Endocytic Profiles of δ-Opioid Receptor Ligands Determine the Duration of Rapid but Not Sustained cAMP Responses

Hanieh Bagheri Tudashki, Derek N. Robertson, Peter W. Schiller, and Graciela Pineyro

Centre de Recherche, Sainte-Justine Hospital, Montréal, Québec, Canada (H.B.T., D.N.R., G.P.); Department of Pharmacology, Faculty of Medicine, University of Montréal, Montréal, Québec, Canada (H.B.T., P.W.S., G.P.); and Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montréal, Montréal, Québec, Canada (P.W.S.)

Received August 13, 2013; accepted October 30, 2013

ABSTRACT

Traditional assays that monitor cAMP inhibition by opioid receptor ligands require second-messenger accumulation over periods of 10–20 minutes. Since receptor regulation occurs within a similar time frame, such assays do not discriminate the actual signal from its modulation. Here we used bioluminescence resonance energy transfer to monitor inhibition of cAMP production by δ-opioid receptor (DOR) agonists in real time. cAMP inhibition elicited by different agonists over a period of 15 minutes was biphasic, with receptor (DOR) agonists in real time. cAMP inhibition elicited by receptor (DOR) agonists in real time. cAMP inhibition elicited by receptor (DOR) agonists in real time. cAMP inhibition elicited by receptor (DOR) agonists in real time. cAMP inhibition elicited by receptor (DOR) agonists in real time. cAMP inhibition elicited by receptor (DOR) agonists in real time. cAMP inhibition elicited by receptor (DOR) agonists in real time. cAMP inhibition elicited by receptor (DOR) agonists in real time. cAMP inhibition elicited by receptor (DOR) agonists in real time.

Introduction

Opioid receptors belong to the subfamily of G/o-coupled receptors, and their stimulation results in canonical responses such as Kir3 activation, Cav2 channel activation, and reduction in cAMP production (McDowell, 2003; Audet et al., 2010; Nagi and Pineyro, 2011; Richard-Lalonde et al., 2013). All these responses are subject to regulation via a series of events that not only determine the duration of acute pharmacological responses but may also contribute to the development of anergic tolerance (Williams et al., 2013). The earliest of these regulatory steps is the recruitment of G protein–coupled receptor kinase to the activated receptor. It starts at the same time and progresses within the same time frame (seconds) as G-protein stimulation (Breton et al., 2010), achieving maximal phosphorylation of the receptor during the first 2 minutes of agonist binding (Doll et al., 2011). β-Arrestin (βarr) is subsequently recruited with a half-life of approximately 2 minutes (Molinari et al., 2010; Audet et al., 2012), whereas internalization progresses at a much slower pace, with half-lives of 10–15 minutes in the case of δ-opioid receptors (DORs) expressed in human embryonic kidney (HEK) cells (Archer-Lahlou et al., 2009; Audet et al., 2012). Elegant studies assessing Kir3 activation by highly efficacious μ-opioid receptor (MOR) agonists have shown that ligand-induced currents decay within a similar time frame as βarr recruitment and do so without the intervention of receptor endocytosis (Arttamangkul et al., 2006, 2008). Much less is known about the early time course of cAMP inhibition by opioids and the way internalization regulates their initial cyclase response. Indeed, most of the assays that have been

ABBREVIATIONS: ANOVA, analysis of variance; ARM390, N,N-diethyl-4-[[phenyl-piperidin-4-ylidenemethyl]-benzamide; βarr, β-arrestin; BRET, bioluminescence resonance energy transfer; DBC, DeepBlue C Coelenterazine 400a; DMEM, Dulbecco’s modified Eagle’s serum; DOR, δ-opioid receptor; DPDPE, [d-Pen2, d-Pen5]-enkephalin; HEK, human embryonic kidney cell line; HRP, horseradish peroxidase; IBMX, 3-isobutyl-1-methylxanthine; mcp-TIPP, H-Mcp-Tic-Phe-Phe-OH; met-ENK, met-enkephalin; MOR, μ-opioid receptor; OD, optical density; PBS, phosphate-buffered saline; RLuc, Renilla luciferase; SB235863, [8R-4bS,8aS,12bS]-7,10-dimethyl-1-methoxy-11-(2-ethylpropyl)oxycarbonyl 5,6,7,8,12,12b-hexahydro-(9H)-4,8-methanobenzofuro[3,2-e]pyrrolo[2,3-g]isoquinoline hydrochloride, morphine had minimal or no response decay. On the other hand, the decay rate was pronounced for deltorphin II, [D-Pen(2), D-pen (5)]-enkephalin, met-enkephalin, and SNC-80 ((+)-4-[((aR)-α-[2S,5R]-4-allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl)-N,N-diethylbenzamide), which displayed high signaling efficiency and internalization. Moreover, inhibition of internalization by dynasore reduced or abolished response decay by internalizing ligands. Unlike acute responses, endocytic profiles were not predictive of whether an agonist would induce prolonged cAMP inhibition over sustained (30–120 minutes) DOR stimulation. Taken together, the data indicate that ligand ability to evoke G-protein activation or promote endocytosis was predictive of response duration over short but not over sustained periods of cAMP inhibition.

This work was supported by grants from the Natural Sciences and Engineering Research Council of Canada (NSERC) to G.P. [Grant 311997]; the Canadian Institutes of Health Research (CIHR) to G.P. [MOP 79432] and P.W.S. [MOP 89716]; the Consortium québécois sur la découverte du médicament (CQDM) to G.P.; and the National Institutes of Health National Institute on Drug Abuse [Grant DA044443-24] to P.W.S.

dx.doi.org/10.1124/mol.113.089003.

This article has supplemental material available at molpharm.aspetjournals.org.

http://dx.doi.org/10.1124/mol.113.089003.

1521-0111/85/1/1/148

Copyright 2013 by The American Society for Pharmacology and Experimental Therapeutics

http://molpharm.aspetjournals.org/content/suppl/2013/10/30/mol.113.089003.DC1

Supplemental material to this article can be found at:
used to monitor inhibition of cAMP production require accumulation of the second messenger over 15–20 minutes and therefore cannot discriminate the actual response from its rapid regulation. The observation that counter-regulatory superactivation of the cyclase pathway is less pronounced after sustained exposure to internalizing than noninternalizing ligands has led to the notion that endocytosis actively limits cyclase inhibition (Finn and Whistler, 2001; He et al., 2009). However, these observations refer to regulation of sustained, and not rapid, responses.

Here we used bioluminescence resonance energy transfer (BRET) to monitor DOR modulation of cAMP production with a time resolution of seconds. We observed that acute cAMP inhibition by DOR ligands involved two phases, one of response buildup that was completed within the first 340–450 seconds (depending on the drug) of receptor stimulation and another of response decay or of no further increment that went on for the rest of the experiment (15 minutes). Ligand ability to promote G-protein activation was a good predictor of the decay rate of the acute cAMP response, although there were exceptions. Ligand ability to induce internalization also contributed to signal decay in acute responses, but the endocytic profile of an agonist did not allow us to predict whether it would induce sustained cAMP inhibition over prolonged exposure.

Materials and Methods

[DNA Constructs]

Plasmids encoding yellow fluorescent protein (YFP) fused at the N terminus of human Gαi1-Luc91 was prepared using polymerase chain reaction to remove the Rap1-binding site of Epac1. Murine DORs tagged with the Flag epitope at the N terminus were a generous gift from Dr. M. Von Zastrow (University of California at San Francisco, San Francisco, CA).

Cell Culture and Transfection

HEK cells stably expressing murine FLAG-DORs were produced using Lipofectamine (Invitrogen) to transfect 6 μg of DNA/100-mm Petri dish followed by selection with geneticin (G418) (500 μg/ml) as previously described (Audet et al., 2012). For BRET-based cAMP assays, stable cell lines expressing the GFP10-EPAC-RlucII construct were prepared as previously described (Audet et al., 2012). For cAMP assays, these cells were seeded at a density of 3, 5 × 10⁴ cells/100-mm Petri dishes, cultured for 24 hours, and transiently transfected with 10 μg FLAG-DOR using polyethyleneimine as indicated by the manufacturer. In experiments in which mutant frarr1 (318–419) was used, the minigene or its corresponding vector (pcDNA3) was used at a concentration of 12 μg/Petri dish. Twenty-four hours after transfection, cells were transferred (100,000–150,000 cells/well) onto 96-well plates coated with poly (l-lysine) and left at 37°C for additional 24 hours. For BRET assays assessing G-protein activation, cells were transfected with Gip1 (4 μg), FLAG-DOR (5 μg), YFP-Gα2 (8 μg), and Goi1-Luc91 (1 μg) (values for 100-mm Petri dish) and used 48 hours post-transfection. Cells were grown and maintained in Dulbecco's modified Eagle's medium (DMEM) supplemented 10% fetal bovine serum, 2 mM l-glutamine, 100 U/mL penicillin-streptomycin, at 37°C in humidified atmosphere at 95% air and 5% CO2 (Audet et al., 2012).

Evaluation of DOR Internalization in HEK Cells

Measurement of surface-expressed receptors and quantification of receptor internalization was done using an enzyme-linked immunosorbent assay–based method adapted from a previously published protocol (Archer-Lahlou et al., 2009). Briefly, HEK cells stably expressing FLAG-DOR were seeded at a density of 2.5 × 10⁵ cells/well and grown on 24-well poly(l-lysine)-coated plates for 48 hours. Two types of enzyme-linked immunosorbent assays were carried out: an assay in which cells were treated with a fixed concentration of agonist for 15 minutes (10 μM), and dose-response curves in which cells were exposed to increasing concentration of selected agonists (10 nM–100 μM) for 30 minutes. At the end of either assay, internalization was stopped by the addition of cold phosphate-buffered saline (PBS). After two washes, cells were fixed in paraformaldehyde (3%, 15 minutes, 4°C) and nonspecific binding was blocked by incubation with PBS/bovine serum albumin 1%/CaCl2 1 mM at room temperature for 30 minutes. Cells were subsequently incubated with anti-FLAG M1 antibody (1:1000) for 1 hour (room temperature), washed three times, and incubated with HRP anti-mouse antibody (1:8000) for 30 minutes. After extensive washing, HRP substrate o-phenylenediamine dihydrochloride (200 μl) was added to each well. The reaction was allowed to proceed for 8 minutes and stopped using 50 μl of 3N HCl. 200 μl of the mix was then transferred to a 96-well plate for optical density (OD) evaluation at 492 nm. Experiments in which dynamin function was blocked were similarly performed, except that dynasore (80 μM) or vehicle (0.8% dimethysulfoxide) was introduced into the medium 30 minutes before exposure to agonist. The amount of surface receptors that were internalized after agonist treatment was calculated by subtracting OD obtained in the presence of agonist from the one obtained in its absence. Results were expressed as the percent of receptor initially present at the membrane according to the following calculation:

\[
100 \times \frac{OD_{\text{Basal}} - OD_{\text{Stimulated}}}{OD_{\text{Basal}}}
\]

where OD_{Basal} and OD_{Stimulated} correspond to the signal obtained in absence or presence of agonist, respectively (Audet et al., 2012).
Monitoring cAMP Inhibition by Means of a BRET-Based Biosensor

Kinetic Experiments. Cells were incubated at 37°C with DMEM/HEPES (20 mM) for 15 minutes, after which they were washed with PBS and kept in Tyrode’s solution. DBC coelenterazine was added to a final concentration of 5 μM, and 9 minutes after its introduction, cells were treated with 10 μM forskolin plus 10 μM of selective ligands or vehicle. BRET2 measures were taken at 20-second intervals for a period of 15 minutes immediately after the introduction of DOR ligands. Readings were taken at 37°C with a Victor 3 plate reader from PerkinElmer Life Sciences, which allows the sequential integration of signals detected in the 440–480-nm (RLuc emission), 520–550-nm (YFP emission; BRET1) and 515–530-nm (GFP emission; BRET2) windows. BRET2 readings were expressed as the ratio of light emitted by GFP (515–530 nm) over the light emitted by RLuc (440–480 nm). When dynasore was used, cells were kept in the incubator and exposed to DMEM/HEPES (20 mM) + dynasore (80 μM) for 30 minutes before adding DBC and completing the kinetic assay as described herein.

Sustained cAMP Responses. Cells were kept in the incubator, where they were exposed to Tyrode’s solution containing forskolin (10 μM) and IBMX (250 μM) for 120 minutes. During this period, selected agonists (10 μM) were added to the medium at various time points (120, 60, 30, and 0 minutes) before taking BRET2 measures.

Dose-Response Curves. Cells were incubated with DMEM/HEPES (20 mM) and then transferred to Tyrode solution as described, before introduction of DBC to a final concentration of 5 μM. Five minutes after DBC, forskolin and IBMX were introduced into the medium to respective final concentrations of 20 and 750 μM, and 4 minutes after that, cells were exposed to increasing concentrations of different DOR agonists. BRET readings were taken 5 minutes after the agonist addition.

Monitoring G-Protein Activation Using a BRET-Based Biosensor

The effect of agonists on DOR-G protein interaction was assessed using a method that we previously developed and validated for detection of ligand-induced conformational changes within DOR-G-protein complexes (Gales et al., 2005, 2006; Audet et al., 2008, 2012; Richard-Lalonde et al., 2013). Two days after transfection, HEK293 cells expressing the Gαi1-Luc91/YFP-Gγ2 BRET pair plus accessory subunits and DORs were washed with PBS and distributed into 96-well plates at a concentration of 1 to 2 mg/ml. Cells were then incubated for 3 minutes with coelenterazine H (1 μg/ml) before the addition of different ligands at increasing concentrations. BRET1 readings were taken 2 minutes after ligand introduction, and BRET ratios were corrected (net BRET) by subtracting the background signal detected when the RLuc-tagged construct was expressed without acceptor (Richard-Lalonde et al., 2013).

Immunofluorescence and Confocal Microscopy

HEK cells stably expressing FLAG-DOR were seeded on poly(lysine)-coated coverslips and grown as described already herein. Surface Flag-DORS were labeled with mouse anti-FLAG M2 antibody (1:100, 30 minutes, 37°C). Cells were then stimulated with agonist (10 μM) for increasing periods, after which they were washed with PBS, fixed with paraformaldehyde (3%, 20 minutes, room temperature), and permeabilized with 0.1% Triton X-100 (20 minutes). Cells were then washed in PBS-1% bovine serum albumin and incubated with anti-mouse antibody Alexa 488 (1:1000) for 1 hour. At the end of incubation, cells were extensively washed and coverslips were mounted onto slides using mounting medium. Immunofluorescence microscopy was performed using a Leica LSM510 microscope; images were analyzed using LSM Image Browser software (Leica, Wetzlar, Germany).

Curve-Fitting

Concentration response curves describing G-protein activation, modulation of cAMP production, and DOR internalization were obtained for seven different agonists. Curves were analyzed with the operational model of agonism to obtain efficacy (τ) and functional affinity (Ka) values that were then used to calculate log (τ/Ka) transduction coefficients, which describe drug efficiency to produce a response (Kenakin et al., 2012). Curve-fitting was done with GraphPad Prism 5 (GraphPad Software, La Jolla, CA) using the equation:

\[y = \frac{y_{\max} - \text{basal}}{1 + [(10^{\log K_A} + x)/(10^{\log K_A} + x)]^n} + \text{basal} \]

where basal corresponds to the response observed in the absence of agonist; \(y_{\max} \) is the maximal response of the system; \(K_A \) describes agonist affinity for the receptor state(s) mediating the response; \(\tau \) describes agonist efficacy; \(x \) corresponds to the logarithm of molar concentration of agonist; and \(n \) is the slope of the function that links occupancy to response. DPDPE was used as the standard since it was the only ligand that behaved as full agonist in all three assays. \(K_A \) and \(\tau \) values for the standard as well as system parameters (\(n \) and \(y_{\max} \)) were estimated in depletion assays that were carried out by generating DPDPE dose-response curves in cells that expressed progressively lower amounts of receptors (Prism 5 operational model: “receptor depletion” mode). The only constraint imposed for curve fitting was that \(n \) and \(y_{\max} \) be shared by all curves, obtaining the following estimates: 1) for G-protein activation, \(n = 0.4 \) and \(y_{\max} = -115 \); 2) for cAMP assays, \(n = 0.34 \) and \(y_{\max} = 121 \); and 3) for internalization assays, \(n = 0.5 \) and \(y_{\max} = 125 \). These values were then used as system parameters to simultaneously fit curves for all ligands using the “partial agonist” mode in GraphPad5. Pooled standard error values were calculated as (Gregory et al., 2012):

\[\text{pooled S.E.} = \sqrt{(S.E._1)^2 + (S.E._2)^2}. \]

Results

Monitoring Real-Time Inhibition of cAMP Production by DOR Agonists. Monitoring inhibition of cAMP production by opioid receptor ligands has typically relied on methods that require extended periods of receptor activation for second-messenger levels to accumulate to detectable levels. Because of this restriction, it has not been possible to separate fully the cAMP signaling response from regulatory adaptations that take place within the time frame of the assay. The development of genetically encoded RET biosensors offer a solution to this limitation by providing real-time measures of second-messenger level (Edwards et al., 2012). Here we assessed acute (15 minutes) and prolonged (30 minutes to 2 hours) modulation of cAMP production by different DOR agonists by using a previously validated BRET-based biosensor (Leduc et al., 2009; Audet et al., 2012), which undergoes conformational changes upon cAMP binding (Masri et al., 2008; Salahpour et al., 2012). In particular, cAMP binding draws apart the C- and N-terminal ends of the biosensor, separating respective donor (RLuc) and acceptor (GFP10) moieties of the BRET pair, such that increases in cAMP production were captured as a decrease in basal energy transfer. In HEK cells coexpressing the biosensor and DORs, the basal net BRET signal was 0.30 ± 0.01, and exposure to forskolin (10 μM) reduced energy transfer by 32% ± 1%, reaching steady-state levels with a half-life of 2.5 ± 0.2 minutes (n = 10; Fig. 1A). The amount of cAMP produced by
forskolin over the first 15 minutes of its application was estimated by calculating the area between the curve and the x-axis, yielding a value of 69 ± 4, measured in arbitrary units. The addition of maximal effective concentrations (10 μM) of different DOR agonists reduced the rate and/or steady-state production of cAMP (Fig. 1A; Table 1). The ability to modify forskolin-induced cAMP production at steady-state allowed the definition of three distinct groups of drugs: 1) met-ENK and DPDPE, which after 15 minutes had reached control levels of cAMP production; 2) morphine, SNC-80, and deltorphin II, whose response was stabilized at intermediate cAMP levels; and 3) SB235863 and mcp-TIPP, whose presence resulted in the greatest inhibition of second-messenger levels (Table 1). Interestingly, if the same kinetic experiment was completed in the presence of IBMX (750 μM), differences among ligands disappeared with kinetic responses by different ligands, collapsing to a curve similar to the one produced by mcp-TIPP in Fig. 1A (not shown). Parameters given in Table 1 represent the combined kinetics of agonist and forskolin effects. To estimate the inhibition of cAMP production by each of the ligands, we calculated the areas comprising the kinetic curve generated by forskolin and curves produced in presence of forskolin plus each ligand. SB235863 produced the largest inhibition, defined by an area of 29 ± 3 arbitrary units (n = 7). Relative areas for each of the other agonists are shown in Fig. 1B. In addition, to obtain a better idea of how the cAMP response progressed over time, we divided each of the corresponding areas into eight consecutive intervals of 112 seconds duration and estimated ligand-induced cAMP inhibition within of each of these intervals. Data obtained from these calculations are shown in Fig. 1C, where it is possible to observe...
that cAMP inhibition by DPDPE, met-enkephalin, deltorphin II, SNC-80, and morphine increased to its maximum within the first 336 seconds, then declined for the remainder of the experiment. The two remaining ligands that were tested, mcp-TIPP and SB235863, attained maximum cAMP inhibition 112 seconds later than the rest, and their response did not significantly decline from this point on. Rates of increase and decrease of ligand-induced cAMP responses were calculated from the slopes of the graphs in Fig. 1C and appear in Table 2. The rate at which cAMP responses increased over time indicated that second-messenger inhibition by deltorphin II and SB235863 reached their maximum faster than most of the other ligands (Table 2). Decay slopes also allowed identification of different groups of agonist. Thus, SB235863 and mcp-TIPP response did not significantly decay over time, and DPDPE and met-enkephalin showed the fastest decay rates, whereas that of deltorphin II, SNC-80, and morphine were intermediate among the other two groups.

Signaling Efficacy as a Determinant of Time Course of cAMP Inhibition by DOR Agonists. Given the distinct time course of acute cAMP responses, it was of interest to characterize factors contributing to these differences. Thus, in a first series of experiments, we examined whether increasing and decreasing rates of cAMP inhibition were related to agonist ability to signal. Ligand signaling efficacy was assessed at two consecutive levels of the cAMP pathway, namely, G-protein activation and inhibition of cAMP production. Activation of the G protein was also assessed by means of a BRET-based biosensor (Gales et al., 2005), which we had previously shown to attain steady-state readings within the first 2 minutes of drug exposure (Audet et al., 2012; Richard-Lalonde et al., 2013). Consistent with previous observations, the Gα7-Luc91/YFP-Gy2 biosensor produced a basal net BRET signal (0.395 ± 0.011) that was reduced after DOR activation by agonist (Audet et al., 2008). DPDPE, which was used as the standard, reduced this value by 13% ± 1% (n = 6), and dose-response curves for all agonists were normalized to this maximum (Fig. 2A). Corresponding operational parameters of efficacy (τ), functional affinity (K_A), and transduction coefficients log (τ/K_A) (Black and Leff, 1983; Kenakin and Christopoulos, 2013) are given in Table 3. Rank order of transduction coefficients describing ligand efficiency to activate the G protein were as follows: deltorphin II = DPDPE = met-ENK ≥ mcp-TIPP = SNC-80 ≥ SB 235863 = morphine (Table 3). Interestingly, the magnitude of transduction coefficients for Ge1 activation was directly correlated with the rate of decay of the cAMP response (Fig. 2A, inset). No correlation was observed between transduction coefficients and initial rate of increase in cAMP inhibition (r^2 = 0.0030; P = 0.9064).

In a second series of experiments, we compared cyclase modulation by DOR agonists. Given that the presence of IBMX erased kinetic differences among ligands, the use of the phosphodiesterase inhibitor was seen as an advantage to avoid kinetic confounders during completion of concentration-response curves. For this reason, curves were obtained in cells that were exposed to forskolin (10 μM) and IBMX (750 μM) 4 minutes before introducing increasing concentrations of the different agonists. BRET measures were taken 6 minutes after initial drug exposure, corresponding to the point in time at which agonists had attained maximal response (Fig. 1B). The net BRET signal that resulted from cAMP accumulation in the presence of forskolin and IBMX was of 0.154 ± 0.002 and at maximal concentration DPDPE increased this value by 15% ± 2% (n = 13). Moreover, in these experimental conditions,

Table 1

| Kinetics of cAMP production after exposure to forskolin (10 μM) in the presence or in absence of different δ-opioid receptor agonists |
|------------------|------------------|------------------|
| | BRET Change (Steady-State) Mean ± S.E.M. | t_{1/2} (min) Mean ± S.E.M. |
| Control | Forskolin (n = 10) | 0.096 ± 0.002 | 2.5 ± 0.2 |
| | Met-enkephalin (n = 8) | 0.094 ± 0.003 | 3.7 ± 0.4 |
| | DPDPE (n = 7) | 0.096 ± 0.006* | 4.3 ± 0.7* |
| | Morphine (n = 8) | 0.078 ± 0.002** | 2.8 ± 0.3 |
| | SNC-80 (n = 8) | 0.073 ± 0.003*** | 2.9 ± 0.4 |
| | Deltorphin II (n = 3) | 0.080 ± 0.003** | 4.2 ± 0.4* |
| | mcp-TIPP (n = 6) | 0.059 ± 0.002*** | 2.3 ± 0.4 |
| | SB235863 (n = 7) | 0.052 ± 0.002** | 1.9 ± 0.4 |
| Dynasore | Forskolin (n = 4) | 0.070 ± 0.002* | 2.7 ± 0.1 |
| | DPDPE (n = 3) | 0.062 ± 0.004** | 6.3 ± 0.1 |
| | Met-enkephalin (n = 4) | 0.057 ± 0.003*** | 4.3 ± 0.1 |
| | Morphine (n = 3) | 0.050 ± 0.002*** | 3.1 ± 0.1 |
| | Deltorphin II (n = 3) | 0.041 ± 0.003*** | 5.0 ± 0.1 |
| | SNC-80 (n = 4) | 0.034 ± 0.004*** | 4.4 ± 0.1 |
| | mcp-TIPP (n = 6) | 0.031 ± 0.004*** | 4.6 ± 0.2 |
| | SB235863 (n = 6) | 0.024 ± 0.001*** | 2.3 ± 0.3 |

*Curves generated by different agonists were further analyzed by simultaneous curve-fitting indicating: 1t_{1/2} DPDPE versus t_{1/2} morphine, P < 0.01. 2t_{1/2} Deltorphin II versus t_{1/2} SB235863, P < 0.001. 3Steady-state values obtained in control and dynasore-treated cells were compared by two-way analysis of variance (ANOVA), which showed the effect of drugs (P < 0.0001) and treatment (P < 0.0001). Post hoc comparisons indicated that BRET changes by all drugs were smaller in dynasore than in control condition. 4Post hoc comparisons following two way ANOVA analysis of kinetics curves shown in Fig. 4B indicated that curves by all agonists were different from that of forskolin. Curves generated by different agonists were further analyzed by simultaneous curve fitting which showed: t_{1/2} DPDPE versus t_{1/2} morphine, P < 0.002. 5Steady-state DPDPE versus deltorphin II, P < 0.005. 6Steady-state deltorphin II versus SB235863, P < 0.001. 7Post hoc comparisons after two-way ANOVA of kinetics curves shown in Fig. 1 indicated that curves produced by all agonists except Met-enkephalin were different from that of forskolin: *P < 0.05, **P < 0.01, ***P < 0.001.
Rapid cAMP Responses by DOR Agonists. Corresponding parameters are shown in Table 4. Transduction other agonists were fit by means of the operational model, and nalization by morphine, SB235863, and mcp-TIPP was mini-
These curves appear in Fig. 3A, where it is evident that inter-
curves to determine ligand efficiency to induce internalization.
ability to promote endocytosis, we completed dose-response
-time course of rapid cAMP modulation is influenced by ligand
possible determinants of the duration of different opioid-

TABLE 2
Rates of Increase and Decrease in the cAMP response induced by different ligands DOR in control cells and in cells exposed to dynasore.

<table>
<thead>
<tr>
<th>Ligand</th>
<th>Rate of Response Increase Mean ± S.E.M.</th>
<th>Rate of Response Decay Mean ± S.E.M.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>0.47 ± 0.01*</td>
<td>-0.087 ± 0.02² (0.0023)</td>
</tr>
<tr>
<td>Deltorphin II (n = 3)</td>
<td>0.51 ± 0.03 (P < 0.001)</td>
<td>0.00 ± 0.01 (P = 0.837)*</td>
</tr>
<tr>
<td>SB2355863 (n = 6)</td>
<td>0.50 ± 0.04 (P < 0.001)</td>
<td>0.01 ± 0.01 (P = 0.66)*</td>
</tr>
<tr>
<td>mcp-TIPP (n = 6)</td>
<td>0.59 ± 0.04 (P < 0.001)</td>
<td>0.00 ± 0.01 (P = 0.924*</td>
</tr>
<tr>
<td>SNC-80 (n = 4)</td>
<td>0.56 ± 0.03 (P < 0.001)</td>
<td>0.01 ± 0.02 (P = 0.473)</td>
</tr>
<tr>
<td>Morphine (n = 3)</td>
<td>0.30 ± 0.02 (P < 0.001)</td>
<td>-0.01 ± 0.01 (P = 0.29)</td>
</tr>
<tr>
<td>DPDPE (n = 3)</td>
<td>0.42 ± 0.04 (P < 0.001)</td>
<td>-0.08 ± 0.02 (P = 0.0017)</td>
</tr>
<tr>
<td>Met-enkephalin (n = 4)</td>
<td>0.33 ± 0.03 (P < 0.001)</td>
<td>-0.05 ± 0.01 (P = 0.0005)*</td>
</tr>
</tbody>
</table>

*All slopes for response increase were different from zero as calculated by linear regression (P < 0.0001); **P values corresponding to slopes for response decrease are indicated in brackets. Differences in increase and decrease rates were established by one way ANOVA indicating: increase rate (P < 0.0001); ***Slopes for response increase rate were different from zero as calculated by linear regression (P < 0.0001); ****P values for slopes of response decay are indicated in parentheses. Differences in increase and decrease rates were established by one-way ANOVA indicating the following: increase rate (P < 0.0001).

In an alternative approach to relate the time course of cAMP response to DOR endocytosis, we assessed the kinetics of receptor sequestration at a maximal effective concentration of agonist (10 μM). As shown in Table 4, at steady-state sequestration by DPDPE, SNC-80, deltorphin II, and met-enkephalin was 63–67% of receptors present at the membrane before treatment. Morphine and SB2355863 did not induce a significant response, whereas mcp-TIPP produced a small (9%) but significant increase in sequestration. Internalization half-life was ~15 minutes for highly internalizing agonists and 21 minutes for mcp-TIPP. Thus, internalization values at half-life (values for morphine and SB2355863 were arbitrarily fixed at zero) were correlated to the decay rate in cAMP production. As shown in Fig. 3B, inset, there was a clear polariza-

Internalization Determines the Time Course of Rapid cAMP Responses by DOR Agonists. Ligand efficacy to trigger signaling and internalization may not necessarily parallel one another (Keith et al., 1998), and ligand-specific patterns of receptor sequestration have been proposed as possible determinants of the duration of different opioid-mediated responses, including analgesia (Martini and Whis-
tler, 2007; Pradhan et al., 2009). To assess whether or not the time course of rapid cAMP modulation is influenced by ligand ability to promote endocytosis, we completed dose-response curves to determine ligand efficiency to induce internalization. These curves appear in Fig. 3A, where it is evident that internalization by morphine, SB2355863, and mcp-TIPP was minimal and precluded meaningful curve-fitting. Curves for the other agonists were fit by means of the operational model, and corresponding parameters are shown in Table 4. Transduction coefficients (Kenakin et al., 2012) indicated that despite producing similar maximal responses, deltorphin II was more efficient than met-ENK and met-ENK was more efficient than SNC-80 in producing internalization (Table 4). Log (τ/κ_A) coefficients for these four agonists were unrelated to rates of increase (P = 0.3413) or decrease (Fig. 3A, inset) of their cAMP responses, indicating that for this group of ligands, sequestration could not account for the differences in their kinetic profiles.

Interfering with Sequestration Enhances cAMP Inhibition by “Internalizing” Agonists. To characterize more clearly whether endocytosis influences the decline of maximal response did not significantly differ among agonists (one-way analysis of variance; P = 0.7405; n = 5–13). Dose-response curves for all agonists are shown in Fig. 2B, and corresponding operational parameters for these curves appear in Table 3. Transduction coefficients for inhibition of cAMP production displayed the following rank order: deltorphin II = DPDPE ≥ mcp-TIPP = SNC-80 = met-ENK ≥ SB2355863 = morphine. Interestingly, the correlation observed between decay rate of cAMP inhibition and Gai protein activation was no longer evident for cAMP signaling coefficients (Fig. 2B, inset). As described, no correlation was observed between transduction coefficients and the initial rate of cAMP inhibition (τf = 0.0030; P = 0.9064).
cAMP responses generated by DOR agonists, we determined whether interfering with internalization modified inhibition of cAMP production by different ligands. Internalization was blocked with dynasore, which inhibits dynamin activity and prevents sequestration of clathrin-coated vesicles formed at the membrane (Macia et al., 2006; Thompson and McNiven, 2006; Patierno et al., 2011). Pretreatment with dynasore (80 μM; 30 minutes) had no effect on the total amount of receptors present at the membrane in nonstimulated cells (surface immunoreactivity: controls: 1.7 ± 0.1; dynasore: 1.7 ± 0.1; \(P = 0.512; n = 6 \)) but reduced ligand-induced internalization. In particular, dynasore reduced by ∼one-third the internalization induced by 15-minute exposure to DPDPE, met-enkephalin, and SNC-80 (Fig. 4A). On the other hand, it had minimal effect on sequestration induced by deltorphin II, a characteristic that was maintained throughout longer periods of receptor stimulation (Supplemental Fig. 1).

The effect of this same dynasore treatment was then tested in cAMP assays (Fig. 4B). The basal BRET signal in cells that were exposed to dynasore was 0.34 ± 0.01 (n = 7). This value was higher than basal values of nontreated controls (0.30 ± 0.01; n = 10; \(P = 0.015 \)), which is consistent with dynasore enhancing the constitutive inhibition of cAMP production by DORs. Exposure of dynasore-treated cells to forskolin (10 μM) resulted in a 21% ± 0.1% (n = 4) decrease in basal BRET, an effect that was smaller than the 32% ± 1% reduction observed in controls (\(P < 0.0001; n = 10 \); Table 1). In addition, dynasore shifted to higher levels of energy transfer kinetic curves for all agonists (Fig. 4B; Table 1). To distinguish whether these changes were distinct for different ligands or were simply a generalized consequence of reduced cAMP production after dynasore, we compared overall cAMP inhibition (an area delimited by kinetic curves for forskolin and ligand) by each ligand in control and dynasore-treated cells (Fig. 5A). For noninternalizing ligands like morphine and SB235863, inhibition of cAMP production was similar in control and dynasore-treated cells (Fig. 5A). Although we cannot exclude the lack of dynasore effect being related to a maximal SB235863 response in controls, the fact that morphine maintained similar submaximal response in both conditions.
To corroborate that interference with internalization potentiates cAMP inhibition by internalizing DOR agonists while sparing responses by noninternalizing ones, we monitored the time course of SNC-80 and morphine responses in cells that were transfected with a minigene encoding for the C-terminal portion of βarr1 (318–419). This construct blocks internalization by interfering with binding of endogenous βarr to clathrin (Krupnick et al., 1997) and, in the conditions used in this study, it inhibits internalization induced by 15-minute exposure to SNC-80 by ∼15% (Charfi et al., 2013). The basal βarr signal in cells that were transfected with mutant βarr (0.272 ± 0.012) or the corresponding vector pcDNA3 (0.266 ± 0.008) were not different (P = 0.6751; n = 6), and neither were changes induced by 15-minute exposure to forskolin (controls: 24 ± 4%; mutant βarr: 27 ± 4%; P = 0.6154). (Fig. 6, A and B). In keeping with observations obtained with dynasore, mutant βarr enhanced cAMP inhibition by SNC-80 by ∼20% but left morphine response unchanged (Fig. 6C).

Sustained cAMP Modulation by DOR Ligands. The endocytic profile of opioid receptor ligands has been associated with differential ability to promote tolerance (Martini and Whistler, 2007; Pradhan et al., 2009), presumably because sequestration may interfere with the production of proalgesic signals or because its absence could prolong signals that lead to tolerance (Martini and Whistler, 2007). Since prolonged inhibition of cAMP production is considered a signal that may lead to cellular tolerance (Williams et al., 2013), it was of interest to compare ligand modulation of cAMP levels over a time frame in which the endocytic response of ligands like deltorphin II, DPDPE, SNC-80, and met-enkephalin was fully developed. Thus, cAMP inhibition by different agonists was assessed within a time frame of sustained receptor activation. Functional experiments were carried out in the presence of forskolin (10 μM) and IBMX (250 μM) to maintain cAMP production throughout the experiment. Each of these reagents was introduced in the incubation medium at the beginning of the experiment and remained present for its entire duration (2 hours). DOR agonists were either introduced together with cAMP modulators or at progressively shorter periods before taking BRET measures. Net BRET values obtained in cells that were exposed only to forskolin/IBMX for 120 minutes were 0.146 ± 0.002 (n = 10). Figure 7A shows modification of this basal signal by different ligands, and Fig. 7B shows the subcellular distribution of the receptor at the corresponding time intervals. Morphine and SB235863 produced the largest increases in energy transfer, corresponding to 9% ± 1% of net BRET after 60-minute exposure to each ligand. Interestingly, and despite their differences in internalization (Figs. 3B and 7B), cAMP inhibition by SB235863 was not different from inhibition produced by deltorphin II, with BRET increases by both ligands greater than background variability at all times assessed (Fig. 7A). Conversely, despite sharing a similar internalization and distribution profile with deltorphin II (Figs. 3B and 7B), cAMP inhibition by met-enkephalin had already decayed within the first 30 minutes of treatment. The cAMP response produced by DPDPE and SNC-80 was intermediate between these two examples, and mcp-TIPP did not reach significance at any of the times assessed. Subcellular distribution of DORs after internalization with these four ligands is shown in Supplemental Fig. 2. Taken together, these data indicate that internalization profiles per se did not predict whether the cAMP response would persist or disappear over sustained DOR stimulation.

Table 3

<table>
<thead>
<tr>
<th>DOR Activation</th>
<th>Log(βarr) Mean ± S.E.M.</th>
<th>Log(βarr) Mean ± S.E.M.</th>
<th>Log(βarr) Mean ± S.E.M.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deltorphin II</td>
<td>-8.35 ± 0.30</td>
<td>0.00 ± 0.19</td>
<td>9.35 ± 0.35</td>
</tr>
<tr>
<td>(n = 3)</td>
<td>DPDPE (n = 4)</td>
<td>-6.17 ± 0.55</td>
<td>2.87 ± 0.53</td>
</tr>
<tr>
<td>mcp-TIPP (n = 4)</td>
<td>7.90 ± 0.57</td>
<td>0.71 ± 0.23</td>
<td>7.19 ± 0.62</td>
</tr>
<tr>
<td>Met-enkephalin</td>
<td>-7.12 ± 0.37</td>
<td>1.31 ± 0.28</td>
<td>8.43 ± 0.46</td>
</tr>
<tr>
<td>Morphine (n = 3)</td>
<td>-5.78 ± 0.53</td>
<td>-0.99 ± 0.26</td>
<td>4.79 ± 0.55</td>
</tr>
<tr>
<td>SNC-80 (n = 3)</td>
<td>-5.09 ± 0.52</td>
<td>1.47 ± 0.43</td>
<td>6.56 ± 0.68</td>
</tr>
<tr>
<td>SB235863 (n = 3)</td>
<td>-4.98 ± 0.55</td>
<td>0.10 ± 0.35</td>
<td>5.08 ± 0.65</td>
</tr>
</tbody>
</table>

Corresponding to 9% of net BRET after 60-minute exposure.
In this study, we used real-time monitoring of intracellular cAMP levels to characterize cyclase modulation by DOR ligands. Temporal resolution that was afforded by the use of a conformational BRET-based biosensor allowed us to divide the initial stage (15 minutes) of ligand-mediated cAMP inhibition into a first phase of progressive buildup of the inhibitory response and a second phase characterized by response decay. Data obtained indicated that the decay rate of this early response was correlated with ligand efficiency \([\log (t/K_A)]\) to activate \(G_{a1}\) signaling and with maximal endocytosis attained within the time frame of the kinetic experiment.

Discussion

In this study, we used real-time monitoring of intracellular cAMP levels to characterize cyclase modulation by DOR ligands. Temporal resolution that was afforded by the use of a conformational BRET-based biosensor allowed us to divide the initial stage (15 minutes) of ligand-mediated cAMP inhibition into a first phase of progressive buildup of the inhibitory response and a second phase characterized by response decay. Data obtained indicated that the decay rate of this early response was correlated with ligand efficiency \([\log (t/K_A)]\) to activate \(G_{a1}\) signaling and with maximal endocytosis attained within the time frame of the kinetic experiment.

Fig. 3. Characterization of DOR sequestration by different agonists. HEK cells expressing FLAG-DORs were used to assess ligand-induced DOR sequestration. (A) Dose-response curves were obtained by incubating cells with increasing ligand concentrations for 30 minutes. Results are expressed as the percent of maximal internalization induced by DPDPE and correspond to 9–12 independent experiments. Curves were analyzed by two-way analysis of variance (ANOVA), which indicated an effect of drug, an effect of concentration, and an interaction (\(P < 0.0001\)). Inset shows lack of correlation between transduction coefficients \([\log (t/K_A)]\) describing drug efficiency to induce internalization and the rate of decrease of cAMP response. (B) HEK293 cells stably expressing FLAG-DORs were exposed to different agonists (10 \(\mu M\)) for the indicated times. Internalization was expressed as percent of receptors present at the membrane before exposure to agonist and represent mean ± S.E.M. of 9–11 independent experiments. Statistical analysis by two-way ANOVA revealed an effect of drug (\(P < 0.0001\)), an effect of time (\(P < 0.0001\)), and an interaction (\(P < 0.0001\)). Post hoc comparisons indicated that deltorphin II, SNC-80, and met-enkephalin did not differ from DPDPE, but the last of these was different from morphine, SB235863, and mcp-TIPP (\(P < 0.0001\)). Inset shows correlation between sequestration corresponding to the first 15 minutes of drug exposure and decay rate of cAMP response.

TABLE 4

Operational and kinetics parameters describing \(\delta\)-opioid receptor internalization by different ligands

Transduction coefficients were analyzed by one-way analysis of variance (\(P < 0.0001\)), followed by post hoc comparison with Bonferroni’s correction. Operational parameters were calculated using DPDPE as a standard full agonist.

<table>
<thead>
<tr>
<th>Ligand</th>
<th>(\log (K_A)) Mean ± S.E.M.</th>
<th>(\log \tau) Mean ± S.E.M.</th>
<th>(\log (t/K_A)) Mean ± S.E.M.</th>
<th>Plateau Internalization Mean ± S.E.M.</th>
<th>(t_{1/2}) (min) mean ± S.E.M.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deltorphin II</td>
<td>(-7.98 ± 0.13)</td>
<td>(0.57 ± 0.06)</td>
<td>(8.56 ± 0.14^a)</td>
<td>Deltorphin II ((n = 9)) (67 ± 2^**)</td>
<td>(15 ± 2)</td>
</tr>
<tr>
<td>Met-enkephalin</td>
<td>(-6.58 ± 0.11)</td>
<td>(0.35 ± 0.05)</td>
<td>(6.93 ± 0.12^b)</td>
<td>Met-enkephalin ((n = 7)) (63 ± 3^**)</td>
<td>(13 ± 2)</td>
</tr>
<tr>
<td>DPDPE</td>
<td>(-6.10 ± 0.36)</td>
<td>(0.58 ± 0.56)</td>
<td>(6.68 ± 0.67)</td>
<td>DPDPE ((n = 8)) (63 ± 2^**)</td>
<td>(15 ± 2)</td>
</tr>
<tr>
<td>SNC-80</td>
<td>(-4.39 ± 0.17)</td>
<td>(0.87 ± 0.13)</td>
<td>(5.27 ± 0.22)</td>
<td>SNC-80 ((n = 5)) (66 ± 2^**)</td>
<td>(15 ± 2)</td>
</tr>
<tr>
<td>Morphine</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>Morphine ((n = 3)) N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>mcp-TIPP</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>mcp-TIPP ((n = 3)) N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>SB235863</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>SB235863 ((n = 3)) N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

N/A, not applicable.

\(^a\)Deltorphin II versus met-enkephalin, \(P < 0.05\).

\(^b\)Met-enkephalin versus SNC-80, \(P < 0.05\).

\(^*\)For each time course in Fig. 3B, maximal internalization observed at 90 minutes was compared with internalization observed at 5 minutes by mean of student’s \(t\) test; \(**P < 0.001\); \(*P < 0.05\).
(15 minutes). These last findings were in contrast with those obtained over prolonged periods of DOR stimulation, where the time course of cAMP inhibition could not be predicted from the sequestration profile of the different agonists.

The role of endocytosis as a determinant of the duration and magnitude of opioid responses is not completely understood. In vivo studies indicate that a single administration of the internalizing DOR agonist SNC-80 induces acute analgesic tolerance and loss of G-protein signaling that is not observed after similar treatment with its noninternalizing metabolite (ARM390; N,N-diethyl-4-(phenyl-piperidin-4-ylidenemethyl)benzamide) (Pradhan et al., 2009). These observations led to the notion that internalizing DOR agonists are more prone to tolerance than noninternalizing ones (Pradhan et al., 2009; Williams et al., 2013). However, since SNC-80 produces DOR phosphorylation that is absent after administration of ARM390, it is possible that the rapid loss of function by SNC-80 could also have resulted from uncoupling mechanisms driven by phosphorylation (Pradhan et al., 2010). In the case of MORs, internalization has been equated with shorter cAMP responses (Finn and Whistler, 2001; Martini and Whistler, 2007) but also with recovery from desensitization (Raehal et al., 2011) and presumably prolonged signaling. Studies that have assessed the time course of K⁺ currents elicited by MOR activation have clearly shown that endocytosis is not necessary for rapid modulation of channel-mediated opioid responses (Arttamangkul et al., 2006). Here we characterized the time course and modulation of acute enzymatic responses by DOR ligands in HEK cells. Data show that inhibition of cAMP production rises to a maximum within ∼6–7.5 minutes of receptor activation, which is considerably slower than cAMP stimulation by β₂-adrenergic receptors (Violin et al., 2008). Since both studies were carried out at 37°C, it is unlikely that the observed differences are of kinetic

Fig. 4. Inhibition of internalization by interfering with dynamin function modifies kinetics of cAMP inhibition by DOR agonists. (A) HEK cells expressing FLAG-DORs were pretreated with dynasore (80 μM; 30 minutes) and then exposed to 10 μM of the indicated ligands. Internalization was expressed as the percent of receptors present at the membrane before exposure to agonist and represent mean ± S.E.M. of six independent experiments. Data were analyzed by one way analysis of variance (ANOVA) (P < 0.0001) followed by post hoc comparisons with Bonferroni’s correction *P < 0.05; **P < 0.01; ***P < 0.001. (B) HEK cells transfected with DORs and the cAMP biosensor were treated with dynasore as described herein and then exposed to forskolin (10 μM) in the presence or absence of different DOR agonists (10 μM) before taking BRET measures. Results correspond to drug-induced changes in basal BRET and represent the mean ± S.E.M. of three to six independent experiments. Data were analyzed by two-way ANOVA, which indicated an effect of drug (P < 0.0001) and time (P < 0.0001) with no interaction. Details of comparisons are given in Table 1.
nature but could be rather related to the fact that the response of DOR agonists was estimated from forskolin-stimulated and not basal cAMP levels. Rates of increase and decrease of the inhibitory cAMP response produced by DOR agonists were independent of one another, and factors that influenced the latter were unrelated to the former. Thus, deltorphin II, an agonist that was highly efficient in inducing signaling and internalization, reached maximal cAMP inhibition at the same rate as SB235863, whose signaling efficiency was among the lowest and whose internalization was minimal. On the other hand, ligand signaling ability and endocytosis promoted over time course of the experiment were predictive of the rate of decline in of the initial cAMP response. We previously showed that DOR ligands display different internalization profiles in HEK cells and neurons (Charfi et al., 2013). It would therefore be of interest to corroborate whether the time course of cAMP responses follow the distinct internalization profiles displayed by different ligands in HEK cells and neurons.

Different observations point to endocytosis as a modulator of acute (15-minute) cAMP inhibition by DOR agonists: 1) the decay rate of cAMP inhibition was fastest for ligands that produced measurable internalization within the time frame of the experiment, and this rate was reduced by the internalization blocker dynasore; 2) the decay of the cAMP response started with a delay that is compatible with the time course of internalization; 3) internalizing ligands whose endocytic trafficking was susceptible to inhibition by dynasore displayed an increase of greater than 50% in the magnitude of their cAMP response after incubation with this internalization blocker; 4) ligands that triggered minimal internalization or those whose endocytic response was not significantly affected by dynasore underwent reduced or no increment of their cAMP responses. In contrast, it was not possible to relate any of these aspects of the cAMP response to actual measures of ligand efficiency to promote endocytosis (log(\(\tau/K_A\))). Transduction coefficients combine efficacy (\(\tau\)) and functional affinity (\(K_A\)) values as calculated by fitting experimental data with the operational model of Black and Leff (1983) and have been proposed as an overall descriptor of ligand "efficiency" to promote response (Black and Leff, 1983; Kenakin and Christopoulos, 2013). The fact that morphine, SB235863, and mcpTIPP did not generate meaningful internalization dose-response curves precluded estimation of sequestration efficiency values for these ligands. However, for ligands like deltorphin II, DPDPE, met-enkephalin, and SNC-80, whose internalization dose-response curves precluded estimation of sequestration efficiency values were unrelated to the rate of decline of cAMP inhibition. Thus, although there is a clear polarization indicating that decline of cAMP response is faster for DOR agonists that produced internalization within the time frame of the experiment, sequestration efficiency values did not allow to predict the decline of cAMP inhibition by internalizing ligands.

In addition to endocytosis, the decay rate of cAMP responses was correlated to transduction coefficients [log(\(\tau/K_A\))] for G\(_{\text{a11}}\) activation. Our data indicate that agonist efficiency to promote G-protein activation is predictive of the decay rate of cAMP signaling. These observations are consistent with those obtained by (McPherson et al., 2010), who showed that for most MOR agonists the ability to promote regulatory events, such as phosphorylation and arrestin recruitment, was correlated with ligand ability to activate G protein. Unlike G\(_{\text{a11}}\) activation coefficients, log(\(\tau/K_A\)) values describing ligand efficiency to inhibit cAMP production were not correlated with...
the decay rate for this response. This is not altogether surprising given that the further downstream in the signaling pathway modulatory factors that are independent of receptor–ligand interaction are progressively recruited. As a consequence, downstream readouts such as cAMP levels are expected to be weaker predictors of the regulation that takes place at the receptor level (Dang and Christie, 2012).

Inhibition of second-messenger production was also assessed over prolonged treatment periods, within a time frame that allowed internalization by deltorphin II, DPDPE, SNC-80, or met-enkephalin to attain its maximum, whereas that of morphine and SB235863 remained unchanged. A cAMP response was observed both for internalizing and noninternalizing ligands, indicating that poor endocytosis is not a prerequisite for prolonged cyclase inhibition. Moreover, since mechanisms that trigger internalization are also involved in functional uncoupling of the receptor from the G protein (Lefkowitz, 1998; Ferguson, 2001; Violin and Lefkowitz, 2007; Zheng et al., 2010), it is not strictly possible to conclude that poor endocytosis was the only cause for prolonged cAMP signaling by morphine or SB235863. Indeed, morphine fails to produce DOR phosphorylation (Navratilova et al., 2005) and βarr2 recruitment to the receptor (Zhang et al., 1999), both of which participate in desensitization as much as they may contribute to endocytosis. On the other hand, DOR ligands that effectively trigger internalization also
induce adaptations that lead to functional desensitization (Pradhan et al., 2010). Hence, if 60–120 minutes of treatment with deltorphin II internalizes 70% of membrane receptors and those remaining at the surface undergo desensitization, how can sustained exposure to deltorphin II and SB235863 produce similar levels of cAMP inhibition? A possible explanation is that deltorphin II is ∼20,000 more efficient than SB235863 at activating signaling (see Table 3 transduction coefficients for G-protein activation) and that this difference compensates for the loss of functional membrane receptors. If this were the case, met-ENK, which is ∼2000-fold more efficient than SB235863, would not be expected to lose all activity within the first 30 minutes of sustained stimulation. Assessment of the subcellular distribution of DORs by immunofluorescence indicated that receptors internalized by met-enkephalin, deltorphin II, DPDPE, and SNC-80 accumulated in the cytoplasm over the 2-hour period of the experiment. Thus, a simple and plausible alternative is that internalizing ligands that produce sustained cAMP inhibition do so via intracellular signaling. In support of this notion is the fact that G protein–coupled receptors, heterotrimeric G proteins, and adenylyl cyclase have been localized to endosomes.
where their function as a signaling unit (Calebiro et al., 2009; Ferrand et al., 2009; Mullershausen et al., 2009; Irannejad et al., 2013).

In conclusion, this study shows that ligand ability to evoke G-protein activation is a fairly good predictor of the time course of rapid CAMP inhibition by DOR agonists. Results also showed that internalization influences the time course of short-term CAMP responses, but the endocytic profile does not predict whether DOR agonists will display sustained CAMP inhibition.

Authorship Contributions

Participated in research design: Pineyro.

Conducted experiments: Tudashki, Robertson.

Contributed new reagents or analytic tools: Schiller.

Performed data analysis: Tudashki, Robertson, Pineyro.

Wrote or contributed to the writing of the manuscript: Tudashki, Robertson, Pineyro.

References

Address correspondence to: Gracila Pineyro, Centre de Recherche du CHU Ste-Justine, 3175, Cote Ste-Catherine, Bureau 2722, Montréal, QC, H3T 1CS, Canada. E-mail: gracila.pineyro.filip@umontreal.ca
Endocytic Profiles of δ-Opioid Receptor (DOR) Ligands Determine the Duration of Rapid but not Sustained cAMP Responses

Hanieh Bagheri Tudashki, Derek N. Robertson, Peter W. Schiller and Graciela Piñeyro.

Molecular Pharmacology
Supplementary Figure 1. Inhibition of agonist-induced DOR internalization by dynasore.

Cells expressing Flag-DORs were pretreated with dynasore (80 µM; 30 min), which was allowed to remain in the culture medium until completion of the experiment. After the first 30 min of dynasore treatment the indicated DOR ligands (10 µM) were introduced for increasing time periods. Results are expressed as % of maximal internalization in respective controls and correspond to mean ± SEM of 3 independent experiments for each drug. Two way ANOVA analysis revealed an effect of time (p < 0.0001), an effect of dynasore (p < 0.0001) and an interaction (p <0.0001) for DPDPE, SNC-80 and Met-Enkephalin.

Supplementary Figure 2. Subcellular distribution of DORs following sustained activation with different agonists.

Flag-DORs were labeled at the membrane as described in the experimental section. They were then exposed to DPDPE, SNC-80, mcpTIPP or morphine (10µM) for the indicated time periods before fixation, permeabilization and labeling for visualization. White arrow indicates membrane DORs and white arrow heads indicate internalized receptors.
Supplementary figure 1
Supplementary figure 2