Globular Adiponectin Inhibits Ethanol-Induced Reactive Oxygen Species Production through Modulation of NADPH Oxidase in Macrophages: Involvement of Liver Kinase B1/AMP-Activated Protein Kinase Pathway

Mi Jin Kim, Laura E. Nagy, and Pil-Hoon Park

College of Pharmacy, Yeungnam University, Republic of Korea (M.J.K., P.-H.P.); and Center for Liver Disease Research, Departments of Pathobiology and Gastroenterology, Cleveland Clinic, Cleveland, Ohio (L.E.N.)

Received April 1, 2014; accepted May 20, 2014

ABSTRACT

Adiponectin, an adipokine predominantly secreted from adipocytes, has been shown to play protective roles against chronic alcohol consumption. Although excessive reactive oxygen species (ROS) production in macrophages is considered one of the critical events for ethanol-induced damage in various target tissues, the effect of adiponectin on ethanol-induced ROS production is not clearly understood. In the present study, we investigated the effect of globular adiponectin (gAcrp) on ethanol-induced ROS production and the potential mechanisms underlying these effects of gAcrp in macrophages. Here we demonstrated that gAcrp prevented ethanol-induced ROS production in both RAW 264.7 macrophages and primary murine peritoneal macrophages. Globular adiponectin also inhibited ethanol-induced activation of NADPH oxidase. In addition, gAcrp suppressed ethanol-induced increase in the expression of NADPH oxidase subunits, including Nox2 and p22phox via modulation of nuclear factor-κB pathway. Furthermore, pretreatment with compound C, a selective inhibitor of AMPK, or knockdown of AMPK by small interfering RNA restored suppression of ethanol-induced ROS production and Nox2 expression by gAcrp. Finally, we found that gAcrp treatment induced phosphorylation of liver kinase B1 (LKB1), an upstream signaling molecule mediating AMPK activation. Knockdown of LKB1 restored gAcrp-suppressed Nox2 expression, suggesting that LKB1/AMPK pathway plays a critical role in the suppression of ethanol-induced ROS production and activation of NADPH oxidase by gAcrp. Taken together, these results demonstrate that globular adiponectin prevents ethanol-induced ROS production, at least in part, via modulation of NADPH oxidase in macrophages. Further, LKB1/AMPK axis plays an important role in the suppression of ethanol-induced NADPH oxidase activation by gAcrp in macrophages.

Introduction

Reactive oxygen species (ROS), highly reactive oxygen-containing molecules, can react with various cellular molecules. Excessive ROS production results in oxidative stress and causes damage in many organs. Ethanol consumption promotes ROS generation, which causes alterations of various signaling pathways and contributes to the development of damages in the target organs. Therefore, ROS production has long been considered a critical event in the pathogenesis caused by ethanol exposure.

Ethanol-induced ROS generation is mediated via a variety of cellular systems. For example, CYP2E1 plays a critical role in ROS production and oxidative stress in hepatocytes (Gao and Bataller, 2011), whereas NADPH oxidase, composed of multicomponent enzyme complex, including membrane-bound proteins (Nox2 and p22phox) and regulatory cytosolic components (p40phox, p47phox, p67phox, and Rac1/2), is an important source for ROS production in macrophages (Lam et al., 2010). Activation of macrophages and subsequent excessive inflammatory response is one of the key events leading to the pathogenic impact of ethanol on various target organs, including alcoholic liver disease (Gao and Bataller, 2011) and impaired lung function (D’Souza El-Guindy et al., 2007; Brown et al., 2009). Previous studies have shown that p47phox knockout mice exhibited reduced ROS production, lower production of inflammatory cytokines from Kupffer cells, the resident macrophages in liver, and are protected from chronic liver disease.

Abbreviations: AICAR, 5-aminoimidazole-4-carboxamide-1-b-4-ribofuranoside; AMPK, AMP-activated protein kinase; CM-H2DCFDA, 5-chloromethyl-2′,7′-dichlorodihydrofluorescein diacetate; DMEM, Dulbecco’s modified Eagle’s medium; ERK1/2, extracellular signal regulated kinase 1/2; FBS, fetal bovine serum; gAcrp, globular adiponectin; HBSS, Hank’s balanced salt solution; LKB1, liver kinase B1; LPS, lipopolysaccharide; MAPK, mitogen-activated protein kinase; NADPH oxidase, nicotinamide adenine dinucleotide phosphate-oxidase; NF-κB, nuclear factor-κB; ROS, reactive oxygen species.
Adiponectin Inhibits NADPH Oxidase Activation by Ethanol

285

ethanol-induced liver injury (Kono et al., 2000). In addition, recent studies have reported that NADPH oxidase is a main source of ethanol-induced ROS production in alveolar macrophages, which is closely associated with dysfunction of alveolar macrophages (Yeligar et al., 2012) and is a critical mediator for lipopolysaccharide (LPS)-stimulated ROS production in Kupffer cells after chronic ethanol feeding (Thakur et al., 2006b). We have also shown that ethanol treatment increases ROS production in murine peritoneal macrophages via activation of NADPH oxidase (Kim et al., 2013). Collectively, these results indicate that NADPH oxidase plays a critical role in the activation of macrophages and development of various pathologic conditions by ethanol consumption.

Adiponectin predominantly secreted from adipocytes plays a role in the control of various physiologic and pathophysiologic processes. For example, adiponectin plays a crucial role in glucose and lipid metabolism (Mao et al., 2006) and insulin-sensitizing actions (Kadowaki et al., 2006) and also possesses anti-inflammatory properties (Ouchi and Walsh, 2007). Adiponectin has been also shown to prevent pathologic conditions from chronic ethanol administration, particularly in the liver (Rogers et al., 2008) and stomach (Yamamoto et al., 2012). Growing evidence suggests that adiponectin generates various biologic responses through modulation of oxidative stress (Ouedraogo et al., 2006; Tao et al., 2007). Although emerging evidence suggests that adiponectin negatively regulates oxidative stress, the effect of adiponectin on ethanol-induced ROS production and its potential mechanisms have not been explored.

AMP-dependent protein kinase (AMPK), acting as a molecular sensor in the cellular energy homeostasis, has been considered a key molecule mediating the various beneficial effects induced by adiponectin (Lim et al., 2010). In addition to the critical role in the metabolism of glucose and lipids, recent studies have highlighted that AMPK activation alleviates ROS production in macrophages and endothelial cells (Ouedraogo et al., 2006; Jeong et al., 2009), which, in turn, leads to the negative regulation of nuclear factor-κB (NF-κB) signaling and inflammatory responses (Yang et al., 2010; Salminen et al., 2011). Although it is well recognized that AMPK signaling plays a critical role in the modulation of ROS production and inflammatory response, its role in macrophages treated with ethanol and/or adiponectin has not been reported.

Liver kinase B1 (LKB1, also known as STK11), originally identified as a tumor suppressor gene, exhibits an important role in energy metabolism, mainly via association with AMPK signaling. For example, LKB1 deficiency leads to inactivation of AMPK, and LKB1-induced tumor suppression and modulation of cellular energy homeostasis are mediated through activation of AMPK (Shaw et al., 2004; Alessi et al., 2006). Furthermore, LKB1/AMPK axis is used for adiponectin-induced various biologic responses (Miller et al., 2011; Vu et al., 2013). However, the effect of adiponectin on LKB1 signaling and its role in the modulation of ROS production in macrophages have not been reported yet.

Adiponectin plays a protective role in various organs from chronic ethanol treatment. However, the underlying molecular mechanisms are not clearly understood. Herein, we investigated the effect of globular adiponectin on ethanol-induced ROS production and the potential mechanisms of gAcrp action in macrophages. In the present study, we demonstrated for the first time that adiponectin prevents ethanol-induced ROS generation through modulation of NADPH oxidase and, furthermore, that LKB1/AMPK signaling plays a pivotal role in the suppression of ROS production and NADPH oxidase activation.

Materials and Methods

All the cell culture reagents were obtained from Hyclone Laboratories (South Logan, UT). Recombinant human globular adiponectin (gAcrp) was purchased from Peprotech Inc. (Rocky Hill, NJ). Absolute ethanol was purchased from Merck Chemical (Whitehouse Station, NJ). 5-Chloromethyl-2,7-dichlorodihydrofluorescein diacetate (CM-H2DCFDA) was purchased from Molecular Probes (Eugene, OR). Lucigenin, NADPH, and diphenylethenoiodonium chloride were obtained from Enzo Life Sciences (Farmdingdale, NY). Bay11-7082, a pharmacologic inhibitor of NF-κB, was obtained from Sigma-Aldrich (St. Louis, MO), and 5-aminomimidazole-4-carboxamide-1-b-4-ribofuranoside (AICAR), an activator of AMPK, was obtained from Calbiochem (San Diego, CA). Luciferase assay kit and all related products were purchased from Promega (Madison, WI). Polyclonal antibodies against phosphorylated and total forms of AMPKα and LKB1 were obtained from Cell Signaling Technology Inc. (Beverly, MA). Antibody against Nox2 was purchased from Santa Cruz (Delaware, CA).

Isolation and Culture of Murine Peritoneal Macrophages

Murine peritoneal macrophages were isolated essentially as described previously (Kim et al., 2013). Briefly, 8- to 10-week-old mice were i.p. injected with 1 ml of 4% Brewer thioglycollate medium. After 3 days of injection, peritoneal cells were washed with 10 ml of ice-cold Hanks’ balanced salt solution (HBSS) (calcium and magnesium free). Media prepared from peritoneum were centrifuged at 12,000 rpm for 5 minutes. The pellet was resuspended in RBC lysis buffer (BioLegend, San Diego, CA) and then centrifuged at 12,000 rpm for 5 minutes. After washing with 20 ml of HBSS, cells were seeded on four-well culture slides (5 × 10^5 cells/well) or 96-well plates (1 × 10^5 cells/well). These cells were allowed to adhere for 2 hours and then were washed with 1× phosphate-buffered saline to remove nonadherent cells. After 24 hours of culture, adherent cells were used in the experiments.

Cell Culture.

The RAW 264.7 macrophage cell line was purchased from the Korean cell line bank (Seoul, Korea) and routinely cultured in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% (v/v) fetal bovine serum (FBS) and 1% (v/v) penicillin-streptomycin at 37°C in an incubator with a humidified atmosphere of 5% CO2.

Total RNA Isolation, Reverse Transcription, and Quantitative Polymerase Chain Reaction. To measure the mRNA levels of the target genes, total RNAs were extracted using QIAGEN TriZol reagent. Total RNA (500 ng) in each sample was reverse transcribed into cDNA using the SuperScript First-Strand Synthesis System for RT-PCR (Invitrogen, Carlsbad, CA). Aliquots of 500 ng of cDNA were amplified using the primers shown in Table 1. The amount of target mRNA was quantified using a comparative threshold (Ct) as a housekeeping gene.

Measurement of Total ROS Generation. Intracellular ROS production was assessed by measurement of the changes in the fluorescence of CM-H2DCFDA. In brief, RAW 264.7 macrophages were seeded at a density of 2 × 10^5 cells/well in four-well culture slides. Cells were pretreated with 0.1 μM of gAcrp for 18 hours, followed by treatment with 100 mM ethanol for an additional 24 hours. Cells were then fixed with 4% paraformaldehyde in HBSS to
remove excess dye. For measurement of ROS production, the change in fluorescence intensity was immediately observed by fluorescence microscopy (Nikon, Tokyo, Japan). The fluorescence intensities were analyzed by quantitative digital analysis using Image Inside from FOCUS (Seoul, South Korea).

Determination of NADPH Oxidase Activity. NADPH oxidase-dependent ROS formation was determined by measuring lucigenin-derived chemiluminescence using FLUOstar OPTIMA luminometer (BMG Labtech, Ortenberg, Germany). Briefly, peritoneal macrophages and RAW 264.7 macrophages were seeded onto 96-well white culture plates at a density of 0.5–1 × 10⁵ cells/well. After overnight culture, cells were treated with gAcrp and ethanol as indicated in figure legends and then lysed with HBSS containing 0.1% Triton X-100 and 0.1 N NaOH. Cellular lysates were incubated with NADPH (200 μM) and lucigenin (100 μM) in HBSS for 30 minutes at 37°C in the dark. Chemiluminescence was measured in relative light units every 5 minutes over a period of 60 minutes.

Transient Transfection and Luciferase Assay. Transcriptional activity of NF-κB was determined using luciferase reporter assay kit (Promega) according to the manufacturer’s instructions. Briefly, cells were initially seeded in 24-well plates at a density of 5 × 10⁵ cells/well. After overnight culture, the cells were cotransfected with control (pRL-TK) and expression vectors (pGL4/NF-κB) using Fugene HD (Promega). After 6 hours of incubation, media were replaced with DMEM containing 10% FBS and cells were cultured for additional 18 hours. Thereafter, the cells were pretreated with 0.1 μg/ml gAcrp followed by 100 mM ethanol for additional 24 hours and extracted with 0.1 ml of passive lysis buffer (Promega). Firefly and Renilla luciferase activities were measured by the Dual Luciferase Reporter Assay System (Promega). Statistical analyses for luciferase expression were carried out on the ratios of relative luciferase activity to Renilla luciferase.

Transient Transfection with Small Interfering RNAs. RAW 264.7 macrophages were initially seeded on 35-mm dishes at a density of 7 × 10⁵ cells/well. After overnight incubation, cells were transfected with scrambled control small interfering (siRNA) or siRNA targeting AMPKα1 (25 nM) or LKB1 (50 nM) using Hiperfect transfection reagent (Qiagen) according to the manufacturer’s instructions. Gene-silencing efficiency was assessed by qRT-PCR after 24 or 48 hours of transfection. The ON-TARGET plus SMART of murine-specific siRNA targeting AMPKα1 and control siRNA were purchased from Dharmacon (Lafayette, CO). Targeting siRNA of LKB1 was obtained from Bioneer (Daejeon, South Korea). The sequences of the siRNA used are listed in Table 2.

Preparation of Cellular Extracts and Western Blot Analysis. RAW 264.7 macrophages were seeded in 35-mm dishes at a density of 1 × 10⁶ cells per well. After overnight incubation, cells were treated with gAcrp and/or ethanol as indicated in figure legends. Total proteins were then isolated using RIPA lysis buffer containing Halt protease and phosphatase inhibitor single-use cocktail (Thermo Scientific, Waltham, MA). For immunoblot analysis, 15 μg of protein was loaded per lane. The membranes were then stripped and reprobed with β-actin or total form of AMPKα or LKB1 antibody as the loading control.

Statistical Analysis. Values were presented as mean ± S.E.M. derived from at least three separate experiments. Data were assessed by one-way analysis of variance and Tukey’s multiple comparison tests using GraphPad Prism software version 5.01 (La Jolla, CA). Differences between groups were considered to be significant at P < 0.05.

Results

Globular Adiponectin Inhibits Ethanol-Induced ROS Production via Modulation of NADPH Oxidase in RAW 264.7 Macrophages and Peritoneal Macrophages Isolated from Mice. Excessive ROS production in macrophages is a critical event for the development of pathologic conditions by chronic ethanol treatment. We investigated whether adiponectin inhibits ethanol-induced ROS production in macrophages. As shown in Fig. 1A, ethanol treatment enhanced ROS production consistent with previous results, but pretreatment with gAcrp significantly suppressed ethanol-induced ROS production in murine macrophages (RAW 264.7 macrophages). Similar effects were also observed in the primary peritoneal macrophages isolated from mice (Fig. 1B), indicating that adiponectin prevents ethanol-induced ROS production in different types of macrophages. Our results and other previous reports have shown that NADPH oxidase system is the major source for ethanol-induced ROS production in macrophages (Yeligar et al., 2012; Kim et al., 2013).

To elucidate the potential mechanisms implicated, we next examined the effect of gAcrp on ethanol-induced activation of NADPH oxidase using lucigenin-based assay. As shown in Fig. 1, C and D, ethanol-induced increase in ROS production by NADPH oxidase was restored by pretreatment with gAcrp in both RAW 264.7 macrophages (Fig. 1C) and primary murine peritoneal macrophages (Fig. 1D). All these data indicate that gAcrp inhibits ethanol-induced ROS production in macrophages via modulation of NADPH oxidase–dependent ROS production.

Globular Adiponectin Suppresses Ethanol-Induced Nox2 and p22phox Expression in RAW 264.7 Macrophages. NADPH oxidase is composed of multiple components localized in cytosol and plasma membrane. To identify the subunits responsible for regulation of NADPH oxidase by gAcrp, we examined the effect of gAcrp on the expression of

TABLE 1

Sequences of the primers used for quantitative RT-PCR

<table>
<thead>
<tr>
<th>Target Gene</th>
<th>Primer</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nox2</td>
<td>Forward</td>
<td>5'- TTGGCTACCACTGCTTGCTG-3'</td>
</tr>
<tr>
<td>p22phox</td>
<td>Reverse</td>
<td>5'- TTGGCTACCACTGCTTGCTG-3'</td>
</tr>
<tr>
<td>GAPDH</td>
<td>Forward</td>
<td>5'- ACCAAAGTCTGCTGGATCA-3'</td>
</tr>
<tr>
<td></td>
<td>Reverse</td>
<td>5'- TCCCAAGAATGGTTGTCCTA-3'</td>
</tr>
</tbody>
</table>

GAPDH, glyeraldehyde-3-phosphate dehydrogenase.

TABLE 2

Sequences of small interfering RNA used in transfection

<table>
<thead>
<tr>
<th>Target Gene</th>
<th>Primer</th>
<th>Nucleotide Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>LKB1</td>
<td>Forward</td>
<td>5'- CCACCAAGGAACACCA-3'</td>
</tr>
<tr>
<td></td>
<td>Reverse</td>
<td>5'- CCACCAAGGAACACCA-3'</td>
</tr>
<tr>
<td>AMPKα1</td>
<td>Forward</td>
<td>5'- CGACAGAAGGAGGACAA-3'</td>
</tr>
<tr>
<td></td>
<td>Reverse</td>
<td>5'- CGACAGAAGGAGGACAA-3'</td>
</tr>
<tr>
<td>Scrambled</td>
<td>Forward</td>
<td>5'- UGUUUAAGUGGUGUGAUA-3'</td>
</tr>
<tr>
<td></td>
<td>Reverse</td>
<td>5'- UGUUUAAGUGGUGUGAUA-3'</td>
</tr>
<tr>
<td>AMPK</td>
<td>Forward</td>
<td>5'- UCACUUGACUGUGACUGUUA-3'</td>
</tr>
<tr>
<td></td>
<td>Reverse</td>
<td>5'- UCACUUGACUGUGACUGUUA-3'</td>
</tr>
<tr>
<td>LKB1</td>
<td>Forward</td>
<td>5'- UGCUUUAACUGUGCCAUCUA-3'</td>
</tr>
<tr>
<td></td>
<td>Reverse</td>
<td>5'- UGCUUUAACUGUGCCAUCUA-3'</td>
</tr>
</tbody>
</table>

AMPK, AMP-activated protein kinase; LKB1, liver kinase B1.
Nox2 and p22 phox since Nox2 and p22 phox are critical subunits for ethanol-induced NADPH oxidase activation and subsequent increase in ROS production (Kim et al., 2013). As shown in Fig. 2A, gAcrp treatment decreased the expression of Nox2 mRNA level. Nox2 protein expression was also significantly decreased by treatment with gAcrp, which showed a pattern similar to the regulation of mRNA expression (Fig. 2B). Globular adiponectin also significantly decreased p22 phox mRNA expression in a time-dependent manner (Fig. 2C). We also examined the effect of adiponectin on the expression of other NADPH oxidase subunits, such as p40phox, p47phox, and p67phox, but treatment with gAcrp did not significantly affect the expression of other subunits of NADPH oxidase (data not shown), suggesting that gAcrp affects expression of NADPH oxidase subunits in a selective manner. In addition, ethanol-induced increase in Nox2 expression was restored by pretreatment with gAcrp at both mRNA (Fig. 2D) and protein (Fig. 2E) level, as expected. Pretreatment with gAcrp also significantly suppressed ethanol-induced increase in p22 phox expression (Fig. 2F), similar to the pattern for the modulation of Nox2 expression. Taken together, these data suggest that gAcrp modulates ethanol-induced activation of NADPH oxidase probably via down-regulation of Nox2 and p22 phox expression.

Globular Adiponectin Suppresses Ethanol-Induced Nox2 and p22 phox Expression through Modulation of NF-κB Signaling Pathway in RAW 264.7 Macrophages.

To elucidate further the signaling mechanisms underlying suppression of ethanol-induced Nox2 and p22 phox by gAcrp, we...
examined whether gAcrp affects ethanol-induced activation of p38 mitogen-activated protein kinase (MAPK) and NF-κB pathway since p38 MAPK/NF-κB signaling pathway plays a critical role in ethanol-induced Nox2 and p22phox expression and further ROS production in macrophages (Kim et al., 2013). For this, we first confirmed involvement of p38 MAPK and
NF-κB signaling in ethanol-induced Nox2 and p22phox expression in our experimental condition. As indicated in Fig. 3, A and B, pretreatment with Bay 11-7082, a pharmacologic inhibitor of IKK, significantly inhibited ethanol-induced mRNA expression of Nox2 and p22phox. In addition, pretreatment with p38 MAPK inhibitor (SB203580) signficantly suppressed ethanol-induced Nox2 and p22phox expression (Fig. 3, C and D), consistent with previous observations, confirming the critical role of p38 MAPK/NF-κB signaling in ethanol-induced Nox2 and p22phox expression in macrophages. We next examined the effect of gAcrp on ethanol-induced activation of NF-κB signaling. As indicated in Fig. 3E, pretreatment with gAcrp significantly suppressed ethanol-induced NF-κB activation assessed by luciferase reporter gene assay. All these results imply that gAcrp suppresses ethanol-induced Nox2 and p22phox expression via modulation of NF-κB signaling pathway.

AMPK Signaling Is Implicated in the Suppression of Ethanol-Induced Nox2 Expression by gAcrp in RAW 264.7 Macrophages. AMPK is well known as a mediator of adiponectin-induced various biologic responses and modulator of NF-κB signaling (Salminen et al., 2011). To investigate the underlying molecular mechanisms, we studied the role of AMPK signaling in the suppression of ethanol-induced Nox2 expression by gAcrp. For this purpose, we first examined the effect of ethanol on AMPK activity and its role in Nox2 expression in RAW 264.7 macrophages. As shown in Fig. 4A, ethanol treatment decreased the phosphorylation of AMPKα in a time-dependent manner. Furthermore, restoration of AMPK activity by pretreatment with AICAR, a pharmacologic activator of AMPK, attenuated ethanol-induced Nox2 mRNA expression (Fig. 4B), and AICAR treatment also significantly decreased ethanol-induced NF-κB activation (Fig. 4C), which plays a critical role in ethanol-induced Nox2 expression. In these experiments, we confirmed an increased phosphorylation level of AMPK on treatment with AICAR in RAW 264.7 macrophages, as expected (Supplemental Fig. 2). All these results suggest that ethanol treatment causes downregulation of AMPK signaling, which in
turn leads to the activation of NF-κB and Nox2 expression. We next examined the potential role of AMPK signaling in prevention of ethanol-induced Nox2 expression by gAcrp. Treatment with gAcrp induces phosphorylation of AMPK up to 24 hours in our experimental condition (Fig. 4D), consistent with previous reports. Furthermore, pretreatment with gAcrp restored ethanol-suppressed AMPK phosphorylation in RAW 264.7 macrophages (Fig. 4E). Finally, we dissected the role of AMPK signaling in the suppression of ethanol-induced Nox2 expression by gAcrp. Pretreatment of the cells with compound C, an inhibitor of AMPK, abolished suppression of Nox2 expression by gAcrp in ethanol-treated cells (Fig. 4F). Moreover, it also abrogated the suppression of ethanol-induced NF-κBactivation by gAcrp (Fig. 4G). The role of AMPK activation by gAcrp in suppression of ethanol-induced NF-κB activation was confirmed by gene silencing of AMPKα1. As depicted in Fig. 4H, knocking down AMPKα1 by siRNA reverted inhibition of ethanol-induced NF-κB activation by gAcrp, similar to the results induced by treatment with compound C. Taken together, these data suggest that gAcrp-induced AMPK activation plays an important role in suppression of ethanol-induced expression of Nox2 via modulation of NF-κB signaling in RAW 264.7 macrophages.

Discussion

ROS has been shown to induce diverse pathologic events such as DNA mutation, carcinogenesis, aging, and such (Cederbaum et al., 2009), although it is required for normal physiologic processes as well. Ethanol treatment caused a significant increase in ROS production, which is a critical event for the development of pathophysiologic condition in various target tissues. Macrophages are the main cellular source responsible for ethanol-induced ROS production, and excessive ROS production by macrophages leads to the damage in target tissues, such as alcoholic liver injury and impairment of lung function. Adiponectin, the most abundant adipokine in plasma, is implicated in a number of beneficial processes. It plays a potent protective role against chronic alcohol consumption (Rogers et al., 2008; Nepal et al., 2012) and prevents ROS production in response to various stimuli (Ouedraogo et al., 2006; Thakur et al., 2006a). Although it is widely accepted that ROS production in macrophages is a critical step leading to the various pathologic conditions by ethanol exposure and adiponectin plays a protective role against chronic ethanol consumption, the effects of adiponectin on ethanol-induced ROS production in macrophages are not clearly understood. In the present study, we examined the effect of adiponectin on ethanol-induced ROS production in macrophages and its potential mechanisms. Herein, we provided the first evidence that globular adiponectin (gAcrp) inhibited ethanol-induced ROS production. Additional mechanistic studies have demonstrated that suppression of ethanol-induced ROS production by gAcrp is mediated via modulation of NADPH oxidase; further, LKB1/AMPK pathway plays an important role in the suppression of NADPH oxidase and ROS production by gAcrp (Fig. 7).

Ethanol consumption promotes the production of ROS via multiple mechanisms in a cell type–specific manner. An accumulated line of evidence demonstrated a critical role of NADPH oxidase in ethanol-induced ROS production in macrophages. For example, ethanol treatment increases ROS production via enhancing expression of Nox2 and p22phox in RAW 264.7 macrophages (Kim et al., 2013), induces oxidative stress through upregulation of NADPH oxidases in alveolar macrophages (Yeligar et al., 2012), and enhances LPS-stimulated TNF-α production via modulation of NADPH oxidase-dependent ROS production.
Fig. 4. Role of AMPK signaling in the suppression of ethanol-induced Nox2 expression by gAcrp in RAW 264.7 macrophages. (A) Cells were incubated with 100 mM ethanol for the indicated time periods. The level of phosphorylated AMPKα was measured by Western blot analysis as described previously. Images are representative of three independent experiments that showed similar results. Band intensities were quantified by densitometric analysis and normalized by total AMPK. Values are represented as fold changes relative to controls and are expressed as mean ± S.E.M. (n = 3). (B) Cells were pretreated with AICAR (1 mM), an activator of AMPK, for 1 hour, followed by stimulation with 100 mM ethanol for 18 hours. Nox2 mRNA levels were measured by qRT-PCR. Values represent fold change relative to the control cells and are expressed as mean ± S.E.M. (n = 3). *P < 0.05 compared with cells not treated with ethanol; #P < 0.05 compared with cells treated with ethanol. (C) Cells were cotransfected with pNFκB-Luc plasmid and Renilla control reporter gene as described previously. After 24 hours of transfection, cells were preincubated with AICAR (1 mM) for 1 hour, followed by treatment with 100 mM ethanol for additional 24 hours. Transcriptional activity of NF-κB was assessed by reporter assay. Values are the results of six separate experiments and are expressed as mean ± S.E.M. (n = 6). *P < 0.05 compared with the cells not treated with ethanol; #P < 0.05 compared with the cells treated with ethanol. (D) Cells were treated with gAcrp (0.1 μg/ml) for the indicated periods. The level of phosphorylation of AMPKα was analyzed by Western blot analysis. Band intensities were quantified by densitometric analysis and normalized by total AMPKα. Values are represented as fold changes relative to control and are expressed as mean ± S.E.M. (E) Cells were pretreated with 0.1 μg/ml of gAcrp for 18 hours, followed by stimulation with 100 mM ethanol for 1 hour. The level of AMPKα phosphorylation was measured by Western blot analysis. Representative images from three independent experiments are shown along with β-actin for loading control. Band intensities were quantified by densitometric analysis and normalized by β-actin. Values are represented as fold changes relative to control and are expressed as mean ± S.E.M. (F) Cells were pretreated with 0.1 μg/ml of gAcrp for 18 hours, followed by stimulation with 100 mM ethanol for 1 hour. The level of AMPKα phosphorylation was measured by Western blot analysis. Representative images from three independent experiments are shown along with β-actin for loading control. Band intensities were quantified by densitometric analysis and normalized by β-actin. Values are represented as fold changes relative to control and are expressed as mean ± S.E.M. (G) Cells were transiently cotransfected with pNFκB-Luc plasmid and Renilla reporter gene as described previously. After 24 hours of culture, cells were pretreated with 0.1 μg/ml of gAcrp for 18 hours in the absence or presence of compound C (1 mM), an AMPK inhibitor, followed by 100 mM ethanol treatment. Nox2 mRNA was analyzed by qRT-PCR as described previously. Values are the results of four separate experiments and presented as mean ± S.E.M. (n = 4). *P < 0.05 compared with cells not treated with ethanol; #P < 0.05 compared with cells treated with ethanol. (H) Cells were transiently cotransfected with pNFκB-Luc plasmid and Renilla reporter gene as described previously. After 24 hours of culture, cells were pretreated with 0.1 μg/ml of gAcrp for 18 hours in the absence or presence of compound C (1 mM), an AMPK inhibitor, followed by incubation with 100 mM ethanol for additional 24 hours. Transcriptional activity of NF-κB was
production (Thakur et al., 2006b), collectively indicating that NADPH oxidase would be a main source for ethanol-induced ROS production in macrophages, and therefore it would be a promising target for modulation of ethanol-induced pathogenic conditions.

Adiponectin has been shown to possess antioxidative and anti-inflammatory properties in various experimental conditions, compatible with the results of the present study. Herein, we demonstrated that gAcrp prevented ethanol-induced ROS production via modulation of NADPH oxidase in both RAW 264.7 macrophages and murine peritoneal macrophages (Fig. 1), providing additional evidence for the antioxidative effect of adiponectin. Although a number of studies have supported the notion that adiponectin acts as an inhibitor of antioxidative stress, other studies have also suggested that adiponectin induces ROS production. Akifusa and colleagues reported that adiponectin treatment increased ROS/RNS production, which causes Bcl-2 modulation and induction of apoptosis in RAW 264 macrophages (Akifusa et al., 2008, 2009). It seems differential effects of adiponectin on ROS production would be derived from experimental conditions. For example, in the current study, pretreatment assessed by luciferase reporter assay as described previously. Values are expressed as fold increase relative to control cells, mean ± S.E.M. (n = 3). *P < 0.05 compared with control; **P < 0.05 compared with cells treated with ethanol; ***P < 0.05 compared with cells treated with gAcrp and ethanol. (H) Upper panel: Cells were transfected with different concentrations of siRNA targeting AMPKα1 or scrambled control siRNA. After 6 hours’ incubation, cells were then cotransfected with pNFκB-Luc plasmid and Renilla reporter gene. After overnight incubation, cells were pretreated with gAcrp (0.1 μg/ml) for 18 hours, followed by stimulation with 100 mM ethanol for an additional 24 hours. Transcriptional activity of NFκB was determined by luciferase reporter assay. Values are presented as fold change relative to control cells and expressed as mean ± S.E.M. (n = 3). *P < 0.05 compared with cells not treated with ethanol; **P < 0.05 compared with cells treated with ethanol; ***P < 0.05 compared with cells treated with gAcrp and ethanol.
with 0.1 μg/ml of gAcrp for 24 hours reduced ethanol-stimulated ROS production. However, in previous studies, treatment with higher concentration of gAcrp alone (10 μg/ml) leads to ROS formation. To investigate further the effect of adiponectin on ROS production in macrophages, we examined the effect of gAcrp on ROS production at various dose and time points. In these experiments, relatively higher concentrations (1 and 10 μg/ml) of gAcrp increased ROS production in a time-dependent manner consistent with previous reports, but no significant effect was observed by treatment with 0.1 μg/ml of gAcrp (Supplemental Fig. 1). These results suggest that treatment with a lower concentration of gAcrp does not significantly

Fig. 6. Role of LKB1 signaling in the suppression of ethanol-induced ROS production by gAcrp in RAW 264.7 macrophages. (A) Cells were incubated with gAcrp (0.1 μg/ml) for the indicated periods. The level of LKB1 phosphorylation was analyzed by Western blot analysis as described previously. Images are representative of three independent experiments along with total LKB1 for loading control. Band intensities were quantified by densitometric analysis and normalized to total LKB1. Values are represented as fold changes relative to control and are expressed as mean ± S.E.M. (B) Cells were pretreated with 0.1 μg/ml of gAcrp for 18 hours, followed by incubation with 100 mM ethanol for 1 hour. The level of LKB1 phosphorylation was measured by Western blot analysis. Representative images from three independent experiments are shown along with total LKB1 for loading control. (C) Upper panel: Cells were transfected with different concentrations of siRNA targeting LKB1 or scrambled siRNA. After 6 hours' incubation, media were changed with DMEM containing 10% FBS, and cells were further cultured for an additional 22 hours. Cells were treated with 0.1 μg/ml gAcrp for 18 hours, followed by stimulation with 100 mM ethanol for an additional 24 hours. Nox2 mRNA expression levels were assessed by qRT-PCR as described previously. Values are presented as fold increase relative to control group and expressed as mean ± S.E.M. (n = 5). *P < 0.05 compared with control group; **P < 0.05 compared with cells treated with only ethanol; ***P < 0.05 compared with cells treated with gAcrp and ethanol. (D) Cells were transfected with siRNA targeting LKB1 (50 nM) or scrambled control siRNA. After 6 hours' incubation, media were changed with DMEM containing 10% FBS, and cells were further incubated for 18 hours. Finally, cells were preincubated with 0.1 μg/ml of gAcrp for 18 hours, followed by stimulation with ethanol for an additional 24 hours, and the transcriptional activity of NF-κB was measured as described previously. Values are expressed as fold change relative to control cells, mean ± S.E.M. (n = 3). *P < 0.05 compared with control group; **P < 0.05 compared with cells treated with ethanol; ***P < 0.05 compared with cells treated with gAcrp and ethanol. (E) Cells were pretreated with U0126 (5 μM), a selective inhibitor of ERK1/2; SP600125 (10 μM), a selective inhibitor of JNK; or SB203580 (10 μM), a selective inhibitor of p38 MAPK for 1 hour, followed by stimulation with gAcrp (0.1 μg/ml) for an additional 30 minutes. Phosphorylated LKB1 levels were analyzed by Western blot analysis along with total LKB1 for internal control. Band intensities were quantified by densitometric analysis and normalized to total LKB1. Values are represented as fold changes relative to control and are expressed as mean ± S.E.M.
affect ROS production but has preventive effect on ethanol-induced ROS production in RAW 264.7 macrophages. We could not investigate the effect of higher concentration of gAcrp on ethanol-induced ROS production since treatment of RAW 264.7 macrophages with ethanol and higher concentration of gAcrp (1 or 10 μg/ml) caused severe cytotoxicity. All these results indicate that a lower concentration of gAcrp prevents ethanol-induced ROS production in macrophages, whereas higher concentrations of gAcrp accelerate ethanol-induced cell death in macrophages. Although at this stage we cannot identify detailed mechanisms underlying opposite responses by adiponectin, it is possible that diverse responses to treatment condition of adiponectin are attributable to the different responses by adiponectin.

AMP-dependent protein kinase (AMPK) is well known as a key mediator of adiponectin-induced various biologic responses (Zhou et al., 2009; Nepal and Park, 2013). In the present study, we observed that pretreatment with AMPK inhibitor or targeted knockdown of AMPKα1 efficiently reversed inhibitory effect of gAcrp on ethanol-induced Nox2 expression and ROS production (Fig. 4), providing another evidence that AMPK mediates adiponectin-induced beneficial effects. With regard to the regulation of AMPK signaling, ethanol consumption has been shown to dysregulate AMPK activity in cultured hepatic cell lines, as well as in vivo model (You et al., 2004; Garcia-Villafranca et al., 2008; Shen et al., 2010). Based on previous reports regarding the regulation of AMPK by ethanol and adiponectin, we hypothesized that ethanol-induced ROS production may be mediated via dysregulation of AMPK signaling and that gAcrp prevents ROS production through restoration of AMPK activity. In the current study, we demonstrated that treatment with AMPK activator inhibited ethanol-induced Nox2 expression and NF-κB activation (Fig. 4B and C). Furthermore, inhibition of AMPK signaling restored suppression of ethanol-induced activation of NF-κB signaling, Nox2 expression (Fig. 4F-H), and finally ROS production (Fig. 5, A and B) by gAcrp, clearly demonstrating that AMPK plays a critical role in regulation of ROS production by ethanol and adiponectin in macrophages.

Liver kinase B1 (LKB1) plays important roles in various biologic responses through regulation of multiple downstream kinases. Growing evidence has demonstrated that LKB1 efficiently phosphorylates the catalytic α-subunit of AMPK at Thr172 on binding with Ste20-related adaptor protein (STRAD) and mouse protein 25 (MO25), regulatory proteins of LKB1, and that a number of LKB1-induced biologic responses are mediated through an AMPK-dependent manner (Shaw et al., 2004; Alessi et al., 2006; Shackelford and Shaw, 2009). Recent studies have also shown that the LKB1/AMPK pathway is implicated in adiponectin-induced various biologic responses. For example, adiponectin-induced glucose uptake and suppression of breast cancer cells migration are mediated through LKB1/AMPK-dependent manner (Vu et al., 2013). Although it is well known that LKB1 is implicated in adiponectin-induced biologic responses, the role of LKB1 signaling in antioxidative effect induced by adiponectin has not been demonstrated. To our knowledge, the present study
effect on ROS production and modulation of NADPH oxidase by adiponectin. In the present study, gAcrp treatment induced increase in phosphorylation of LKB1 (Fig. 6A) and further pretreatment with gAcrp ameliorated suppression of LKB1 phosphorylation by ethanol (Fig. 6B), which exactly correlates to the modulation of AMPK signaling by ethanol and adiponectin. Furthermore, we observed that depletion of LKB1 gene prevented gAcrp-induced AMPK phosphorylation (data not shown) and blocked the suppressive effects of gAcrp on Nox2 expression (Fig. 6D). Based on previous reports and data presented here, it seems highly likely that LKB1 acts as upstream of AMPK for the prevention of ethanol-induced ROS production, and further LKB1 would be a promising target for protective effects by gAcrp against chronic alcohol consumption.

LKB1 is phosphorylated at different residues (Ser31, Ser325, Thr366, and Ser428) via various kinases, including PKA, ribosomal S6 protein kinase (RSK), and PKC-ζ. Previous studies have shown that PKC-ζ is responsible for phosphorylation of LKB1 at Ser428. In addition, ethanol has been shown to inhibit phosphorylation of PKC-ζ (Guizzetti and Costa, 2002). Furthermore, in the present study, we found that ethanol decreased and gAcrp reversed the phosphorylation of LKB1 at Ser428 (Fig. 6B, in which phosphorylation is modulated by PKC-ζ). All these previous results and reports from this study suggest ethanol and gAcrp may modulate LKB1 phosphorylation via regulation of PKC-ζ. In the present study, we did not identify the detailed mechanisms underlying LKB1 phosphorylation modulated by ethanol and adiponectin since this project would be beyond the scope of the current study. It would be interesting to investigate the involvement of PKC-ζ signaling in suppression and restoration of LKB1 activation by ethanol and adiponectin for future study.

In conclusion, the data presented in this study demonstrated that globular adiponectin prevents ethanol-induced ROS production through modulation of NADPH oxidase in macrophages and this inhibitory effect is mediated by LKB1/AMPK axis (Fig. 7). Based on these findings, we suggest that inhibition of NADPH oxidase would be a mechanism underlying the hepatoprotective effect and other beneficial effects exerted by adiponectin. The present study used RAW 264.7 macrophages and primary peritoneal macrophages to understand the mechanisms underlying modulation of ROS production by gAcrp. Further studies are now required to validate our findings in murine peritoneal macrophages and macrophage cell lines to the appropriate in vitro and in vivo models.

Adiponectin Inhibits NADPH Oxidase Activation by Ethanol

Address correspondence to: Dr. Pil-Hoon Park, College of Pharmacy, Yeungnam University, Republic of Korea. E-mail: parkp@yu.ac.kr