FK506-Binding Protein 12 Modulates \(\mu \)-Opioid Receptor Phosphorylation and Protein Kinase C\(\varepsilon \)-Dependent Signaling by Its Direct Interaction with the Receptor

Yu Qiu, Wei Zhao, Yan Wang, Jian-Rong Xu, Eddie Huie, Shan Jiang, Ying-Hui Yan, Horace H. Loh, Hong-Zhuang Chen, and Ping-Yee Law

Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China (Y.Q., Y.W., J.-R.X., S.J., Y.-H.Y., H.-Z.C.); and Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota (Y.Q., W.Z., E.H., H.H.L., P.-Y.L.)

Received June 8, 2013; accepted October 10, 2013

ABSTRACT

Protein kinase C (PKC) activation plays an important role in morphine-induced \(\mu \)-opioid receptor (OPRM1) desensitization and tolerance development. It was recently shown that receptor phosphorylation by G protein–coupled receptor kinase regulates agonist-dependent selective signaling and that inefficient phosphorylation of OPRM1 leads to PKC\(\varepsilon \) activation and subsequent responses. Here, we demonstrate that such receptor phosphorylation and PKC\(\varepsilon \) activation can be modulated by FK506-binding protein 12 (FKBP12). Using a yeast two-hybrid screen, FKBP12 was identified as specifically interacting with OPRM1 at the Pro\(^{353} \) residue. In human embryonic kidney 293 cells expressing OPRM1, the association of FKBP12 with OPRM1 decreased the agonist-induced receptor phosphorylation at Ser\(^{270} \). The morphine-induced PKC\(\varepsilon \) activation and the recruitment of PKC\(\varepsilon \) to the OPRM1 signaling complex were attenuated both by FKBP12 short interfering RNA (siRNA) treatment and in cells expressing OPRM1 with a P353A mutation (OPRM1P353A), which leads to diminished activation of PKC\(\varepsilon \)-dependent extracellular signal-regulated kinases. Meanwhile, the overexpression of FKBP12 enabled etorphine to activate PKC\(\varepsilon \). Further analysis of the receptor complex demonstrated that morphine treatment enhanced the association of FKBP12 and calcineurin with the receptor. The blockade of the FKBP12 association with the receptor by the siRNA-mediated knockdown of endogenous FKBP12 or the mutation of Pro\(^{353} \) to Ala resulted in a reduction in PKC\(\varepsilon \) and calcineurin recruitment to the receptor signaling complex. The receptor-associated calcineurin modulates OPRM1 phosphorylation, as demonstrated by the ability of the calcineurin autoinhibitory peptide to increase the receptor phosphorylation. Thus, the association of FKBP12 with OPRM1 attenuates the phosphorylation of the receptor and triggers the recruitment and activation of PKC\(\varepsilon \).

Introduction

Morphine is widely prescribed in the treatment of moderate to severe pain. However, its use is limited because of its high propensity to induce antinociceptive tolerance, physical dependence, and addiction (Rezvani et al., 1983; Whistler et al., 1999). Similarly to other opioids, morphine exerts its function through the activation of opioid receptors, which can be classified into three classes: \(\mu \), \(\delta \), and \(\kappa \)-opioid receptors. Of these, the \(\mu \)-opioid receptor (OPRM1) has been identified to mediate the opioid-induced analgesic effects and the development of tolerance and physical dependence (Matthes et al., 1996; Kieffer, 1999).

OPRM1 belongs to the rhodopsin subfamily of G protein–coupled receptors. Upon activation by most opioids, such as etorphine and [D-Ala\(^2\), N-Me-Phe\(^4\), Gly\(^\beta\)-ol]-enkephalin (DAMGO), this receptor is phosphorylated by G protein–coupled receptor kinase (GRK) and recruits \(\beta \)-arrestins, which promotes the uncoupling of the receptor to G proteins and subsequent internalization. However, morphine induces receptor phosphorylation inefficiently and activates protein kinase C (PKC) via the G protein–dependent pathway (Bohn et al., 2002; Zheng et al., 2008a,b). The participation of

This work was supported in part by the National Institutes of Health National Drug Abuse [Grants R01DA007339-18, R01023905-05A1, R56DA000564-40, and P05DA011806-15A1]; the National Natural Science Foundation of China [Grant 81173044]; Shanghai Pujiang Program [Grant 2011DFA33180]; National Natural Science Foundation of China [Grant 2011DFB33180]; National Natural Science Foundation of China [Grant 81173044]; Shanghai Pujiang Program [Grant 11PJ406200]; and Shanghai Natural Science Foundation [Grant 11010708].

Received June 8, 2013; accepted October 10, 2013

MOLECULAR PHARMACOLOGY Mol Pharmacol 85:37

37
activated PKC in receptor signal desensitization and tolerance development has been extensively reported (Bohn et al., 2002; Smith et al., 2002; Zheng et al., 2008b; Bailey et al., 2009; Chu et al., 2010).

Recently, the extent of receptor phosphorylation was shown to regulate the agonist-specific activation of PKC (Zheng et al., 2011). The overexpression of GRK2 to increase morphine-induced receptor phosphorylation impairs its ability to activate PKC, whereas the blockade of receptor phosphorylation switches etorphine and DAMGO signaling from β-arrestin dependent to PKC dependent.

All of these studies establish a link between agonist-induced receptor phosphorylation, PKC activation, and chronic drug responses. However, the exact relationship between all of these cellular signaling events remains unresolved. In our study, by identifying a novel interaction between FK506-binding protein 12 (FKBP12) and OPRM1, we found that FKBP12 regulates the morphine-induced PKC activation via its modulation of receptor phosphorylation.

FKBP12, a 12-kDa FK506-binding protein that was first discovered as a receptor for the immunosuppressant drug FK506 (tacrolimus), is a peptidyl prolyl cis-trans isomerase (PPIase) (Park et al., 1992) belonging to the family of immunophilins and is found in all tissues, with particularly high expression in the brain (Steiner et al., 1992). FKBP12 has been found to have versatile biologic functions, including 1) binding to FK506 and thus inhibiting calcineurin, a Ca^{2+}-calmodulin-dependent protein phosphatase (Liu et al., 1991), 2) serving as a subunit of two major calcium-release channels of the endoplasmic reticulum, the ryanodine receptor (RyR) and the Ins(1,4,5)P3 receptor (IP3R) (Brillantes et al., 1994; Cameron et al., 1995), 3) regulating [Ca^{2+}]i, by stabilizing the closed conformation of the calcium channels, and 4) interacting with the type-1 receptor of transforming growth factor β and downregulating its signaling (Wang et al., 1996). Moreover, the possible involvement of FKBP12 in the development of morphine tolerance and dependence has been suggested. After chronic morphine treatment, microarray analyses have shown that FKBP12 is upregulated in the locus coeruleus, but this finding has not been verified by quantitative real-time polymerase chain reaction (PCR) (McClung et al., 2005). Our current study demonstrates that this protein directly interacts with the carboxyl tail of rat OPRM1. The direct association of FKBP12 with OPRM1 modulates receptor phosphorylation and thereby regulates the morphine-induced PKC activation.

Materials and Methods

Anti-OPRM1 antibody anti-μ-C was kindly provided by Dr. Lee-yuan Liu-Chen (Temple University School of Medicine, Philadelphia, PA) (Huang et al., 2008). Morphine was supplied by the National Institute on Drug Abuse. FK506 was purchased from A.G. Scientific (San Diego, CA). Cell-permeable calcineurin autoinhibitory peptide was purchased from Millipore (Billerica, MA). All of the other chemicals were purchased from Sigma-Aldrich (St. Louis, MO).

Yeast Two-Hybrid Screening. The cDNA fragment encoding the carboxyl tail (CT) of rat OPRM1 (OPRM1CT, amino acids 340–398) was amplified by PCR using appropriate primers with EcoRI restriction sites on both ends of the nucleotide sequence of the primers. The fragment was ligated in frame to the corresponding sites in the yeast shuttle vector pGBK7T (Clontech, Mountain View, CA) to create a plasmid encoding the GAL4BD-OPRM1CT fusion protein. This plasmid was transformed into yeast strain AH109. The expression of the bait protein in yeast was confirmed by immunoblotting with myc antibody (BD Biosciences, Franklin Lakes, NJ).

The Matchmaker II two-hybrid system (Clontech) was used to screen a mouse brain cDNA library (complexity 3.5 × 10^6 total recombinants) constructed in fusion with GALAD in pACT2 with OPRM1CT. Approximately 2.6 × 10^6 transfectants were screened, and the Adé/Ad’His+ -positive clones were tested for α-galactosidase activity. The plasmids recovered from the positive clones were transformed into XL1-blue bacteria to select colonies containing only the target plasmids. The protein-protein interactions were verified in yeast by remating each positive target plasmid in pACT2 transformed into yeast strain Y187 with the pGBK7T or pGBK7T-OPRM1CT vectors in yeast strain AH109. Nonspecific interactions were detected by the mating of the target plasmids with the pGBK7T vector.

Glutathione S-Transferase Fusion Protein Pull-Down Assay. Glutathione S-transferase (GST) fusion proteins with OPRM1CT (GST-OPRM1CT), the δ-opioid receptor C tail (amino acids 322–372, GST-OPRD1CT), and the κ-opioid receptor C tail (amino acids 334–381, GST-OPRK1CT) were generated by PCR using appropriate primers with BamHI restriction sites on both ends of the nucleotide sequence of the primers. The resulting PCR products were first subcloned into pCR2.1, subcloned into the corresponding BamHI site of pGEX-2T (Pharmacia LKB, Gaithersburg, MD) with proper orientation, and transformed into XL1-blue bacteria. The GST-OPRM1CTP353A was generated by PCR using GST-OPRM1CT as the template.

The GST-fusion proteins were prepared by growing the bacteria overnight at 37°C in Luria–Bertani broth with ampicillin (100 μg/ml) and inducing with 5 mM isopropyl-β-D-thiogalactopyranoside for 3 hours. The cells were pelleted by centrifugation at 12,000 g for 1 minute, resuspended in phosphate-buffered saline (PBS) with 1% Triton X-100 and the Complete protease inhibitor cocktail (Roche, Indianapolis, IN) at 4°C, sonicated twice with a microprobe set at a maximum power, and centrifuged again at 12,000 g and 4°C for 15 minutes. The supernatant containing the GST-fusion proteins was incubated with 50% slurry of reduced glutathione-agarose for 3 hours at 4°C. The beads were washed with PBS containing protease inhibitors at 4°C and were incubated with cell extracts of human embryonic kidney 293 (HEK293) cells transiently transfected with myc-FKBP12 overnight at 4°C. The beads were then washed with PBS at 4°C, eluted with SDS sample buffer, separated on SDS-PAGE, and transferred onto an Immobilon-P transfer membrane (Millipore). The membranes were immunoblotted with mouse anti-myc antibody (1:500; Millipore) and goat anti-mouse IgG conjugated to alkaline phosphatase (1:5000; Bio-Rad Laboratories, Hercules, CA) and then detected by enhanced chemiluminescence substrate (GE Healthcare, Piscataway, NJ).

Cell Culture. HEK293 cells were maintained in Eagle’s minimum essential medium with 10% fetal bovine serum, 100 units/ml penicillin, and 100 μg/ml streptomycin at 37°C in a humidified atmosphere of 95% air and 5% CO2. The transfection of HEK293 cells with pcdNA3 plasmids containing hemagglutinin (HA)-tagged OPRM1 or mutant receptor with Pro353 mutated to Ala (OPRM1P353A) and the establishment of stably transfected cells were performed as described previously (El Kouhen et al., 2001). The DNA transfections were performed using the Effectene reagent (Qiagen, Valencia, CA). The stably transfected cells were maintained in the same medium supplemented with 200 μg/ml G418 (Geneticin).

Confocal Imaging. HEK293 cells stably expressing OPRM1 were transiently transfected with myc-FKBP12. Forty-eight hours after transfection, the cells were washed twice with PBS at 4°C and fixed with 3% paraformaldehyde for 30 minutes. The cells were then washed with 3× PBS and blocked in a blocking buffer (PBS with 5% normal donkey serum). OPRM1 was visualized by staining with rabbit anti-HA (1:1000; Convance, Princeton, NJ) and Alexa 488–conjugated goat-anti-rabbit antibody (1:1000; Invitrogen, Carlsbad, CA). The cells were then permeabilized with 0.3% Triton X-100, and FKBP12 was identified by staining with mouse anti-myc (1:1000;
Millipore) and Alexa 594–conjugated goat-anti-mouse antibody (1:1000). The confocal images were captured with a BD CARV II Confocal Imager (BD Biosciences) and a Leica DMIRE2 fluorescence microscope (Leica Microsystems, Wetzlar, Germany).

Comununoprecipitation. The cells were plated onto poly-L-lysine–coated 100-mm dishes. After agonist treatment, the cells were extracted with cell lysis buffer (0.1% Triton X-100, 50 mM Tris-HCl, pH 8.0, 100 mM NaCl, 10% glycerol, 10 mM EDTA, 10 mM NaF, 1 mM diithiothreitol, 0.5 mM phenylmethylsulfonyl fluoride, 10 mM sodium pyrophosphate, 1 mM sodium vanadate, and 1× protease inhibitor cocktail from Sigma-Aldrich). For the immunoprecipitation of the receptor with overexpressed FKBP12, the cells were transfected with myc-tagged FKBP12. Forty-eight hours after transfection, the cells were treated with 10 μM FK506 or not treated, then were lysed. After centrifugation at 12,000g for 5 minutes, mouse anti-myc (Millipore), anti-HA (Covance), or rabbit anti-calcineurin (Millipore) antibodies and protein A/G agarose (Pierce, Rockford, IL) were added to the supernatants, and the mixture was rotated overnight. The beads were then washed 5 times with cell lysis buffer and extracted with SDS sample buffer. Approximately equal amounts of protein were resolved by SDS-PAGE and transferred to polyvinylidene difluoride (PVDF) membranes. Antibodies specific for myc, PKCε (Cell Signaling Technology, Danvers, MA), FKBP12 (Proteintech, Chicago, IL), HA, and calcineurin were used for the immunoblotting. The blots were developed by enhanced chemiluminescence (Pierce) and analyzed using the ImageJ software (US National Institutes of Health).

Molecular Docking and Molecular Dynamics Simulations. The crystal structure of FKBP12 in solution was retrieved from the Protein Data Bank (PDB) (PDB ID 2PPN) and rendered by the Molecular Operating Environment (Montreal, QC, Canada). Because there was no structure with a high sequence similarity to the C-terminal domain (amino acids 329–398) of rat OPRM1, its crystal structure was constructed using an online program (http://zhanglab.ccmb.med.umich.edu/I-TASSER) (Zhang, 2008; Roy et al., 2010, 2012). Because the sequence between amino acids 329 to 352 is the same as the sequence between amino acids 419 to 442 of mouse OPRM1 (PDB ID 4DKL), the constructed structure of the OPRM1 C-terminal domain was superposed to the known structure of mouse OPRM1, and the root-mean-square deviation (RMSD) was approximately 1 Å, which indicates that the modeled structure of the OPRM1 C-terminal domain is reasonable. To dock FKBP12 with the OPRM1 C-terminal domain, the binding patterns of FKBP12 with other proteins (PDB ID 1B6C, 2BSE, 3MDY, and 3H9R) were analyzed, and the key residues of FKBP12 in the interactions were identified to be Asp37, Gln53, and Glu54. The molecular docking was then performed using the PatchDock program and refined using FireDock (http://bioinf03d.cs.tau.ac.il//PatchDock/; Dubovy and Wofison, 2002; Schneider-Duhovy et al., 2005). The 10 best docking results were further evaluated by the Molecular Operating Environment program, and two docking models were identified as complex models. These two docking models were further evaluated by molecular dynamics (MD) simulations to determine their conformational stability. The MD simulations of these complex models were performed for 20 nanoseconds using the Amber 12 program (Case et al., 2012) on a GPU-based workstation (Hewlett-Packard, Palo Alto, CA). The Generalized Born Simulation Model (Tsui and Case, 2000–2001) for macromolecular simulations was used instead of explicit water. The temperature was set to 300 K. To characterize the stability of both models, the RMSD and root-mean-square fluctuation (RMSF) were calculated. The distances between Ser375Thr376 of the OPRM1 C-terminal domain to the nearest residues of FKBP12 were then calculated.

Knockdown of FKBP12. HEK293 cells stably expressing OPRM1 were transfected with the reported short interfering RNA (siRNA) corresponding to the target sequence GCTTGAGATTGAGAAAGAAA of the FKBP12 gene (Giordano et al., 2008) (Qiagen) or a scrambled sequence as the control at a final concentration of 50 nM using Lipo-fectamine 2000 (Invitrogen) according to the manufacturer's instructions. Forty-eight hours after transfection, the cells were analyzed and indicated. The effect of siRNA on protein expression was determined by Western blot.

Receptor Phosphorylation Assay. Cells cultured in 100-mm dishes were incubated with 1 μM morphine or etorphine for 20 minutes at 37°C. The reactions were terminated on ice. The cells were washed with ice-cold PBS at 4°C and subsequently lysed in 0.5 ml of lysis buffer containing 0.5% Triton X-100, 10 mM Tris pH 7.4, 150 mM NaCl, and 25 mM KCl with 0.1 mM phenylmethylsulfonyl fluoride, Complete protease inhibitor cocktail (Roche), 50 mM sodium fluoride, 10 mM sodium pyrophosphate, and 0.1 mM sodium vanadate as phosphatase inhibitors. After centrifugation at 12,000g for 5 minutes, the supernatant was immunoprecipitated with 1 μg of mouse anti-HA (Covance) and Protein G agarose beads (Invitrogen) at 4°C overnight. The beads were then washed 6 times with cell lysis buffer and extracted with SDS sample buffer. Approximately equal amounts of protein were resolved by SDS-PAGE and transferred to PVDF membranes. The phosphorylated OPRM1 receptor was detected with anti-phosphoSer375 OPRM1 antibody (OPRM1phosphoSer375) (Cell Signaling Technology) and normalized to the total amount of immunoprecipitated receptor. The intensity of the individual bands was determined using the ImageQuant analysis software (GE Healthcare).

Measurement of the Activation of Extracellular Signal-Regulated Kinases. Cells in 35-mm dishes were washed twice with PBS at 4°C and 0.1 ml of lysis buffer (50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 0.25% sodium deoxycholate, 0.1% Nonidet P-40, 0.1% Triton X-100, 50 mM NaF, 1 mM dithiothreitol, 0.5 mM phenylmethylsulfonyl fluoride, 50 mM sodium pyrophosphate, 10 mM sodium vanadate, and Complete protease inhibitor cocktail). After centrifugation, the supernatant was transferred to a new tube, and SDS sample buffer was added. Approximately equal amounts of protein were resolved by SDS-PAGE and transferred to PVDF membranes. The amount of phosphorylated extracellular signal-regulated kinases (ERK1/2) was monitored using a monoclonal antibody for phosphorylated ERK1/2 (Cell Signaling Technology) and was normalized to the amount of total ERK1/2 detected by total ERK antibodies (Cell Signaling Technology).
FKBP12 Interacts with OPRM1. The yeast two-hybrid screening of approximately 2.6×10^6 transformants from a mouse brain cDNA library using OPRM1CT as the bait led to the identification of two positive colonies encoding a 91-residue protein corresponding to FKBP12 amino acids 19 to 109 with 100% identities. The specificity of the interaction of OPRM1CT with FKBP12 was verified by retransforming FKBP12 cDNA into yeast strain Y187 and then mating it with yeast AH109, which contained either the original bait pGBK7/OPRM1CT vector or the pGBK7 vector. The interaction between OPRM1CT and FKBP12 specifically allowed the transformants to grow on medium lacking leucine, tryptophan, histidine, and adenine (SD/-Leu/-Trp/-His/-Ade). The yeast cells with the bait vector alone were unable to survive on SD/-Leu/-Trp/-His/-Ade medium in the presence of FKBP12 (data not shown).

To further confirm the specificity of the interaction between the OPRM1 C tail and FKBP12 among the opioid receptors, an in vitro GST-fusion protein pull-down assay was performed. When the GST fusion proteins with OPRM1CT (Fig. 1A lane 2), the δ-opioid receptor C tail (amino acids 322–372, OPRD1CT; Fig. 1A lane 4), or the κ-opioid receptor C tail (amino acids 334–381, OPRK1CT; Fig. 1A lane 5) were incubated with extracts of cells expressing FKBP12, FKBP12 was pulled down efficiently by GST-OPRM1CT and to a slight extent by GST-OPRD1CT but not by GST-OPRK1CT. This observed difference was not the result of different amounts of GST fusion proteins used in the pull-down assays, as indicated by the Coomassie blue staining of the fusion proteins.

To study whether the interaction of OPRM1 with FKBP12 occurs in mammalian cells, HEK293 cells stably expressing HA-tagged rat OPRM1 were transiently transfected with myc-tagged FKBP12. The colocalization of OPRM1 and FKBP12 was then detected through immunofluorescence studies. OPRM1 and FKBP12 were observed to be colocalized mainly in the cell membrane (Fig. 2A). This interaction between OPRM1 and FKBP12 in mammalian cells was demonstrated further by immunoprecipitation with a myc antibody (Fig. 2B). The proximal association of OPRM1 with FKBP12 was investigated through CoralHue fluo-chase analysis.

CoralHue fluo-chase analysis enables the detection of protein–protein interactions in live cells by the formation of a fluorescent complex of complementary fluorescent protein fragments fused to the interacting proteins (Kerppola, 2006a,b). We constructed the various fusion protein constructs by fusing OPRM1 to a fragment of fluorescent protein (CoralHue monomeric Kusabira-Green [mKG]) and by fusing FKBP12 to the complementary fragment of mKG according to the manufacturer’s instructions, that is, OPRM1 was fused to the N-terminal fragment (mKGN) and FKBP12 was fused to the complementary C-terminal fragment (mKGC) and vice versa. The fusion of the proteins was either at the N terminus (MN) or the C terminus (MC) of the mKGN or mKGC.

Preliminary coexpression studies in HEK293 cells indicated that the interaction between OPRM1 and FKBP12 could be demonstrated only by the fusion of both OPRM1 and FKBP12 to the N terminus of the mKG fragments, which means that the mKG fragments were fused to the C terminus of OPRM1 and FKBP12. Furthermore, the fluorescent signals were similar for the following pairs: OPRM1-mKGN/FKBP12-mKGC and OPRM1-mKGC/FKBP12-mKGN (data not shown). Thus, the OPRM1-mKGN/FKBP12-mKGC pair was used for further studies. When OPRM1-mKGN and FKBP12-mKGC were coexpressed in HEK293 cells, fluorescent signals could be detected both by confocal imaging (Fig. 2C left) and by a fluorescence plate reader (Fig. 2D), whereas the coexpression of OPRM1-mKGN with mKGC vector did not exhibit fluorescence (Fig. 2, C middle panel, and D). These data support a direct interaction between OPRM1 and FKBP12 in live cells.
To further demonstrate that OPRM1 is associated with FKBP12 endogenously, OPRM1 was immunoprecipitated from the mouse hippocampus using an anti-OPRM1 antibody (anti-μC) that was developed by immunizing rabbits with antigen containing the last 15 amino acid residues of the receptor (Huang et al., 2008). Anti-μC could immunoprecipitate endogenous OPRM1 in the hippocampus, whereas the signal was minimal in the cerebellum, which expresses little to no OPRM1 (Fig. 2E). Furthermore, the amount of FKBP12 immunoreactivity within the hippocampal immunoprecipitated anti-μC complex was greater than that observed from cerebellum immunoprecipitates (Fig. 2E), which indicates that OPRM1 interacts with FKBP12 endogenously.

FKBP12 Directly Binds to the Isoleucylprolyl (Position 352–353) Motif of the OPRM1 C Tail. The interaction sites of FKBP12 and its isoform FKBP12.6 with other proteins have been demonstrated to involve a peptidylprolyl residue, and the first peptidyl residue is always a hydrophobic amino acid, such as leucyl, isoleucyl, and valyl. The Val-Pro dipeptide in RyR1 (position 2461–2462) and RyR3 (position...
2322–2323), the Ile-Pro dipeptide at position 2427–2428 in RyR2, the leucylprolyl residue in IP3R1 (amino acids 1400–1401), and the type-1 receptor of transforming growth factor β (amino acids 193–194) have been shown to be crucial residues for FKBP binding, and the binding of FKBP to these proteins can regulate their activation (Charg et al., 1996; Cameron et al., 1997; Marx et al., 2000; Gaburjakova et al., 2001; Van Acker et al., 2004). These specific peptidylprolyl epitopes structurally resemble FK506 (Cameron et al., 1997), which explains the ability of FK506 to attenuate the interaction between the peptidylprolyl residue and FKBP12.

The addition of 10 μM FK506 to the mixture used in the GST pull-down assay blocked the binding of GST-OPRM1CT with FKBP12 (Fig. 1B lane 4). The blockade of the interaction of OPRM1 with FKBP12 by FK506 was also observed intracellularly, as shown in Fig. 2B. These results suggest that the Pro residue(s) in the C tail of OPRM1 must be involved in the binding of FKBP12 to OPRM1. There are four Pro residues in the carboxyl tail of rat OPRM1 (position 353, 374, 396, and 398), and Pro at 353 and 398 is paired with Ile or Leu. These residues are conserved in human, mouse, rat, and other mammalian species.

Truncation mutation studies with the GST-OPRM1CT sequence indicated that the interaction with FKBP12 remained even if the sequence from Ser356 to Pro398 was deleted (GST-OPRM1CT355TG; Fig. 1, A lane 3, and B lane 5), which suggests that Pro353 may be the residue in the OPRM1 carboxyl tail sequence involved in the receptor-FKBP12 interaction. Thus, we constructed a GST-OPRM1CT fusion protein in which Pro353 was mutated to Ala (GST-OPRM1CTP353A). The P353A mutation almost completely eliminated the interaction of the C tail of OPRM1 with FKBP12 (Fig. 1B lane 8), which indicates that the isoleucyl-prolyl (position 352–353) motif is critical for the binding of OPRM1 to FKBP12. To confirm that Pro353 is involved in the OPRM1 interaction with FKBP12 in mammalian cells, cells stably expressing OPRM1 with Pro353 mutated to Ala (OPRM1P353A) were established. As shown in Fig. 2B, the mutated receptor was unable to be coimmunoprecipitated with myc-FKBP12 by the myc antibody. As expected, the CoralHue fluo-chase analysis revealed that OPRM1P353A abolished the binding of OPRM1 to FKBP12 in live cells (Fig. 2, C right, and D). Thus, Pro353 is the residue within the OPRM1 carboxyl tail sequence that interacts with FKBP12.

FKBP12 Regulates the Phosphorylation at Ser375 of OPRM1. Because FKBP12 interacts with Pro353 of the OPRM1 carboxyl tail, which is in proximity to the Ser/Thr residues involved in the agonist-induced OPRM1 phosphorylation (El Kouhen et al., 2001), the interaction between FKBP12 and the receptor may cause steric hindrance and affect receptor phosphorylation. Thus, we first performed molecular docking analysis and MD simulations to investigate this possibility and to locate which phosphorylation sites are most likely affected. The molecular docking of the OPRM1 C-terminal domain with FKBP12 yielded two docking models that most likely represent the interaction between the OPRM1 carboxyl tail domain and FKBP12 (Fig. 3, A and B).

Throughout the 20-nanosecond MD simulations, the RMSD of both models increased rapidly and fluctuated roughly during the first 8 ns and then became stable over the remaining 12 ns (Fig. 3C), which indicates that both models were sufficiently robust and that the confirmations changed little in the last 12 nanoseconds of the simulations. The RMSF, which is another indicator of model stability, measures the average atomic mobility of the backbone atoms (N, Ca, and C atoms) during MD simulations. For both models, the RMSF of FKBP12 showed small fluctuations at approximately 50 Å (Fig. 3D), whereas the RMSF of the C-terminal domain of OPRM1 remained stable only for those residues from Asp340 to Arg389 (Fig. 3E). These data demonstrate that the interaction region was stable in the simulations, which shows good correlation with the above-described experimental results.

The influence of the interaction on the phosphorylation sites of OPRM1 was then explored. As shown in Fig. 3A and B, both models displayed a pocket formed by FKBP12 in which Ile352-Pro353 of the OPRM1 carboxyl tail domain was docked. The phosphorylation sites of the OPRM1 C-terminal domain—Ser363 and Thr370—were buried inside the structure of the C tail. Another phosphorylation site (Thr379) was far away from FKBP12. Ser375 was the closest site to FKBP12, and this residue is located next to Thr376. In the MD simulations of model 2, the distance between Ser375 and Thr376 of the OPRM1 C-terminal tail domain and FKBP12 was reduced from 17 to 15 Å after 10 nanoseconds and then remained stable for the remaining 10 nanoseconds (Fig. 3F), which suggests that these two residues are more likely affected during dynamic processes. The unchanged distance in model 1 suggests that this model is markedly more stable (Fig. 3F). The short distance between Ser375 and FKBP12 and the stable complex structure of this model suggests that the phosphorylation of Ser375 and most likely Thr376 may be affected by the interaction between FKBP12 and the OPRM1 carboxyl tail.

To investigate whether the phosphorylation of Ser375 is indeed affected by the receptor-FKBP12 interaction, the morphine-induced phosphorylation of Ser375 was monitored as the cellular FKBP12 levels were manipulated. The transfection of vector or control siRNA did not significantly affect the cellular FKBP12 level, but the overexpression of FKBP12 markedly increased cellular FKBP12 level, and the knockdown of FKBP12 with siRNA drastically decreased the endogenous FKBP12 level to 16% ± 3.6% of that observed in cells transfected with control siRNA (Fig. 4A). As shown in Fig. 4, A and B, the overexpression of FKBP12 significantly decreased the OPRM1 phosphorylation at Ser375 by 25% ± 4.5% after a 20-minute exposure to 1 μM morphine, whereas the knockdown of FKBP12 significantly increased the morphine-induced receptor phosphorylation by 44% ± 8.8%. To further investigate whether this effect is agonist-specific, the etorphine-induced receptor phosphorylation was examined. Similar to the above-mentioned effects, the 1 μM etorphine-induced receptor phosphorylation at Ser375 could be inhibited by 54% ± 5.6% through the overexpression of FKBP12 and enhanced by 46% ± 6.8% through the knockdown of FKBP12 (Fig. 4C and D). Furthermore, the morphine-induced phosphorylation at Ser375 of the OPRM1P353A mutant, which did not exhibit the receptor-FKBP12 interaction, was higher than that observed with the wild-type receptor (Fig. 4, A and B), which indicates that the interaction between the receptor and FKBP12 modulates the phosphorylation at Ser375.

FKBP12 Modulates the Morphine-Induced PKCε Activation and Recruitment. Morphine has been shown to increase the phosphorylation of OPRM1 at the Ser375

References

- **Charg**, et al. (1996)
- **Cameron**, et al. (1997)
- **Marx**, et al. (2000)
- **Gaburjakova**, et al. (2001)
- **Van Acker**, et al. (2004)
- **El Kouhen**, et al. (2001)
residue only (Chu et al., 2008; Doll et al., 2011). Previous studies in our laboratory have shown that PKCε activation can be modulated by the phosphorylation state of the receptor (Zheng et al., 2008b; Chu et al., 2010). Blunting the agonist-induced receptor phosphorylation potentiates PKCε activation, whereas enhancing receptor phosphorylation attenuates PKCε activation (Zheng et al., 2011). Therefore, we investigated whether the changes in the agonist-induced receptor phosphorylation as a consequence of the OPRM1-FKBP12 interaction can influence the morphine-induced PKCε activation. As shown in Fig. 5A, in HEK293 cells stably expressing OPRM1, 1 μM morphine activated PKCε to a level that was 3.7 ± 0.65-fold of the basal activity. When the level of FKBP12 in these cells was knocked down by the transfection of FKBP12 siRNA, which results in an increase in receptor phosphorylation (Fig. 4), the morphine-induced PKCε activation was reduced to a level that was 1.3 ± 0.08-fold of the basal level; in contrast, a 3.3 ± 0.6-fold increase in PKCε activation was observed in cells transfected with control siRNA. Similarly, in HEK293 cells stably expressing the OPRM1P353A mutant, which is unable to interact with FKBP12, 1 μM morphine induced PKCε activation to a level that was 1.5 ± 0.41-fold of the basal level. Moreover, the overexpression of FKBP12 in HEK293 cells expressing

Fig. 3. Modeled complex of OPRM1 C-terminal domain and FKBP12. (A and B) The constructed OPRM1 C-terminal domain (red) was docked into the crystal structure of FKBP12 (PDB ID 2PPN, purple) with a rendered hydrophobic surface (A: model 1, B: model 2). (C) RMSD of models 1 and 2 during the 20-nanosecond MD simulations. (D and E) RMSF of FKBP12 (D) and the OPRM1 C-terminal domain (E) in models 1 and 2. (F) The distances between Ser367 Thr376 of the OPRM1 C-terminal domain and the nearest residues of FKBP12 through the 20-nanosecond MD simulations.
wild-type OPRM1 increased the morphine-induced PKC\(_e\) activation to a level that was 5.0 ± 0.71-fold of the basal level, although this increase was not statistically significant. In contrast, etorphine, which can induce a robust phosphorylation of OPRM1 at multiple sites and is unable to activate PKC\(_e\) (Zheng et al., 2011), could activate PKC\(_e\) to a level that was 1.7 ± 0.17-fold of the basal level in HEK293 cells overexpressing FKBP12 and stably expressing wild-type OPRM1 (Fig. 5B).

To further investigate whether the interaction between OPRM1 and FKBP12 can affect PKC\(_e\) recruitment to the receptor complex (Chu et al., 2010), a coimmunoprecipitation experiment was performed. As expected, PKC\(_e\) was recruited to the activated receptors in cells expressing wild-type OPRM1.
OPRM1 (Fig. 5, C and D). When the intracellular FKBP12 was knocked down, the recruitment of PKCε to the receptor was blocked (Fig. 5, C and D). Similarly, the amount of PKCε recruited to the receptor complex was reduced significantly in OPRM1P353A-expressing cells compared with those expressing the wild-type receptor (Fig. 5C and 5D). These data indicate that FKBP12 mediates PKCε recruitment and activation through its direct interaction with OPRM1.

FKBP12 Modulates PKCε-Dependent ERK1/2 Activation. ERK1/2 activation induced by morphine has been

![Graph A](image1.png)

![Graph B](image2.png)

![Graph C](image3.png)

![Graph D](image4.png)

Fig. 5. FKBP12 modulates PKCε activation and recruitment to receptor. (A) HEK293 cells stably expressing OPRM1 were transfected with FKBP12 siRNA or myc-FKBP12 and their respective control siRNA or vector PcDNA3. Forty-eight hours after transfection, the cells were treated with 1 μM morphine for 5 minutes; HEK293 cells stably expressing OPRM1P353A were treated with 1 μM morphine for 5 minutes. The PKCε activity was then measured. *P < 0.05; **P < 0.01. (B) HEK293 cells stably expressing OPRM1 were transfected with myc-FKBP12 or vector PcDNA3 and treated with 1 μM etorphine for 5 minutes. The PKCε activity was then measured. *P < 0.05. (C and D) HEK293 cells stably expressing OPRM1 or mutant OPRM1P353A were treated with 1 μM morphine for 5 minutes. HEK-OPRM1 cells were transfected with FKBP12 siRNA or control siRNA, and 48 hours after transfection, the cells were treated with 1 μM morphine for 5 minutes. The OPRM1 signaling complexes were immunoprecipitated with HA antibody and immunoblotted with a PKCε antibody (C). The relative densities of immunoprecipitated PKCε were quantified by normalizing to the total amount of immunoprecipitated receptors (D). *P < 0.05.
shown to be PKCε-dependent (Chu et al., 2008, 2010; Zheng et al., 2008b). Thus, to further demonstrate that FKBP12 can modulate morphine-mediated PKCε activation, the influence of FKBP12 on ERK1/2 activation was investigated. As shown in Fig. 6, A and B, 1 μM morphine treatment of 10 minutes increased ERK1/2 phosphorylation to a level that was 2.0 ± 0.14-fold of the basal level in HEK293 cells stably expressing wild-type OPRM1. When the FKBP12 level was knocked down by FKBP12 siRNA, which resulted in an increase in agonist-induced receptor phosphorylation and a decrease in PKCε activation, the morphine-induced ERK1/2 activation was attenuated to a level that was 1.4 ± 0.05-fold of the basal level. In contrast, a 1.8 ± 0.08-fold increase was observed in cells transfected with control siRNA. In addition, this attenuation persisted after 1 hour of morphine treatment, which suggests that the effect was not time dependent (data not shown). The attenuation of ERK1/2 activation induced by morphine was also observed in HEK293 cells stably expressing OPRM1P353A (1.3 ± 0.21-fold increase), which interacts poorly with FKBP12 (Fig. 6, A and B). These data indicate that FKBP12 plays a critical role in morphine-induced ERK1/2 activation by regulating the interactions between OPRM1 and FKBP12 and subsequently PKCε activation.

FKBP12 Mediates the Recruitment of Calcineurin to the Receptor Complex. Further analysis of the receptor complex revealed that 1 μM morphine treatment increases the amount of FKBP12 recruited to the receptor complex, whereas the recruitment of FKBP12 was absent in OPRM1P353A-expressing cells (Fig. 7, A and B). Because calcineurin binds FKBP12 and has been shown to mediate PKCε activation in cardiomyocytes (Vincent et al., 2006), calcineurin within the OPRM1 complex was also examined. As shown in Fig. 7, A and B, 1 μM morphine induced the recruitment of calcineurin by wild-type OPRM1 receptors, whereas the recruitment of calcineurin was absent in cells expressing the mutant OPRM1P353A and significantly reduced when the FKBP12 level was knocked down by siRNA treatment.

To further demonstrate that calcineurin was localized within the receptor-FKBP12 complex, cellular proteins coimmunoprecipitated with the calcineurin antibody were examined. As summarized in Fig. 7, C and D, calcineurin, FKBP12, and PKCε formed a complex in the absence of OPRM1 activation. After morphine treatment, the amount of OPRM1, FKBP12, and PKCε coimmunoprecipitated with calcineurin increased significantly in OPRM1-expressing cells, whereas the amount of FKBP12 and PKCε was not altered in cells expressing the mutant OPRM1P353A receptor.

Because it is a phosphatase, we examined whether calcineurin affects receptor phosphorylation using its autoinhibitory peptide. As shown in Fig. 8, A and B, treatment with the cell-permeable calcineurin autoinhibitory peptide significantly increased the receptor phosphorylation at Ser375, which demonstrates that calcineurin contributes to the decrease in receptor phosphorylation mediated by the association of FKBP12 with the receptor. Taken together, these data show that FKBP12 regulates the receptor phosphorylation and that this phosphorylation results in the recruitment and the activation of PKCε within the OPRM1 signaling complex.

Fig. 6. FKBP12 modulates PKCε-dependent ERK1/2 activation. HER293 cells stably expressing OPRM1 were transfected with FKBP12 siRNA or myc-FKBP12 and their respective control siRNA (Ctl SiRNA) or vector PcDNA3. Forty-eight hours after transfection, the cells were treated with 1 μM morphine for 10 minutes, and the phosphorylated ERK1/2 was then determined (A) and quantified (B) as described in Materials and Methods. *P < 0.05; **P < 0.01 versus cells without agonist treatment or as denoted.
Using the carboxyl tail of rat OPRM1 as the bait in the yeast two-hybrid system, FKBP12 was demonstrated to directly interact with OPRM1. The interaction between FKBP12 and OPRM1 was further confirmed in mammalian cells by several methods. First, the direct interaction was observed in a GST-fusion protein pull-down assay, and FK506 can block the interaction. Second, a CoralHue fluo-chase assay showed that this direct interaction exists in living cells. Third, the endogenous interaction was demonstrated by the coimmunoprecipitation of FKBP12 with OPRM1 in the mouse hippocampus. The interaction was further shown to be mainly in the cell membrane through colocalization immunofluorescence studies.

The association of FKBP12 with OPRM1 mediates calcineurin recruitment to the receptor signaling complex. (A and B) HEK293 cells stably expressing OPRM1 or mutant OPRM1P353A were treated with 1 μM morphine for 5 minutes. The OPRM1 signaling complexes were immunoprecipitated with HA antibody and immunoblotted with calcineurin and FKBP12 antibodies (A). The relative densities of the immunoprecipitated calcineurin and FKBP12 were quantified by normalizing to the total amount of immunoprecipitated receptors (B). **P < 0.01. (C and D) HEK293 cells stably expressing OPRM1 or mutant OPRM1P353A were treated with 1 μM morphine for 5 minutes. The cell lysates were then immunoprecipitated with calcineurin antibody and immunoblotted with PKCe and FKBP12 antibodies (C). The relative densities of immunoprecipitated PKCe and FKBP12 were quantified (D) by normalizing to the total amount of immunoprecipitated calcineurin. *P < 0.05 versus OPRM1-expressing cells.

Discussion

FKBP12 and Morphine-Induced PKCe Activation

Fig. 7. The association of FKBP12 with OPRM1 mediates calcineurin recruitment to the receptor signaling complex. (A and B) HEK293 cells stably expressing OPRM1 or mutant OPRM1P353A were treated with 1 μM morphine for 5 minutes. The OPRM1 signaling complexes were immunoprecipitated with HA antibody and immunoblotted with calcineurin and FKBP12 antibodies (A). The relative densities of the immunoprecipitated calcineurin and FKBP12 were quantified by normalizing to the total amount of immunoprecipitated receptors (B). **P < 0.01. (C and D) HEK293 cells stably expressing OPRM1 or mutant OPRM1P353A were treated with 1 μM morphine for 5 minutes. The cell lysates were then immunoprecipitated with calcineurin antibody and immunoblotted with PKCe and FKBP12 antibodies (C). The relative densities of immunoprecipitated PKCe and FKBP12 were quantified (D) by normalizing to the total amount of immunoprecipitated calcineurin. *P < 0.05 versus OPRM1-expressing cells.

 FKBP12 and Morphine-Induced PKCe Activation

Fig. 7. The association of FKBP12 with OPRM1 mediates calcineurin recruitment to the receptor signaling complex. (A and B) HEK293 cells stably expressing OPRM1 or mutant OPRM1P353A were treated with 1 μM morphine for 5 minutes. The OPRM1 signaling complexes were immunoprecipitated with HA antibody and immunoblotted with calcineurin and FKBP12 antibodies (A). The relative densities of the immunoprecipitated calcineurin and FKBP12 were quantified by normalizing to the total amount of immunoprecipitated receptors (B). **P < 0.01. (C and D) HEK293 cells stably expressing OPRM1 or mutant OPRM1P353A were treated with 1 μM morphine for 5 minutes. The cell lysates were then immunoprecipitated with calcineurin antibody and immunoblotted with PKCe and FKBP12 antibodies (C). The relative densities of immunoprecipitated PKCe and FKBP12 were quantified (D) by normalizing to the total amount of immunoprecipitated calcineurin. *P < 0.05 versus OPRM1-expressing cells.
One of major functions of FKBP12 is to regulate \([\text{Ca}^{2+}]\), by binding to two \(\text{Ca}^{2+}\) release channels of the sarcoplasmic and endoplasmic reticula, the RyR and the \(\text{IP}_3\)R. The activation of OPRM1 has been shown to induce \([\text{Ca}^{2+}]\), release from the intracellular \(\text{Ca}^{2+}\) pool when the P2Y receptor is coactivated by ADP (Chu et al., 2008). Moreover, the mobilization of the intracellular \(\text{Ca}^{2+}\) pool by the P2Y receptor involves \(\text{IP}_3\) generation (Liu et al., 2000). However, the agonist-induced \([\text{Ca}^{2+}]\), release was not modified by the manipulation of the intracellular FKBP12 levels (data not shown). Using molecular docking and MD simulations, we found that the steric hindrance incurred by the direct receptor-FKBP12 interaction may influence receptor phosphorylation, particularly the phosphorylation of the Ser\(^{375}\) residue. The phosphorylation sites of OPRM1 have been demonstrated to be Ser\(^{363}\), Thr\(^{370}\) and Ser\(^{375}\) residues in the carboxyl tail, and Thr\(^{376}\) and Ser\(^{375}\) have been found to be agonist-dependent phosphorylation sites (El Kouhen et al., 2001). Recently, Thr\(^{376}\) and Thr\(^{379}\) were found to be phosphorylation sites (Just et al., 2013). However, morphine is shown to induce the phosphorylation of Ser\(^{375}\) only, whereas other agonists, such as etorphine and DAMGO, can induce the phosphorylation of multiple sites (Chu et al., 2008; Doll et al., 2011). Using the commercial available antibody to phosphorylated Ser\(^{375}\), we confirmed the morphine- and etorphine-induced phosphorylation at Ser\(^{375}\) to be regulated by FKBP12. Due to the limited availability of antibodies, it has not yet been clarified whether the interaction between the receptor and FKBP12 can affect other phosphorylation sites.

In addition to the probable steric hindrance suggested by our modeling studies (Fig. 3), FKBP12 possesses PPlase activity that can change the carboxyl tail conformation and thus affect the agonist-induced receptor phosphorylation. However, the activity-deficient mutant also reduces the overall FKBP12 affinity for its target (Timerman et al., 1995). Thus, further investigation is required to determine whether the PPlase activity of FKBP12 affects receptor phosphorylation. It is clear that the recruitment of calcineurin to the receptor complex by FKBP12 contributes to the phosphorylation state of OPRM1 (Fig. 8). It is likely that the decrease in receptor phosphorylation as a consequence of FKBP12-receptor interaction is attributed to both the inhibition of GRK activity due to its proximity to the Ser\(^{375}\) residue and the recruitment of calcineurin to the receptor complex.

A previous study indicated that the receptor phosphorylation at the Ser\(^{375}\) residue in the carboxyl tail is an important determinant of the agonist-dependent PKC\(e\) signaling pathway (Zheng et al., 2011). Our data clearly demonstrate that the receptor-FKBP12 association and the subsequent morphine-induced receptor phosphorylation at the Ser\(^{375}\) residue correlate well with PKC\(e\) activation and association with the receptor complex. Furthermore, because other agonists, such as etorphine, do not activate PKC\(e\), as observed in the current and previous studies (Chu et al., 2008; Zheng et al., 2008b), the overexpression of FKBP12, which inhibited receptor phosphorylation, resulted in PKC\(e\) activation. These results not only substantiate our previous observation that the signaling pathways selected by an individual agonist can be regulated by the receptor phosphorylation state but also indicate that FKBP12 may be the key element underlying the interplay between receptor phosphorylation and PKC activation.

Although our study cannot preclude the possibility of PKC\(e\) activation induced by other signaling molecules, our coimmunoprecipitation studies demonstrate that the association of FKBP12 with OPRM1 directly mediates PKC\(e\) recruitment to the receptor signaling complexes. FKBP12, calcineurin, and PKC\(e\) form a complex in the absence of OPRM1 activation, which is consistent with other studies that have showed a basal interaction between FKBP12, calcineurin, and PKC\(e\) (Cardenas et al., 1994; Husi et al., 1994; Vincent et al., 2006). The dissociation of FKBP12 from the receptor by knocking down the cellular FKBP12 level or using the FKBP12 association-deficient mutant receptor abolished the recruitment of calcineurin and PKC\(e\) to the receptor. These data strongly indicate that FKBP12 serves as an adaptor for the recruitment of PKC\(e\) and calcineurin. The fact that morphine can regulate the synaptic GluA1 subunit level of the \(\alpha\)-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor via its activation of calcineurin (Kam et al., 2010) suggests functions of these molecules in OPRM1 signaling beyond those that were explored in our study.

In summary, we have delineated a mechanism in which the interaction between FKBP12 and OPRM1 inhibits the agonist-induced receptor phosphorylation and further facilitates the morphine-induced PKC\(e\) activation. The association of the receptor with FKBP12 may underlie the interplay between receptor phosphorylation and agonist-dependent signaling. In view of the fact that FKBP12 is upregulated in morphine-tolerant rats, as shown through microarray analyses (McClung et al., 2005), the interaction between FKBP12 and OPRM1 may be enhanced to reinforce PKC\(e\) activation, regardless of whether the upregulation of FKBP12 is adaptive to or causative of morphine tolerance. In this respect, interference with the FKBP12 association with
OPRM1 may lessen the chronic effects of morphine, including tolerance development.

Acknowledgments

The authors thank Dr. Lee-yuan Liu-Chen for kindly providing anti-OPRM1 antibody anti-μ.

Authorship Contributions

Participated in research design: Qiu, Loh, Chen, Law.

Conducted experiments: Qiu, Zhao, Wang, Xu, Huie, Jiang, Yan.

Performed data analysis: Qiu, Zhao, Wang, Law.

Wrote or contributed to the writing of the manuscript: Qiu, Zhao, Loh, Chen, Law.

References

