a}$ for Inhibition of Influenza vRNP Activity after siRNA-Mediated Gene Knockdownb</th>
<th>IC$_{50}^{c}$ for Inhibition of polII d</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HGPRT</td>
<td>APRT</td>
</tr>
<tr>
<td>T-705</td>
<td>88 ± 17**</td>
<td>8.0 ± 0.5</td>
</tr>
<tr>
<td>T-1105</td>
<td>237 ± 35**</td>
<td>31 ± 9</td>
</tr>
<tr>
<td>Ribavirin</td>
<td>5.5 ± 0.5</td>
<td>5.5 ± 0.0</td>
</tr>
<tr>
<td>Nucleozin</td>
<td>1.6 ± 0.3</td>
<td>1.8 ± 0.2</td>
</tr>
</tbody>
</table>

aEC$_{50}$, 50% effective concentration producing 50% inhibition of influenza vRNP activity, estimated from the firefly reporter signal.

bHEK293T cells were siRNA-transfected to silence the indicated genes (NC, negative control siRNA). After 48 hours, samples obtained after 24-hours incubation of T-705 and T-1105, evaluated under conditions of 7 mM PRib-PP, 8 μM guanine or hypoxanthine, 10 minutes incubation), T-705 afforded no inhibition at 200 μM. This result is consistent with the high K_m^{app} of T-705. As a control, two acyclic nucleoside phosphonate analogs were included, which we previously found to inhibit the human HGPRT enzyme (Keough et al., 2009). 9-[(2-Phosphonoethoxy)ethyl]guanine inhibited the conversion of guanine with an IC$_{50}$ value of 2.6 μM, whereas 9-[(2-phosphonoethoxy)ethyl]hypoxanthine displayed an IC$_{50}$ value of 12 μM versus conversion of hypoxanthine.

Finally, the substrate efficiency of T-705 and T-1105 for phosphoribosylation by APRT was determined in similar experiments as performed with HGPRT. Under conditions of 0.05 mM PRib-PP and 0.051 μM APRT enzyme, the estimated K_m^{app} of the natural substrate adenine was 14 μM. For T-705 and T-1105, evaluated under conditions of 7 mM PRib-PP and 0.77 μM APRT enzyme, the Michaelis-Menten curve (Fig. 5C) did not reach sufficient saturation to calculate reliable values for K_m^{app}. We determined that, after 6 hours incubation of the compound (at 5 mM) with APRT, only 0.3% of T-705 was converted into T-705-RMP; for T-1105, the conversion rate was 1.2%. For comparison, the conversion rates after 6 hours incubation with HGPRT were 12% for T-705 and 50% for T-1105. Thus, it can be estimated that conversion of T-705 and T-1105 by APRT is ~40-fold less efficient compared with their phosphoribosylation by HGPRT.

T-705 Is Only Marginally Converted to Its Riboside by Human PNP. The free ribavirin base was reported to be a substrate for PNP from calf spleen, resulting in the formation of ribavirin (Streeter et al., 1977). We therefore assessed...
whether T-705 may be recognized by the human PNP enzyme. With hypoxanthine as the substrate (at 100 μM), conversion into inosine was 99% after 30 minutes incubation with 0.0029 μM human PNP and 1 mM ribose-1-phosphate. Using a 20-fold higher enzyme concentration (0.058 μM), 7 mM ribose-1-phosphate and a T-705 concentration of 5 mM, conversion of T-705 into its ribosylated form was 0% after 6 hours and 9% after 24 hours. For T-1105, the conversion rate was 0% after 6 hours and 4% after 24 hours (data not shown).

Crystal Structure of Human HGPRT in Complex with T-705-RMP. The crystal structure of T-705-RMP in complex with human HGPRT has been determined to 2.7-Å resolution, with the asymmetric unit constituting a single polypeptide of human HGPRT (Table 5). The overall fold is similar to that of the GMP-human HGPRT complex (Eads et al., 1994). This is as expected for both T-705-RMP and GMP are phosphoribosylated products of the HGPRT reaction. To ensure that the electron density in the active site could be attributed to the presence of T-705-RMP, we also grew crystals of human HGPRT where the only additives were DMSO (5%) and PRib-PP (7.2 mM). No electron density in the active site was observed.

The pyrazine ring of T-705-RMP slots in neatly under the side chain of Phe186 (Fig. 6A). However, the usual π-stacking arrangement found when a purine base binds to human HGPRT is not observed here (Eads et al., 1994; Shi et al., 1999; Keough et al., 2009, 2013). This is a result of the carboxamide group in T-705 being more bulky than the 6-oxo group in the naturally occurring base substrates (Fig. 6B). The pyrazine ring of T-705 is stabilized by a hydrogen bond between its exocyclic amide and the main chain carbonyl of Val187; a halogen bond between its fluorine atom, the carbonyl atom of Asp193, and the amide nitrogen of Asp193; and by the carboxamide oxygen atom of T-705 forming hydrogen bonds with the carboxyl function of Asp137 and the NZ atom of Lys165 (Fig. 6A). This interaction with Lys165 probably explains why T-705 is recognized as a substrate by human HGPRT, since this bond is analogous to the interaction...
between Lys165 and the 6-oxo atom of the naturally occurring purine substrates (i.e., guanine and hypoxanthine). This 6-oxo atom confers the specificity of human HGPRT for these substrates, since purine bases containing a 6-amino group (i.e., adenine) are not substrates for HGPRT.

The phosphoryl oxygens of T-705-RMP are located in the 5'-phosphate binding pocket (residues 137–141) (Fig. 6A). These atoms form hydrogen bonds with the main chain amide atoms of residues Thr138, Gly139, and Thr141, and the OG1 atom of Thr141. There are no magnesium ions in the crystal structure. This is also the case when a nucleoside-5'-monophosphate binds. It is assumed that the divalent metal ions exit with inorganic pyrophosphate (PPi). The interactions of the 2'- and 3'-hydroxyl groups of the ribose ring of T-705-RMP with the NZ atom of Thr141 are unique and, until now, only observed with this ligand. Also, in the T-705-RMP complex, the side chain of residue Lys68 adopts a different orientation from that seen when GMP is bound (Fig. 6B). In the case of T-705-RMP, the two (i.e., 2'– and 3') hydroxyl groups of the ribose form hydrogen bonds with the NZ atom of Lys68 (Fig. 6A). The side chain of Lys68 is only found in this position in four other known crystal structures of human HGPRT (Keough et al., 2005, 2009). The common feature of these structures is the absence of PPi or a mimic thereof. When the transition state analog immucillinGP binds along with PPi$^\times$Mg$^{2+}$ (Shi et al., 1999), or when $\{(2-\text{[(guanine-9H-yl)methyl]}\text{propane-1,3-diyl]}\text{bis(oxy)}\text{bis(methylene)}\text{diphosphonic}$ acid binds (Keough et al., 2013), the side chain of Lys68 rotates away from the active site by 180° to allow PPi$^\times$Mg$^{2+}$ to enter. In the immucillinGP complex, the ribose is coordinated to Mg$^{2+}$ and through this to PPi$^\times$Mg$^{2+}$ to enter. One of its hydroxyl groups also forms a hydrogen bond with the OE1 atom of Glu133. Instead, in the T-705-RMP structure, the OE1 atom of Glu133 forms a hydrogen bond with the NZ of Lys68. In the GMP-HGPRT cocystal complex, the side chain of Lys68 is orientated away from Glu133. It has been hypothesized that, in that structure, this side chain is returning to its original position prior to release of the nucleoside-5'-monophosphate. The crystal structure with T-705-RMP may reflect the active site structure prior to nucleotide release, since T-705-RMP has been captured in the crystal before it can be released. This suggests that T-705-RMP may have a relatively high affinity
for the enzyme with a K_i value well below the K_m^{app} value for T-705, or else catalysis would not occur.

Discussion

T-705 is unique in having broad anti-RNA virus activity, favorable selectivity and a high resistance barrier (Furuta et al., 2009). Due to its rotating carboxamide, T-705 acts as a pseudobase mimicking both guanine and adenine. This is the likely basis for recognition of T-705 and its metabolites by cellular enzymes involved in purine metabolism. Likewise, the influenza virus polymerase recognizes T-705-RTP as a GTP-mimic, giving competitive inhibition of GTP incorporation during viral RNA synthesis (Furuta et al., 2005). The increased mutation rate in influenza virus passaged under T-705 (Baranovich et al., 2013) is explained by the presumption that, once incorporated into viral RNA, T-705 can base-pair with either cytosine or uracil. Thus, both the metabolic activation and antiviral effect of T-705 depend on the equilibrium during viral RNA synthesis (Furuta et al., 2005). The other hand, the low binding affinity of T-705 compared with guanine (i.e., ~1200-fold lower K_m^{app} value) may be explained by the different location of the aromatic ring in relation to the side chain of Phe186 (Fig. 6B). With GMP, π-stacking between Phe186 and the purine ring is observed. In the case of T-705-RMP, the pyrazine ring is close to the aromatic ring of Phe186, which is however slightly pushed away by the bulky carboxamide group. Also, hydrogen bonds are formed with Val187 and Lys165. Though these bonds contribute to the binding of T-705 in the active site, they may be counter-productive. The free rotation around the carbon-carbon bond, which allows the carbonyl and amide groups to contribute to the binding of T-705, or else catalysis would not occur.

The guanine-mimicking property of T-705 was confirmed in the T-705-RMP HGPRT crystal structure, in which the carbonyl oxygen of its carboxamide interacts with Lys165, similarly to the 6-oxo atom of the natural purine substrates (Eads et al., 1994). A second similarity is between the cocystal structures with T705-RMP or GMP is the interaction of their 5′-phosphate with the loop formed by residues 137–141. On the other hand, the low binding affinity of T-705 compared with guanine (i.e., ~1200-fold lower K_m^{app} value) may be explained by the different location of the aromatic ring in relation to the side chain of Phe186 (Fig. 6B). With GMP, π-stacking between Phe186 and the purine ring is observed. In the case of T-705-RMP, the pyrazine ring is close to the aromatic ring of Phe186, which is however slightly pushed away by the bulky carboxamide group. Also, hydrogen bonds are formed with Val187 and Lys165. Though these bonds contribute to the binding of T-705 in the active site, they may be counter-productive. The free rotation around the carbon-carbon bond, which allows the carbonyl and amide groups to contribute to the binding of T-705, or else catalysis would not occur.

The guanine-mimicking property of T-705 was confirmed in the T-705-RMP HGPRT crystal structure, in which the carbonyl oxygen of its carboxamide interacts with Lys165, similarly to the 6-oxo atom of the natural purine substrates (Eads et al., 1994). A second similarity is between the cocystal structures with T705-RMP or GMP is the interaction of their 5′-phosphate with the loop formed by residues 137–141. On the other hand, the low binding affinity of T-705 compared with guanine (i.e., ~1200-fold lower K_m^{app} value) may be explained by the different location of the aromatic ring in relation to the side chain of Phe186 (Fig. 6B). With GMP, π-stacking between Phe186 and the purine ring is observed. In the case of T-705-RMP, the pyrazine ring is close to the aromatic ring of Phe186, which is however slightly pushed away by the bulky carboxamide group. Also, hydrogen bonds are formed with Val187 and Lys165. Though these bonds contribute to the binding of T-705 in the active site, they may be counter-productive. The free rotation around the carbon-carbon bond, which allows the carbonyl and amide groups to contribute to the binding of T-705, or else catalysis would not occur.

The guanine-mimicking property of T-705 was confirmed in the T-705-RMP HGPRT crystal structure, in which the carbonyl oxygen of its carboxamide interacts with Lys165, similarly to the 6-oxo atom of the natural purine substrates (Eads et al., 1994). A second similarity is between the cocystal structures with T705-RMP or GMP is the interaction of their 5′-phosphate with the loop formed by residues 137–141. On the other hand, the low binding affinity of T-705 compared with guanine (i.e., ~1200-fold lower K_m^{app} value) may be explained by the different location of the aromatic ring in relation to the side chain of Phe186 (Fig. 6B). With GMP, π-stacking between Phe186 and the purine ring is observed. In the case of T-705-RMP, the pyrazine ring is close to the aromatic ring of Phe186, which is however slightly pushed away by the bulky carboxamide group. Also, hydrogen bonds are formed with Val187 and Lys165. Though these bonds contribute to the binding of T-705 in the active site, they may be counter-productive. The free rotation around the carbon-carbon bond, which allows the carbonyl and amide groups to contribute to the binding of T-705, or else catalysis would not occur.
EC50 values were similar in both cell lines. This discrepancy active in HEK293T cells than in MDCK cells; for T-705, the infected MDCK cells. However, T-1105 was proved 4-fold more potent than T-705 in influenza virus-verted 5-fold more efficiently by human HGPRT and, likewise, metabolic activation and antiviral activity. T-1105 is con-
nition of the active site of the T-705-RMP

Fig. 6. Crystal structure of the complex between human HGPRT and T-705-RMP and comparison with the GMP -human HGPRT structure. (A) To obtain the crystal complex with T-705-RMP, PRib-PP and T-705 were added to human HGPRT under the conditions described in Materials and Methods. Crystallization of this solution resulted in the appearance of the nucleotide product bound in the active site of the enzyme. (B) Superimpo-
sition of the active site of the T-705-RMP-human HGPRT complex and the GMP-human HGPRT complex (PDB ID 1HMP) (Eads et al., 1994). The atoms of the 5'-phosphate groups superimpose to a high degree of precision. The ribose ring of T-705-RMP is slightly lower in the active site compared with GMP. This difference appears to affect the side chain of K68 allowing hydrogen bond formation (shown in A). The pyrazine ring of T-705-RMP is lower in the purine binding site than is the guanine of GMP. As a result, in the case of T-705-RMP, there is a reduction in π-electron overlap between the nucleotide product and the aromatic ring of P186. This dissimilarity, together with the different hydrogen bonding arrangements, may be contributing factors to the lower binding affinity of T-705 compared with that of guanine.

metabolic activation and antiviral activity. T-1105 is converted 5-fold more efficiently by human HGPRT and, likewise, proved 4-fold more potent than T-705 in influenza virus-infected MDCK cells. However, T-1105 was ~14-fold less active in HEK293T cells than in MDCK cells; for T-705, the EC50 values were similar in both cell lines. This discrepancy may be related to a different efficiency between MDCK and HEK293T cells in performing the activation beyond the RMP metabolites. The enzymes involved are not yet identified but a role for GMP kinase and NDP kinase is possible. Whether the difference is related to species (MDCK are of canine origin – dependent

A concern in antiviral therapy with nucleoside analogs is that suboptimal levels of the active metabolite may precipitate the emergence of drug resistance. This may be different for T-705 since, at lower concentrations, its incorporation into viral RNA can cause lethal mutagenesis and virus extinction (Baranovich et al., 2013). In cell culture, no T-705-resistant influenza virus was detected after as many as thirty passages (Furuta et al., 2009). T-705 is a broad antiviral agent (Furuta et al., 2009). Since HGPRT is a ubiquitous enzyme, T-705 should become phosphoribosylated in all relevant tissues. Its HGPRT-dependency may be an interesting property in the treatment of neurologic virus infections, since the expression of HGPRT is 4-fold higher in brain (Stout and Caskey, 1985). This is consistent with the severe neurologic abnormalities in Lesch-Nyhan patients who have a congenital HGPRT deficiency (Jinnah et al., 2000). Although HGPRT-deficient cells display normal proliferation in vitro (due to unaffected purine de novo synthesis), HGPRT is indispensable in vivo. The level of HPRT1 mRNA was found to be reduced in inflamed lung tissue (Allen et al., 2006). No data have yet been reported on the tissue distribution or metabolism of T-705 in vivo. Besides T-705, the ribosylated form of T-1105 is currently being developed as an antiviral agent (Furuta et al., 2009). This nucleoside analog (encoded T-1106) appeared not active against yellow fever virus in Vero cells, but was shown to suppress this virus in a hamster model (Julander et al., 2009). In our enzymatic assays with human PNP, ribosylation of T-705 or T-1105 was very low or barely detected. Whether the reverse reaction may occur, i.e., PNP-mediated phosphorylation of T-1106 into T-1105, is not known. The free base of ribavirin was shown to be ribosylated

HGPRT is required for their activation. This is also evident from our gene knockdown experiments, which further revealed that two other phosphoribosyltransferases, APRT and NAMPT, are irrelevant for the antiviral activity of these 2-pyrazinecarboxamide compounds. NAMPT was included because of the structural analogy between T-705 and nicotinamide (Burgos et al., 2009). These gene knockdown experiments confirmed the role for ADK in activating ribavirin (Willis et al., 1978).

At first sight, the absolute HGPRT dependency may disagree with the low efficiency for phosphoribosylation of T-705 and T-1105 in the enzymatic assays with human HGPRT. We estimated their K app values to be 6.4 and 4.1 mM, respectively. Their catalytic efficiency was 4700-fold (for T-705) and 900-fold (for T-1105) lower compared with that of the natural substrate hypoxanthine. Our conclusion that the HGPRT reaction is a rate-limiting step in the activation of T-705 agrees with reported cell culture metabolism data (Furuta et al., 2005), since the MDCK cells contained high amounts of T-705 but lower amounts of its RMP and RTP metabolites. However, steady-state enzymatic assays may not fully predict the dynamic conversion of nucleoside analogs in cell culture. For instance, the K app value of ribavirin for ADK was reported to be 0.54 or 7.8 mM (depending on the buffer conditions) (Wu et al., 2005), and yet, ADK does have a critical role in activation of ribavirin (Willis et al., 1978). Also, it has been documented that a K app value in the millimolar range does not exclude an efficient antiviral outcome since didanosine, a potent anti-HIV compound, is monophosphorylated by 5'-nucleotidase at a substrate affinity in the lower millimolar range (Johnson and Fridland, 1989).

The complete lack of antiviral activity of T-705 and T-1105 in HGPRT-deficient MDCK cells unambiguously proves that
the small size of the 2-pyrazinecarboxamide scaffold limits the number of modifications that could be considered to improve their activation profile. In the patent related to these antiviral agents, Furuta and Egawa (2001) described several structural analogs of T-705 and T-1105 containing, among other substitutions, a chlorine or bromine at position 6, or a different heterocycle; neither of these close analogs displayed anti-influenza virus activity. However, a well-known strategy to bypass inefficient activation of nucleo-
side analogs is to design lipophilic prodrugs of their mono-
phosphate forms. These membrane-permeable prodrugs readily enter the cells and then release the active nucleoside-5'-
monophosphate form by metabolic or chemical activation (Meier and Balzarini, 2006; Mehellou et al., 2009). Our studies indicate that phosphoribosylation of T-705 and T-1105 by HGPRT is rather inefficient, and hence, it seems relevant to apply the prodrug concept to these antiviral compounds to poten-
tially increase their biodistribution and therapeutic effectiveness.

Acknowledgments

The authors thank Wim van Dam, Lizette van Berkelhaar, and Ria Van Berwaer for dedicated technical assistance. Preliminary X-ray data were measured at the University of Queensland Remote-
Operation Crystallization and X-ray diffraction facility (UQRCOX). The final measurements were made at the MX1 beamline, Australian Synchrotron, Clayton, with the assistance of Alan Riboldi-Tunnicliffe and Tom Caradoc-Davies. The views expressed herein are those of the authors and not necessarily those of the owner or operator of the Australian Synchrotron.

Authorship Contributions

Participated in research design: Naesens, Guddat, Keough, van Kuijlenburg, Balzarini.

Conducted experiments: Naesens, Guddat, Keough, Meier, Balzarini.

Performed data analysis: Naesens, Guddat, Keough, van Kuijlenburg, Vande Voorde, Balzarini.

Wrote or contributed to the writing of the manuscript: Naesens, Guddat, Keough, van Kuijlenburg, Vande Voorde, Balzarini.

References

Address correspondence to: Dr. Lieve Naesens, Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium.

E-mail: lieve.naesens@rega.kuleuven.be