Insights into the Gating Mechanism of the Ryanodine-Modified Human Cardiac Ca2+ -Release Channel (Ryanodine Receptor 2)S

Saptarshi Mukherjee, N. Lowri Thomas, and Alan J. Williams

Institute of Molecular and Experimental Medicine, Wales Heart Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom

Received May 29, 2014; accepted July 7, 2014

ABSTRACT
Ryanodine receptors (RyRs) are intracellular membrane channels playing key roles in many Ca2+ signaling pathways and, as such, are emerging novel therapeutic and insecticidal targets. RyRs are so named because they bind the plant alkaloid ryanodine with high affinity and although it is established that ryanodine produces profound changes in all aspects of function, our understanding of the mechanisms underlying altered gating is minimal. We address this issue using detailed single-channel gating analysis, mathematical modeling, and energetic evaluation of state transitions establishing that, with ryanodine bound, the RyR pore adopts an extremely stable open conformation. We demonstrate that stability of this state is influenced by interaction of divalent cations with both activating and inhibitory cytosolic sites and, in the absence of activating Ca2+, trans-membrane voltage. Comparison of the conformational stability of ryanodine- and Imperatoxin A-modified channels identifies significant differences in the mechanisms of action of these qualitatively similar ligands.

Introduction
Ryanodine receptors (RyRs) are ion channels that provide a regulated pathway for the release of signaling Ca2+ from intracellular reticular stores. RyR-mediated Ca2+ release plays a key role in many signaling processes, the most widely investigated of which is muscle excitation-contraction coupling (Bers, 2002; Lanner et al., 2010). Mutation of the genes encoding both skeletal (RyR1) and cardiac (RyR2) human isoforms results in disease states; the former is a metabolic disorder (malignant hyperthermia) or congenital myopathy (central core disease), and the latter is an arrhythmogenic disorder (malignant hyperthermia) or congenital myopathy (central core disease), and the latter is an arrhythmogenic disorder (malignant hyperthermia) or congenital myopathy (central core disease). The mechanisms underlying ryanodine-dependent channel activity have been investigated (Williams et al., 2001; Welch, 2002). However, of state transitions establishing that, with ryanodine bound, the RyR pore adopts an extremely stable open conformation. We demonstrate that stability of this state is influenced by interaction of divalent cations with both activating and inhibitory cytosolic sites and, in the absence of activating Ca2+, trans-membrane voltage. Comparison of the conformational stability of ryanodine- and Imperatoxin A-modified channels identifies significant differences in the mechanisms of action of these qualitatively similar ligands.

This research was supported by grants from the British Heart Foundation [CH/06/002].

dx.doi.org/10.1124/mol.114.093757.

[This article has supplemental material available at molpharm.aspetjournals.org.]

ABBREVIATIONS: Ca2+\textsubscript{cyt}, cytosolic Ca2+; hRyR2, human ryanodine receptor 2; IpTxa, Imperatoxin A; Po, open probability; RyR, ryanodine receptor; TS, transition state.
from combinations of high-resolution crystallographic structural investigations and detailed functional studies (Doyle et al., 1998; Hille, 2001; Roux, 2005). These channels contain two gating regions, one formed by the inner-helix crossover at the cytosolic entrance to the pore and a second within the selectivity filter. The enormous size of the RyR channel, its location in an intracellular membrane, and the lack of a prokaryotic analog mean that no equivalent structural data are available for RyR, although molecular modeling indicates strong structural similarities between the overall architecture of the pore regions of RyR and K⁺ channels (Welch et al., 2004; Ramachandran et al., 2013). In addition, a recent in-depth study of channel gating suggested that Ca²⁺-sensitive and insensitive closing transitions could be explained by the presence of two different gates, similar to those found in K⁺ channels, in the conduction pathway of RyR2 (Mukherjee et al., 2012).

In this study, we have carried out a detailed analysis of single-channel gating and mathematical modeling to reveal novel information about the gating of ryanodine-modified RyR2, which is influenced by different ligands and holding potentials. We also provide the first energetic evaluation of RyR gating in the absence of ligand binding or unbinding and highlight important differences in the mechanisms responsible for elevation of RyR Po by ryanodine and the qualitatively similar effects of the scorpion toxin Imperatoxin A (IpTXa.).

Together these data emphasize the consequences of ligand interaction on the conformational stability of RyR gating, and we discuss how this could influence the structure of the conduction pathway.

Materials and Methods

Cell Culture and Expression of Human RyR2. Human embryonic kidney 293 cells were cultured in Dulbecco's modified Eagle’s medium supplemented with 10% v/v fetal bovine serum, 2 mM glutamine, and 100 μg/ml penicillin/streptomycin. Cells were incubated at 37°C, 5% CO₂, and ~80% humidity at a density of 5 × 10⁶ per 75 cm² tissue culture flask 24 hours prior to transfection with pcDNA-3/enhanced green fluorescent protein wild-type human RyR2 (hRyR2), using an optimized calcium phosphate method, as previously described (Thomas et al., 2004).

Isolation and Purification of Recombinant hRyR2. Cells were harvested 48 hours post-transfection and lysed on ice in a hypotonic buffer (20 mM Tris-HCl, 5 mM EDTA, pH 7.4) containing protease inhibitor cocktail (Roche, Mannheim, Germany) by passing it 20 times through a 23G needle. The lysate was subsequently homogenized on ice using a Teflon-glass homogenizer and centrifuged at 1500g (Allegra 6R; Beckman, Indianapolis, IN) at 4°C for 15 minutes to remove cellular debris. The supernatant was subjected to a high-speed spin (100,000g) in an Optima L-90K (Beckman, Indianapolis, IN) centrifuge at 4°C for 90 minutes. The microsomal pellet thus obtained was solubilized for 1 hour on ice in a solution containing 1 M NaCl, 0.15 mM CaCl₂, 0.1 mM EGTA, 25 mM Na₂ 1,4-piperazinediethanesulfonic acid, 0.6% (w/v) 3-[1-(3-cholamidopropyl)dimethylammonio]-1-propanesulfonic acid, and 0.2% (w/v) phosphatidylcholine (pH 7.4) with protease inhibitor cocktail, 1:1000 (Sigma-Aldrich, St. Louis, MO). The insoluble material was removed by centrifugation at 15,000g for 1 hour at 4°C. The channel protein was isolated on a 5–30% (w/v) continuous sucrose gradient by centrifugation at 100,000g for 17 hours at 4°C. Fractions containing channel proteins were identified by incorporation into lipid bilayers, before being snap frozen in small aliquots in liquid nitrogen and stored at −80°C until use. Purification of recombinantly expressed hRyR2 from human embryonic kidney 293 cells ensures the absence of interacting regulatory proteins such as PKG6-binding protein 12.6 and the myocyte-specific proteins calseenrin, junction, and triadin (Stewart et al., 2008).

Single-Channel Recording and Data Analysis. Single-channel experiments were conducted, as previously described (Mukherjee et al., 2012). Single hRyR2 channels were incorporated into bilayers formed using suspensions of phosphatidylethanolamine (Avanti Polar Lipids, Alabaster, AL) in n-decane (35 mg/ml). Bilayers were formed in solutions containing 210 mM KCl, 20 mM HEPES (pH 7.4) in both chambers (cis and trans). An osmotic gradient, which helps the channel protein to incorporate into the bilayer, was created by the addition of two aliquots (100 μl each) of 3 M KCl to the cis chamber, to which the purified hRyR2 were then added. On stirring, hRyR2 incorporates into the bilayer in a fixed orientation such that the cis chamber corresponds to the cytosolic face of the channel and the trans chamber to the luminal face. After channel incorporation, symmetrical ionic conditions were reinstated by perfusion of the cis chamber with 210 mM KCl. In some experiments, a cytosolic to luminal (cis to trans side) ionic gradient was used in which the trans chamber had 210 mM KCl and the cis chamber was perfused with 840 mM KCl. Single-channel activity data accumulated from 17 experiments when compared against our recently published hRyR2 Ca²⁺ activation curve (Mukherjee et al., 2012) indicate that the symmetrical 210 mM KCl solution used has a contaminant Ca²⁺ concentration of ~1 μM. This was also verified using a calcium probe (Orion; Thermo Fisher Scientific, Waltham, MA). In our experiments, the channels were modified using ryanodine (Abcam Biochemicals, Cambridge, UK) and synthetic IpTXa (Alomone Laboratories, Jerusalem, Israel), whereas their gating behavior was examined under contaminant (~1 μM) or virtually zero Ca²⁺ conditions (extrapolated to ~20 PM free Ca²⁺ as per http://maxchelator.stanford.edu) using 3.5 mM EGTA on both cis/trans sides (the pH remained unaltered at 7.4). In other experiments, the effects of adding 2 mM and 4 mM Ba²⁺ to the cytosolic (cis) side on channel gating were examined using BaCl₂ stock solutions. The trans chamber was held at virtual ground, whereas the cis chamber was voltage-clamped at ±40 mV in all experiments, except when studying voltage dependence in which a range of holding potentials was applied. The ambient temperature was 21 ± 2°C in all of our experiments. The incorporation of only a single channel in the bilayer was verified in each experiment by modification with ryanodine.

Single-channel currents were low-pass filtered at 5 kHz with an 8-pole Beasell filter and then digitized at 20 kHz with a PCI-6036E AD board (National Instruments, Austin, TX). Acquire 50.1 (Bruxton, Seattle, WA) was used for viewing and acquisition of the single-channel current fluctuations. Data analysis was carried out using the QuB suite of programs version 2.0.0.14 (http://www.qub.buffalo.edu).

Briefly, single-channel current traces of 2–3 minutes were idealized, employing the segmental K-means algorithm based on Hidden Markov Models. A dead time of 75–120 μs was imposed during idealization and an initial two-state C–O scheme was used in which C denotes a closed state and O an open state. Idealization of the single-channel current recordings resulted in the calculation of the mean activity-voltage relationships: Po(V) = 1/(1/(1/(1-exp(z_2*F(V-V_U2/R))))) where Po(V) is the voltage-dependent probability of the voltage-sensing element assuming the activated state. V is the bilayer holding potential (in volts), V_U2 is the voltage of half-maximal voltage sensor activation, z_2 is the number of elementary charges involved in gating that respond to the voltage drop across the membrane, R is the gas constant (in Joules per Kelvin per mole), and F is the Faraday constant (in Coulombs per mole).

The open and closed dwell-time histograms generated by the initial idealization were fitted with a mixture of exponential probability density functions using the maximum interval likelihood function of QuB. The maximum interval likelihood program simultaneously
optimizes the rate constants for the transitions between the states during fitting of dwell-time histograms by computing the maximum log likelihood of the idealized data, given a model. The program also corrects for missed events that are shorter than the imposed dead time. The kinetic schemes with their respective estimated rates of transitions were used for stochastic simulation of single-channel data using the SIM interface of the QuB suite. The simulated data were idealized, as described above, to confirm the validity of the gating schemes. Statistical methods employed are described in Supplemental Methods.

Results

Ca²⁺ Sensitivity of the Ryanodine-Modified RyR2.

Single-channel currents were recorded at ±40 mV holding potential after incorporation of RyR2 in planar lipid bilayers. Channels were activated by ~1 μM Ca²⁺ present in 210 mM KCl solution (pH 7.4) on both sides (cytosolic and luminal) and exhibited typical gating behavior (Po = 0.21 ± 0.06; n = 17) (Mukherjee et al., 2012) under these conditions (Fig. 1, A and B). The channels were subsequently modified to a subconductance state (~60% of full open level) using 1 μM ryanodine on the cytosolic (cis) side at +40 mV (Fig. 1C). Ryanodine-modified channels had a very high Po (~1) with few brief transitions to the closed state, whereas transitions to the fully open state never occurred (Fig. 1, D and E). On removal of Ca²⁺ from the cytosolic and luminal sides using 3.5 mM EGTA, the frequency of brief closing events from the modified open state increased dramatically. However, this increased propensity of channel closure in the absence of Ca²⁺ had an asymmetric response to voltage, with a marked decrease in channel activity observed at +40, but not at −40 mV, as seen in the representative traces (Fig. 1, F and G). The Po for ryanodine-modified channels activated by 1 μM Ca²⁺ at +40 mV was 0.99 ± 0.002 (n = 9) and decreased to 0.75 ± 0.05 (n = 9) at nominally zero Ca²⁺ (Fig. 2A), whereas no significant changes were observed at −40 mV (Po = 0.99 ± 0.001 at 1 μM and 0.98 ± 0.009 at nominally zero Ca²⁺; n = 9). The decrease in Po seen at +40 mV is due to an increased frequency of brief closing events (~170-fold increase at +40 mV; Fig. 2D) without a change in closed times (mean ~0.4 milliseconds; Fig. 2B), leading to a decrease in open times by more than 500-fold at +40 mV (mean open times were 1036 milliseconds and 1.96 milliseconds at 1 μM and zero Ca²⁺, respectively; Fig. 2C). A portion of trace F in Fig. 1 is shown on an expanded time scale (Fig. 1H) to reiterate that the character of the closing events does not change, only their frequency. However, the occurrence of fewer idealized closing events with 1 μM Ca²⁺ at −40 mV, as opposed to +40 mV (see Fig. 1, D and E), causes the closed times to be underestimated (0.26 ± 0.02 milliseconds; n = 9, as compared with a mean of ~0.4 milliseconds seen in all other conditions; Fig. 2B). Furthermore, we noted that the increase in the frequency of closing events was due to the removal of Ca²⁺ on the cytosolic side of the channel only, as experiments performed with 1 μM Ca²⁺ on the luminal side [with nominally zero cytosolic Ca²⁺ (Ca²⁺_cyt)] gave the same results (data not shown). The asymmetric response of the ryanodine-modified RyR2 to voltage in the absence of Ca²⁺ was unexpected, as the channel is not known to possess typical voltage sensor domains as seen in other voltage-gated channels (Bezanilla, 2008; Catterall, 2010). Therefore, this voltage dependence of channel gating was explored in detail.

Examination of Voltage Dependence of Modified RyR2 at Zero Ca²⁺.

Gating activity of ryanodine-modified channels at nominally zero Ca²⁺ was monitored at a range of holding potentials (~−80 mV to +80 mV, at 10 mV increments). The results summarized in Fig. 3 show a steep dependence of gating kinetics on membrane potential when switched between positive and negative potentials but not with change in the voltage magnitude after the switch. The voltage dependence quickly saturates once the polarity is switched between negative (high Po) and positive (decreased Po) potentials. The Po-voltage relationship obtained (Fig. 3A) was fitted with the Boltzmann equation (see Materials and Methods), which gives

![Fig. 1. Voltage dependence of ryanodine-modified RyR2 at zero Ca²⁺. Representative single-channel traces are shown in (A–H). Black bars indicate closed levels, gray bars fully open levels, and dotted bars modified levels. An unmodified channel activated by 1 μM (contaminant) cytosolic and luminal (cyt/lum) Ca²⁺ at +40 mV (A) and −40 mV (B), subsequently modified with 1 μM ryanodine at +40 mV (C). Under these conditions, the Po of the modified channel is high, with only brief closings at both +40 mV (D) and −40 mV (E). Chelation of Ca²⁺ to nominally zero increases the frequency of closing events to a greater degree at +40 mV (F) than −40 mV (G). These closing events are brief in nature, as shown (H, 10× expanded section of trace F).]

(<https://molpharm.aspetjournals.org/content/molpharm/82/3/320/F1.large占据了100%的宽度和高度>)
the apparent gating valence, \(z_g \) of \(\sim 32 \) (~8 negative charges per subunit). The steepness of this relationship suggests that this mechanism is very fast and is global in nature. The closed times remain unchanged at different holding potentials (Fig. 3B), and the mechanism of decrease in Po at positive membrane potentials relative to negative is by an increase in the frequency of closing events (Fig. 3D). To investigate whether this decrease in Po was due to the positive membrane potential or the direction of net ionic flux through the channel (from cytosolic to luminal side), we repeated these experiments in the presence of an ionic gradient (840 mM KCl \(\text{cis} \) and 210 mM KCl \(\text{trans} \)), such that net ionic flux at low negative holding potentials was from the cytosolic to the luminal side of the channel. Supplemental Figures 2 and 3 show that channel Po was high whether the direction of K\(^{+}\) flux through the RyR2 was from \(\text{cis} \) to \(\text{trans} \) (~10 mV to ~20 mV) or from \(\text{trans} \) to \(\text{cis} \) (~40 mV to ~60 mV), with increased closings seen at all positive voltages.

Mathematical Modeling and Mechanistic Basis of Modified Channel Gating. The phenomenon of modal shifts in gating kinetics in RyR has been described in previous studies (Zahradníková and Zahradník, 1995; Armísén et al., 1996), in which the channel is shown to spontaneously shift between high and low Po modes, a phenomenon thought to be Ca\(^{2+}\)-dependent in earlier studies. In the current investigation, modal gating of the ryanodine-modified RyR2 in the virtual absence of Ca\(^{2+}\) has been observed, and this occurs randomly in time with no obvious triggers (Supplemental Fig. 4).
stochastic nature of mode shifting implies that it is an intrinsic property of the channel molecule, probably the result of random thermodynamic fluctuations within the channel. For the purposes of describing modified RyR2-gating behavior in terms of mathematical models, these rare periods of very high Po demonstrated in Supplemental Fig. 4 (~5% of total length of recording) were ignored, and the typical gating behavior was studied in detail.

Dwell-time histograms generated using the idealized ryanodine-modified single-channel data were fitted with exponential probability density functions to generate kinetic schemes that provide accurate descriptions of gating behavior (see Materials and Methods). The time constants and areas under fitted exponentials are shown in Table 1.

Modified open- and closed-time histograms for single channels activated by 1 μM Ca^{2+} (+40 mV) could be fitted best using one exponential component each (Fig. 4A). The channel therefore visits one modified open state (M) and a closed state (C) for the majority of the time, that is, only two most energetically favorable states are resolved (Scheme I, annotated as superscript “-” and subscript “Ca”). The rate constants for the transitions are shown in Table 2.

\[
M^-_{Ca} \xrightarrow{k_{Ca}} C^+_{Ca} \]

The lack of sufficient idealized events at -40 mV (1 μM Ca^{2+}; see Fig. 1E) prevented accurate fitting of dwell-time histograms; hence, a kinetic scheme for channel gating under these conditions is not available.

After removal of Ca^{2+}, the frequency of closing events increases, particularly at +40 mV. The fitted dwell-time histograms for single-channel recordings at +40 mV are shown in Fig. 4B, in which a minimum of two exponential components each is required for the fit. Scheme IIA below shows the best-fit model for an accurate description of gating behavior in which the channel moves between two discrete modified open states M1 and M2 and, from these, makes brief, but frequent sojourns to corresponding closed states C1 and C2.

\[
M^+_1 \xrightarrow{k_{1,M1}} C^+_1 \xrightarrow{k_{1,C1}} M^-_1 \\
M^+_2 \xrightarrow{k_{2,M2}} C^+_2 \xrightarrow{k_{2,C2}} M^-_2 \\
C^+_0 \xrightarrow{k_{0,M0}} C^-_0
\]

The dwell-time histograms for single-channel data at -40 mV in the absence of Ca^{2+} (Fig. 4C) were fitted with one exponential each for open and closed times, suggesting a two-state mechanism with transitions between a single modified and closed state (Scheme IIB). The experimental conditions of zero Ca^{2+} and negative holding potentials are denoted in the scheme as superscript “-” and subscript “0,” respectively.

\[
M^-_0 \xrightarrow{k_{M0,C0}} C^+_0
\]

Validation of Kinetic Schemes Using Model-Based Simulations. The validity of the gating schemes (I, IIA, and IIB) obtained by the fitting of dwell-time histograms and rate constant optimization was verified by simulation of single-channel data. Rate constants from kinetic schemes obtained from individual channels (summarized in Table 2) were used for stochastic simulation using the SIM module of QuB interface (see Materials and Methods). The representative traces shown in Fig. 5A are in good agreement with the experimental data traces in Fig. 1. The change in Po (0.99 ± 0.0006 at +40 mV, 1 μM Ca^{2+}; 0.8 ± 0.03 at +40 mV, nominally zero Ca^{2+}) is due to a decrease in open durations (Fig. 5D), whereas the closed durations remained unaltered (Fig. 5C). As in the actual data (Fig. 2D), this Po change can only occur due to an increase in the frequency of the closing events. Therefore, the gating models incorporating the minimum number of states necessary for an accurate description of RyR2 behavior are valid for the experimental conditions used.

Energetic Evaluation of State Transitions in the Modified RyR2. Mathematical modeling is able to resolve only the most stable conformations (wells along the energy landscape) that RyR2 adopts during gating. As insufficient structural data are available to elucidate the mechanisms of state transition in RyR, energetic evaluation of gating could yield valuable information regarding the nature of intermediate transition states. REFER analyses (Grosman, 2002; Zhou et al., 2005) (see Supplemental Methods for a detailed description) were carried out in which the equilibrium was perturbed by the complete removal of ligand (Ca^{2+}) or by changing the polarity of the membrane potential. At nominally zero Ca^{2+} the transitions involve a pure gating step, as no binding or unbinding of ligand takes place (Schemes IIA and IIB). Likewise, with 1 μM Ca^{2+} at +40 mV, the channel activity is saturated (Po ~1); therefore, these transitions can also be assumed to be gating steps for all practical purposes (Scheme I). The measurement of pure gating steps is important in this analysis, as the inclusion of intermediate

Table 1

<table>
<thead>
<tr>
<th>Conditions</th>
<th>Closed</th>
<th>Open</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>τ (ms)</td>
<td>Area (%)</td>
</tr>
<tr>
<td>+40 mV, Scheme I (n = 9)</td>
<td>C_{Ca}</td>
<td>0.33 ± 0.05</td>
</tr>
<tr>
<td>1 μM Ca^{2+}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+40 mV, Scheme IIA (n = 9)</td>
<td>C_{1}</td>
<td>0.32 ± 0.05</td>
</tr>
<tr>
<td>zero Ca^{2+}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-40 mV, Scheme IIB (n = 6)</td>
<td>C_{0}</td>
<td>0.38 ± 0.04</td>
</tr>
</tbody>
</table>
binding steps would complicate interpretation of the data (see Materials and Methods). As we are interested in the properties of transitions to the closed states in both types of perturbations, the modified open states (M, M1, and M2) were chosen as starting states and the closed states (C, C1, and C2) as end states for convenience. As there are two such transitions in Scheme IIA with similar characteristics (see Tables 1 and 2), they were considered as two reactions. The log-log plots of the forward rate constants against the equilibrium constants (shown in Fig. 6) provide structural clues about the transition state (TS) during the conformational wave from one stable state to another (see above and Supplemental Methods). The \(\Phi \) value for the perturbation due to Ca\(^{2+} \) removal (\(\Phi_{LR} \)) is close to 1 (Fig. 6A), as is that for perturbation of gating equilibrium

![Diagram of dwell-time histograms](image)

Fig. 4. Fitting of closed and open dwell-time histograms with exponentials allows mechanistic interpretation of single-channel data. Representative closed (left) and open (right) time distributions plotted as histograms from a single-channel experiment are shown along with their overall fits (solid black curves) and exponential components underneath (gray curves). The membrane potential (+40 mV) and presence/absence of Ca\(^{2+} \) are indicated above the distribution. (A) The dwell-time distribution of the modified channel in the presence of 1 \(\mu \)M Ca\(^{2+} \) at +40 mV was fitted using a single exponential. An insufficient number of events was obtained at −40 mV for an accurate fit. (B) At nominally zero Ca\(^{2+} \), two exponential components each were required for fitting closed and open time histograms when the membrane potential was +40 mV. (C) In the absence of Ca\(^{2+} \) at −40 mV, only one exponential component each was required for fitting closed and open time histograms. These exponential fits were then associated with corresponding closed and open states in gating models at various conditions of Ca\(^{2+} \) and voltage (Schemes I, IIA, and IIB). The parameters of fits from many single-channel experiments are shown in Table 1.

Table 2
Rate constants optimized during fitting of dwell-time histograms and model building

<table>
<thead>
<tr>
<th>Gating Schemes and Conditions</th>
<th>Rates</th>
<th>Rate Constants* (Mean ± SEM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scheme I contaminant (~1 (\mu)M) Ca(^{2+}) at +40 mV ((n = 9))</td>
<td>(k_{MC})</td>
<td>5.4 ± 0.9</td>
</tr>
<tr>
<td></td>
<td>(k_{CM})</td>
<td>3437 ± 396</td>
</tr>
<tr>
<td></td>
<td>(k_{MM2})</td>
<td>42 ± 12.7</td>
</tr>
<tr>
<td></td>
<td>(k_{MM1})</td>
<td>52 ± 6.5</td>
</tr>
<tr>
<td></td>
<td>(k_{M1C1})</td>
<td>408 ± 146</td>
</tr>
<tr>
<td></td>
<td>(k_{C1M1})</td>
<td>3722 ± 386</td>
</tr>
<tr>
<td></td>
<td>(k_{M2C2})</td>
<td>558 ± 88</td>
</tr>
<tr>
<td></td>
<td>(k_{C2M2})</td>
<td>1492 ± 413</td>
</tr>
<tr>
<td></td>
<td>(k_{M0C0})</td>
<td>10.3 ± 3.8</td>
</tr>
<tr>
<td></td>
<td>(k_{C0M0})</td>
<td>2764 ± 247</td>
</tr>
<tr>
<td>Scheme IIA zero Ca(^{2+}) at +40 mV ((n = 9))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scheme IIB zero Ca(^{2+}) at −40 mV ((n = 6))</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*The units are s\(^{-1} \) or \(\mu \)M\(^{-1} \)s\(^{-1} \) as appropriate.

*Forward rate constants that were used in REFER analysis (Fig. 6).
by a voltage (V_{m}) switch from −40 to +40 mV (Φ_{AV}, Fig. 6B). The Φ value indicates the structural and temporal nature of the TS relative to the ground states (Auerbach, 2007). A value close to zero would suggest that the structure of TS is similar to the starting ground state (modified state) and that the transition is slow. The results from this study (Φ values close to 1) suggest that the conformation of TS is similar to that of the closed end state in both cases and that it occurs early during the course of the reaction (i.e., the transition is quick).

Cytosolic Ba$^{2+}$ as a Modulator of Ryanodine-Modified RyR2 Gating. High cytosolic (mM) Ca$^{2+}$ and Ba$^{2+}$ are known to inhibit RyR2 channel gating, probably by acting on low-affinity inhibitory sites on the cytoplasmic domain (Laver, 2007; Diaz-Sylvester et al., 2011). Ba$^{2+}$ was used as a tool to further investigate the gating of ryanodine-modified channels in nominally zero Ca$^{2+}$ conditions. Ba$^{2+}$ (2 and 4 mM) was added to the cytosolic side of the channel while holding at −40 mV to prevent any of the divalent from moving to the luminal side. Gating behavior at +40 mV was subsequently studied. The representative traces in Fig. 7 show the progressive reduction of modified channel P_{o} brought about by the action of increasing concentrations of Ba$^{2+}$. Interestingly, with mM Ba$^{2+}$ present at the cytosolic face of the channel, P_{o} is no longer voltage-dependent (Fig. 7, C–F) with kinetic parameters similar at positive and negative holding potentials (Fig. 7, G–I). P_{o} decreases due to both an increase in closed times and a decrease in open times (Fig. 7, H and I).

Fitting of dwell-time histograms using these idealized events reveals the presence of two populations of closed events at both positive and negative potentials (Supplemental Fig. 5): a long closed component ($\tau = 3.35 \pm 0.7$ milliseconds; area $= 27 \pm 6$%; $n = 4$ at −40 mV) and a population of shorter closing events ($\tau = 0.56 \pm 0.09$ milliseconds; area $= 78 \pm 9$%; $n = 4$ at +40 mV). These data demonstrate that mM concentrations of cytosolic Ba$^{2+}$ can significantly reduce the P_{o} of ryanodine-modified RyR2 channels. Although with ryanodine bound the likelihood of RyR2 channel closing is dramatically reduced, even in the absence of activating levels of Ca$^{2+}$, Ba$^{2+}$ can still interact with the channel and significantly increase the probability of channel closing.

Mechanistic Comparison of the Action of Ryanodine and IpTxa. The scorpion venom toxin IpTxa stabilizes an open subconductive state of RyR (Tripathy et al., 1998), and it has been proposed that the mechanism of action of IpTxa is similar to that of ryanodine (Schwartz et al., 2009). The final part of our study compares the action of these ligands under the same experimental conditions. An example of IpTxa interaction with a Ca$^{2+}$-activated RyR2 channel is shown in Supplemental Fig. 6. With IpTxa bound, the channel resides in a high P_{o}, conductance state. At positive holding potentials, the amplitude of the subconductance state is ~30% of the full open state (Supplemental Fig. 6B), whereas at negative potentials it is ~40% (Supplemental Fig. 6C), thereby exhibiting a slight rectification, as has been reported previously (Quintero-Hernández et al., 2013). IpTxa is a reversible modifier of the RyR2 channel, which binds in an activity (P_{o})-dependent manner. Therefore, the removal of Ca$^{2+}$ after binding of IpTxa results in permanent channel closure once the toxin unbinds (Supplemental Fig. 6D), eliminating the probability of further interaction. It is noticeable that, following the removal of Ca$^{2+}$ at +40 mV (conditions that produce a significant reduction P_{o} of the ryanodine-modified channel (Fig. 1F)), the P_{o} of the IpTxa-modified RyR2 does not change (Supplemental Fig. 6D). Although this observation provides a qualitative indication that the mechanisms governing altered P_{o} in the ryanodine- and IpTxa-modified channels differ, the very limited amounts of data that can be gathered under these conditions before the channel shuts down preclude a more detailed description of the dependence of IpTxa-modified gating on Ca$^{2+}$-cyt. To obtain this information, we monitored gating parameters in IpTxa-modified states of ryanodine-modified channels. A representative experiment is shown in Supplemental Fig. 7.

As in earlier experiments, channels were modified with 1 μM ryanodine and Ca$^{2+}$ removed, before being further modified with 20 nM synthetic IpTxa added to the cytosolic.
the IpTxa-modified states of RyR2 seen in these experiments confirms the earlier observation of a lack of Ca$^{2+}$ dependence of the IpTxa-modified state (Supplemental Fig. 6D). Disparities between the properties of the ryanodine-modified and IpTxa-modified states are further emphasized by the action of Ba$^{2+}$. Supplemental Figure 7, E and F, demonstrates that gating of the IpTxa-modified state is insensitive to the inhibitory effect of mM Ba$^{2+}$ that occurs in the ryanodine-modified state of RyR2.

Discussion

Interaction of ryanodine with a single RyR2 channel induces profound changes in function. Unitary conductance is reduced, and Po of the reduced-conductance state is increased dramatically. In the presence of activating Ca$^{2+}$$_{\text{cyt}}$ Po approaches 1.0 at positive and negative holding potentials. Removal of Ca$^{2+}$$_{\text{cyt}}$ reveals a marked dependence of ryanodine-modified channel Po on voltage, leading to a significant decrease in Po at positive, but not negative potentials.

Earlier studies proposed that mechanisms underlying ryanodine-induced elevated Po involved an increase in Ca$^{2+}$$_{\text{cyt}}$ sensitivity (Du et al., 2001; Masumiya et al., 2001). The data presented in this study indicate that this is not the case. In the absence of ryanodine, gating of RyR2 at 1 μM Ca$^{2+}$$_{\text{cyt}}$ is described by a scheme incorporating multiple open and closed states, some of which are Ca$^{2+}$-dependent and are presumed to be due to the helix-bundle crossover in the channel pore, and one Ca$^{2+}$-independent transition (flicker closing) thought to be due to fluctuations in the putative selectivity filter region (Mukherjee et al., 2012). Variations in Po induced by changing Ca$^{2+}$$_{\text{cyt}}$ result from alterations in closed times, with little change in open times. In contrast, gating of the ryanodine-modified RyR2 can be described by considerably different, simpler schemes in which the relatively small changes in Po arise from variations in open times, whereas closed times remain constant. These divergent changes in gating would suggest that, rather than sensitizing RyR2 to activating Ca$^{2+}$, the ryanodine-bound channel adopts an extremely stable modified open conformation. The stability of this conformation precludes transitions to the full open state and presents a significant energy barrier to closing.

In the presence of activating Ca$^{2+}$$_{\text{cyt}}$, Po approaches 1.0, indicating that all potential mechanisms by which the channel can close are disfavored by the presence of ryanodine. Removal of Ca$^{2+}$$_{\text{cyt}}$ partially destabilizes the open conformation, resulting in the occurrence of closing events at positive potentials. The brief duration of these closings demonstrates that, even in the absence of activating ligand, the energetically preferred conformation of the ryanodine-bound channel is open. Evidence in support of such a conformational change comes from earlier characterizations of the ion-handling properties of ryanodine-modified RyR2 channels (Tinker and Williams, 1993; Lindsay et al., 1994; Mead and Williams, 2002; Mason et al., 2012). In all cases, altered function is consistent with changes in the conformation, stability, and rigidity of the channel’s conduction pathway.

Removal of Ca$^{2+}$$_{\text{cyt}}$ from the ryanodine-modified RyR2 reveals an underlying dependence of gating on holding potential. A similar effect has been noted previously (Du et al., 2001) and these authors proposed that rather than resulting from a direct influence of voltage on channel gating, luminal
to cytosolic cation flux might increase Po. We have tested this proposal by monitoring the dependence of ryanodine-modified RyR2 gating on holding potential in the presence of an ionic gradient. The data are presented in Supplemental Figs. 2 and 3 and demonstrate that, irrespective of the direction of ion flow through the channel, in the absence of Ca2+ cyt, ryanodine-modified RyR2 Po was reduced at positive holding potentials due to an increase in the frequency of closing events.

These experiments establish that the observed variations in ryanodine-modified RyR2 gating with changing voltage reflect the ability of the ryanodine-modified conformation of the channel to sense and respond to trans-membrane potential. Fitting of the Boltzmann equation to the Po-voltage relationship predicts the presence of negatively charged residues...
that sense the potential drop across the ryanodine-modified channel; thus, it is possible that the RyR2 conformation stabilized by ryanodine places acidic residue motifs in locations in which they can sense the trans-membrane potential. By analogy with conventional voltage-sensitive channels, movements of these residues in response to changing potential are transmitted to the gating machinery to alter Po, favoring the open state at negative potentials. The increased tendency for closing at positive potentials is overridden by the interaction of Ca$^{2+}$ with the channel. The Po of the ryanodine-modified conformation is determined by the influence of both trans-membrane potential and Ca$^{2+}$, with potentially complex domain-domain interactions. However, due to the enormous size of the channel, stable, resolvable states. However, due to the enormous size of the channel, stable, resolvable states. However, due to the enormous size of the channel, stable, resolvable states. However, due to the enormous size of the channel, stable, resolvable states.

It has been proposed that the cytosolic domain of the RyR2 channel contains three classes of binding site for Ca$^{2+}$ (Laver, 2007). High-affinity (μM) sites are responsible for both increasing (A) and decreasing (I) Po, whereas binding of Ca$^{2+}$, or other divalent cations, to a low-affinity (mM) site (I) leads to a reduction in Po. In the absence of ryanodine, millimolar concentrations of Ba$^{2+}$ added to the cytosolic face of the RyR2 reduce Po (Diaz-Sylvester et al., 2011). This prompted us to use equivalent concentrations of Ba$^{2+}$ to further investigate gating of the ryanodine-modified RyR2 in the absence of Ca$^{2+}$, cyt. We found that cytosolic Ba$^{2+}$, at positive holding potentials, enhances the reduction in Po of the ryanodine-modified RyR2 initiated by the removal of Ca$^{2+}$, cyt, and eliminates the voltage dependence observed in the absence of Ba$^{2+}$, cyt. Lifetime analysis and mathematical modeling indicate that the interaction of Ba$^{2+}$, cyt, reduces the mean lifetime of the open state in the absence of Ca$^{2+}$, cyt. The reduction in Po of the ryanodine-modified state that results from the interaction of Ba$^{2+}$, cyt, is significantly greater than that occurring on removal of activating Ca$^{2+}$ concentration. In the absence of Ca$^{2+}$, cyt, all three activation/inhibitory binding sites will be available. Cytosolic Ba$^{2+}$ does not activate RyR2

Fig. 8. Schematic recapitulation of RyR2-gating behavior under different experimental conditions. The circular cartoon blocks represent the molecular state of the channel; they indicate the channel activity (Po), the ligands interacting with the RyR2 (viz. Ca$^{2+}$, Ba$^{2+}$, ryanodine, and IpTxa), and the holding potential (±40 mV). Putative binding sites of various interacting ligands are shown as cartoon clouds along the circumference of the blocks; they are either empty (white) or occupied (colored) by the respective ligand. (A) For an easier interpretation, the schematic begins at the block with the simplest experimental condition and is marked with a red shamrock. Ryanodine-modified RyR2 in the absence of Ca$^{2+}$ (Ca$^{2+}$ binding sites A, I1, and I2 are unoccupied) has a lower Po due to an increased frequency of brief closing events at ±40 mV when compared with 0 mV. In the presence of 1 μM Ca$^{2+}$ (top row blocks), the putative high-affinity activation (A) and inhibition sites (I2) on the modified RyR2 are occupied, which increases the channel Po to ~1, both at ±40 mV and 0 mV, with the disappearance of closing events. However, if the ryanodine-modified channel is instead exposed to high cytosolic Ba$^{2+}$ (4 mM) in the absence of Ca$^{2+}$ (arrows pointing downward in the scheme), the channel is strongly inhibited due to Ba$^{2+}$ occupying both high-affinity (I2) and low-affinity (I1) inhibition sites on the RyR2. Under the influence of Ba$^{2+}$, voltage dependence of the modified channel gating is abolished (see Discussion for possible mechanisms). (B) The starting block is marked with a red shamrock, as above, to represent the simplest experimental scenario describing the interaction of IpTxa with the channel. In the absence of Ca$^{2+}$, the IpTxa-modified RyR2 has a very high Po (1.0), with few discernible closing events, but once the toxin unbinds, the channel closes, preventing further binding (Supplemental Fig. 6D). The kinetics of the IpTxa-modified state in the presence of Ca$^{2+}$ does not change and the Po remains ~1.0 (top row, left block). Downward arrows from the starting point toward conditions in which the RyR2 is modified concomitantly with IpTxa and ryanodine in the absence of Ca$^{2+}$ at ±40 mV (as seen in Supplemental Fig. 7, C and D). The Po when IpTxa is bound to the ryanodine-modified channel still remains at 1.0 with no noticeable change in the kinetics. In contrast, the ryanodine-modified state exhibits voltage dependence of gating, as seen in (A). When the above conditions are further modified by the addition of mM Ba$^{2+}$ (bottom row blocks), the IpTxa-modified state of the ryanodine-modified channel remains immune (Po ~1.0) to the inhibitory action of the divalent, whereas the Po of the ryanodine-modified state is drastically reduced at both ±40 mV under these conditions.
at concentrations between 1 μM and 1 mM (Diaz-Sylvester et al., 2011), and our observation of two Ba\(^{2+}\)-dependent closed states indicates that they are likely to result from the binding of Ba\(^{2+}\) to the inhibitory sites (I\(_1\) and I\(_2\)). The marked increase in closed times associated with the increase in cytosolic Ba\(^{2+}\) from 2 to 4 mM suggests that the population of long closings is dependent upon the interaction of Ba\(^{2+}\) with the low-affinity (I\(_1\)) divalent site. Occupancy of the inhibitory sites by Ba\(^{2+}\) significantly destabilizes the otherwise stable, rigid conformation of the ryanodine-modified pore. It should also be noted that Ba\(^{2+}\)-dependent closings cannot merely be superimposed onto the closings seen at +40 mV prior to the addition of Ba\(^{2+}\): rather, the voltage-dependent closings are replaced by Ba\(^{2+}\)-dependent closings, and the characteristics of these closings are not influenced by holding potential.

We envisage two possible mechanisms for this behavior. The first is that the presence of mM cytosolic Ba\(^{2+}\) effectively removes the voltage-sensing component of the ryanodine-modified conformation of the channel by screening the acidic residues postulated to respond to changing voltage. In the second mechanism, the closed states resulting from the interaction of Ba\(^{2+}\) with inhibitory sites on RyR2 override the voltage dependence of the ryanodine-modified conformation. This would be analogous to the proposal that the tendency of the ryanodine-modified channel to close at positive potentials is overridden by activating Ca\(^{2+}\) cytosol.

The interaction of IpTxa with RyR2 has functional consequences that appear, superficially, to be analogous to those of ryanodine. However, we highlight important differences between the two modified forms of RyR2. The relatively short residence times of IpTxa on RyR2 following the removal of Ca\(^{2+}\) cytosol make quantification of gating of the IpTxa-modified channel extremely difficult. Nevertheless, our data indicate that the Po of the IpTxa-modified RyR2 is not influenced by Ca\(^{2+}\) cytosol. We have obtained additional information on the properties of the IpTxa-modified state by monitoring these in ryanodine-bound RyR2 channels. Under these conditions, the extremely high Po of the IpTxa-modified state is unaffected by trans-membrane potential, the removal of Ca\(^{2+}\) cytosol, or the presence of cytosolic Ba\(^{2+}\). These data indicate that, as is the case with ryanodine, the interaction of IpTxa with the RyR2 channel stabilizes a modified conformation of the pore-forming region of the channel. However, the insensitivity of the IpTxa-bound conformation to factors that alter the stability of the ryanodine-modified channel indicates that the stability of the IpTxa-bound conformation exceeds that of the ryanodine-bound analog.

The mechanisms underlying profound changes in function associated with the interaction of ryanodine and IpTxa with the RyR2 channel in relation to divalent cations are summarized in Fig. 8. Energetic analysis using REFER reveals new information on the mechanism of state transition during gating of the ryanodine-modified channel. This approach could prove useful in investigating the effects of various RyR agonists and modifiers of function (e.g., phosphorylation, catecholaminergic polymorphic ventricular tachycardia–linked mutation, and RyR-targeted drugs) on the structural stability of the channel, as any instability introduced would manifest as a difference in the relationship between ground and transition states in the gating energy landscape, thereby altering the energy barrier. Future studies will determine whether these differences can be revealed using the experimental approach established in this work.

Authorship Contributions

Participated in research design: Mukherjee, Thomas, Williams.

Conducted experiments: Mukherjee.

Contributed new reagents or analytic tools: Thomas.

Performed data analysis: Mukherjee.

Wrote or contributed to the writing of the manuscript: Mukherjee, Thomas, Williams.

References

Catterall WA (2010) Ion channel voltage sensors: structure, function, and patho-

Du GG, Guo X, Khanna VK, and MacLennan DH (2001) Ryanodine sensitizes the cardiac Ca\(^{2+}\) release channel to block by large tetraalkylammonium cations and dissociates as the channel is closed by Ca\(^{2+}\) depletion. Proc Natl Acad Sci USA 98:13625–13630.

Laver DR and Lamb GD (1998) Inactivation of Ca\(^{2+}\) release channels (ryanodine receptors, RyR1 and RyR2) with rapid steps in [Ca\(^{2+}\)] and voltage. Biophys J 74: 2352–2364.

Address correspondence to: Dr. Alan J. Williams, Institute of Molecular and Experimental Medicine, Wales Heart Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN. E-mail: williamsaj9@cardiff.ac.uk