Fluoxetine Blocks \(\text{Na}_v \)\textsubscript{1.5} Channels via a Mechanism Similar to That of Class 1 Antiarrhythmics\(^\text{S}\)

Hugo Poulin, Iva Bruhova, Quadiri Timour, Olivier Theriault, Jean-Martin Beaulieu, Dominique Frassati, and Mohamed Chahine

Centre de recherche, Institut universitaire en santé mentale de Québec, Quebec City, Quebec, Canada (H.P., O.T., J.-M.B., M.C.); State University of New York at Buffalo, Buffalo, New York (I.B.); Laboratoire de Pharmacologie Médicale, EA 4612 Neurocardiologie, Université Lyon 1, Lyon, France (Q.T.); Department of Psychiatry and Neuroscience, Université Laval, Quebec City, Quebec, Canada (J.-M.B.); Pôle Dépaela, Département de l’autisme et des psychoses d’évolution lente de l’adulte, Centre Hospitalier Le Vinatier, Bron, France (D.F.); and Department of Medicine, Université Laval, Quebec City, Quebec, Canada (M.C.)

Received April 3, 2014; accepted July 15, 2014

ABSTRACT

The voltage-gated \(\text{Na}_v \)\textsubscript{1.5} channel is essential for the propagation of action potentials in the heart. Malfunctions of this channel are known to cause hereditary diseases. It is a prime target for class 1 antiarrhythmic drugs and a number of antidepressants. Our study investigated the \(\text{Na}_v \)\textsubscript{1.5} blocking properties of fluoxetine, a selective serotonin reuptake inhibitor. \(\text{Na}_v \)\textsubscript{1.5} channels were expressed in HEK-293 cells, and \(\text{Na}^+ \) currents were recorded using the patch-clamp technique. Dose-response curves of racemic fluoxetine (IC\textsubscript{50} = 39 \(\mu \)M) and its optical isomers had a similar IC\textsubscript{50} (40 and 47 \(\mu \)M for the (+) and (−) isomers, respectively). Norfluoxetine, a fluoxetine metabolite, had a higher affinity than fluoxetine, with an IC\textsubscript{50} of 29 \(\mu \)M. Fluoxetine inhibited currents in a frequency-dependent manner, shifted steady-state inactivation to more hyperpolarized potentials, and slowed the recovery of \(\text{Na}_v \)\textsubscript{1.5} from inactivation. Mutating a phenylalanine (F1760) and a tyrosine (Y1767) in the S6 segment of domain (D) IV (DIVS6) significantly reduced the affinity of fluoxetine and its frequency-dependent inhibition. We used a noninactivating \(\text{Na}_v \)\textsubscript{1.5} mutant to show that fluoxetine displays open-channel block behavior. The molecular model of fluoxetine in \(\text{Na}_v \)\textsubscript{1.5} was in agreement with mutational experiments in which F1760 and Y1767 were found to be the key residues in binding fluoxetine. We concluded that fluoxetine blocks \(\text{Na}_v \)\textsubscript{1.5} by binding to the class 1 antiarrhythmic site. The blocking of cardiac \(\text{Na}^+ \) channels should be taken into consideration when prescribing fluoxetine alone or in association with other drugs that may be cardiotoxic or for patients with conduction disorders.

Introduction

Fluoxetine (Prozac) is a selective serotonin reuptake inhibitor (SSRI) (Wong et al., 1995) that is widely prescribed for the treatment of central nervous system–linked cognitive, emotional, and behavioral disorders. Since its discovery in 1974 (Wong et al., 1974), the beneficial psychotropic effects of fluoxetine have led to its being used to treat disorders other than depression, including obsessive compulsive disorders and bulimia nervosa (Wong et al., 1995). The multiple side effects of fluoxetine (Sghendo and Mifsud, 2012) have raised questions about its supposed selective serotonin-merciated effect. Fluoxetine inhibits the serotonin transporter (SERT) in the low nanomolar range (Torres et al., 2003), but its therapeutic effect appears only at much higher plasma and brain concentrations (Musettola et al., 1978; Bolo et al., 2000). At low micromolar concentrations, fluoxetine also targets other proteins and inhibits several types of ion channels and receptors, including the nicotinic acetylcholine receptor (Hennings et al., 1999; Eisensamer et al., 2003), voltage-gated Ca2+ channels (Déak et al., 2000; Pacher et al., 2000), volume-regulated anion channels (Maertens et al., 2002), neuronal \(\text{Na}^+ \) channels (Lenkey et al., 2006), and human ether-a-go-go-related gene, a cardiac \(\text{K}^+ \) channel (Thomas et al., 2002). The inhibition of the ether-a-go-go-related gene \(\text{K}^+ \) channel by fluoxetine occurs via two different mechanisms: 1) direct channel blockade and 2) disruption of channel protein trafficking (Rajamani et al., 2006). This may explain some of the cardiovascular side effects observed during chronic fluoxetine treatments, including bradycardia and QT interval prolongation (Pacher and Kecskemeti, 2004; Timour et al., 2012). Dysfunctions of \(\text{Na}_v \)\textsubscript{1.5}, which are responsible for the rapid upstroke of the action potential caused by the rapid entry of \(\text{Na}^+ \) ions into
cardiomyocytes, also lead to arrhythmia complications. The prolongation of QT intervals may be due to the improper inactivation of the Na\textsubscript{\textit{v}1.5} as in Romano-Ward syndrome (LQT3), while the reduction of Na+ currents through Na\textsubscript{\textit{v}1.5} may lead to arrhythmias such as Brugada syndrome (Herbert and Chahine, 2006). The major cause of the higher mortality rate in psychiatric patients versus the general population is sudden cardiac death, which mainly results from arrhythmias that occur during treatments with psychotropic drugs. It has been reported that fluoxetine decreases the maximum rate of rise of the depolarization phase (V\textsubscript{\textit{max}}) of ventricular cell preparations (Pacher et al., 2000; Magyar et al., 2003), but little is known about the direct effect of fluoxetine on the biophysical properties of Na\textsubscript{\textit{v}1.5}.

In the present study, we investigated the electrophysical properties of fluoxetine (racemic and enantiomers) and its metabolite norfluoxetine as well as other psychotropic drugs on Na\textsubscript{\textit{v}1.5} stably expressed in HEK-293 cells. We showed that racemic fluoxetine, its metabolite norfluoxetine, and its enantiomers act as potential antagonists of human Na\textsubscript{\textit{v}1.5} unlike the other classes of antidepressants tested.

We also studied the effect of the F1760C and Y1767C mutations of the class I arrhythmogenic binding site on the use-dependent blockade of cardiac Na+ channels by fluoxetine and showed that fluoxetine behaves like a class I arrhythmogenic drug.

Materials and Methods

Cell Culture. Human embryonic kidney (HEK-293) cells stably expressing human Na\textsubscript{\textit{v}1.5} were used as previously described elsewhere (Huang et al., 2011). In brief, the cells were grown under standard tissue culture conditions (5% CO\textsubscript{2}, 37°C) in high-glucose Dulbecco’s modified Eagle’s medium supplemented with 10% fetal bovine serum, 2 mM L-glutamine, 100 U/ml of penicillin, and 10 mg/ml of streptomycin (Gibco-BRL/Life Technologies, Burlington, ON, Canada). For experiments with the F1760C, Y1767C, and L409C/A410W mutants, the HEK-293 cells were transiently transfected with the pcDNA3.1 vector containing mutant Na\textsubscript{\textit{v}1.5} cDNA (5 \(\mu\)g) and with the vector after CD8 pIRE5/CD8 (5 \(\mu\)g) in 10-cm petri dishes using the calcium phosphate method, as previously described elsewhere (Huang et al., 2011). Transfected cells were briefly preincubated with CD8 antibody-coated beads (Dynabeads M450 CD8-a; Life Technologies, Burlington, ON, Canada) before we recorded the currents. HEK-293 cells expressing the pIRE5/CD8 vector were decorated with CD8 beads, which were used to identify cells for recording Na+ currents.

Whole-Cell Patch-Clamp Recordings. Macroscopic Na+ currents from HEK-293 cells were recorded using the whole-cell patch-clamp technique. Patch-clamp recordings were obtained using low-resistance, fire-polished electrodes (<1 M\(\Omega\)) made from 8161 Corning borosilicate glass coated with Sylgard (Dow-Corning, Midland, MI) to minimize electrode capacitance. Currents were recorded using an Axopatch 200 amplifier with the pClAMP software (Molecular Devices, Sunnyvale, CA). The series resistance was 70–80% compensated. Whole-cell currents were filtered at 5 kHz, digitized at 10 kHz, and stored on a microcomputer equipped with an analog-to-digital converter (Digidata 1300; Molecular Devices). The cells were allowed to stabilize for 5 minutes after the whole-cell configuration was established before we recorded the currents. The experiments were performed at room temperature (22°C). The pipettes were filled with an intracellular solution composed of 35 mM NaCl, 105 mM KCl, 1.5 mM CaCl\textsubscript{2}, 1 mM MgCl\textsubscript{2}, 10 mM glucose, and 10 mM HEPES. The pH was adjusted to 7.4 with NaOH.

The drugs were applied using a constantly running ValveLink8.2 gravity-driven perfusion system (Automate Scientific, Berkeley, CA) equipped with a glass syringe with a 250-\(\mu\)l tip. Different concentrations of the same drug were applied on the same cell. We used silicone-free tubing because we had observed changes in fluoxetine concentrations when silicon tubing was used, most likely because fluoxetine adheres to silicone, which can change the applied concentration considerably.

The peak current amplitudes at different drug concentrations were subtracted from the value obtained with the control solution and were normalized to the control value to obtain the dose-response curves and IC\textsubscript{50} values. Each point on the dose-response curves represents the mean of inhibition calculated from all recorded cells at a specific drug concentration. The values were fit to a Hill equation of the following form:

\[
(I_{\text{control}} - I_{\text{fluoxetine}})/I_{\text{control}} = ax^{b}/(c^{b} + x^{b})
\]

where \(I\) is the peak current, \(a\) is the maximum inhibition, \(b\) is the Hill coefficient, \(c\) is the IC\textsubscript{50}, and \(x\) is the concentration of agonist. To obtain activation curves, Na+ conductance (G\textsubscript{\textit{Na}}) was calculated from the peak current (I\textsubscript{\textit{Na}}) using the following equation: G\textsubscript{\textit{Na}} = I\textsubscript{\textit{Na}}/(V - E\textsubscript{\textit{Na}}), where \(V\) is the test potential and E\textsubscript{\textit{Na}} is the reversal potential. Normalized G\textsubscript{\textit{Na}} values were plotted against the test potentials. To obtain the inactivation curves, the peak current was normalized to the maximal value and was plotted against the conditioning pulse potential. Steady-state activation and inactivation curves were fit to a Boltzmann equation of the following form:

\[
G/G_{\text{max}} \text{ (or } I/I_{\text{max}}) = 1/[1 + \exp(V_{1/2} - V/k_{s})]
\]

where \(G\) is the conductance, \(I\) is the current, \(V_{1/2}\) is the voltage at which the channels are half-maximally activated or inactivated, and \(k_{s}\) is the slope factor. To determine the recovery from inactivation, the test pulse peak current (I\textsubscript{\textit{cont}}) was normalized to the corresponding prepulse current (I\textsubscript{\textit{cont}}). I\textsubscript{\textit{cont}}/I\textsubscript{\textit{cont}} was plotted against the pulse interval and was fitted to a double or triple exponential function of the following form:

\[
I/I_{\text{max}} = A_{1}(1 - \exp(-t/\tau_{1})) + A_{2}(1 - \exp(-t/\tau_{2}))
\]

or

\[
I/I_{\text{max}} = A_{1}(1 - \exp(-t/\tau_{1})) + A_{2}(1 - \exp(-t/\tau_{2})) + A_{3}(1 - \exp(-t/\tau_{3}))
\]

where \(\tau_{1}, \tau_{2}\), and \(\tau_{3}\) are the time constants, \(t\) is the time and \(A_{1}, A_{2}\), and \(A_{3}\) are the amplitudes of the time constants.

The results were analyzed using a combination of pCLAMP software version 10.2 (Molecular Devices), Microsoft Excel (Microsoft, Redmond, WA), and SigmaPlot version 11.0 (IBM/SPSS, Chicago, IL).

Statistical Analysis. Results are expressed as mean ± S.E.M. Statistical significance was calculated using Student’s unpaired t test, and \(P < 0.05\) was considered statistically significant. The statistical significance for the IC\textsubscript{50} was calculated using R software and the drc package (R Foundation for Statistical Computing, Vienna, Austria).

Drugs. Racemic fluoxetine, S(+)-fluoxetine, R(−)-fluoxetine, norfluoxetine, and (+)-fenfluramine were obtained from Sigma-Aldrich (St. Louis, MO). Nisoxetine and methylphenidate were obtained from Torcis Bioscience (Bristol, United Kingdom). Stock solutions (5 mM) were prepared in water and were diluted in the external solution before use.

Homology Modeling of Fluoxetine Binding Site in the Na\textsubscript{\textit{v}1.5}.

The human cardiac Na\textsubscript{\textit{v}1.5} was modeled in the closed and open states based on the closed Na\textsubscript{\textit{v}1.6,Ab} (3RVY.pdb) and open Na\textsubscript{\textit{v}1.5} (3ZJZ.pdb) x-ray structures (Payandeh et al., 2011; Bagnéris et al., 2013). To describe the symmetrical positions of residues in four homologous domains in the channel, we used a universal residue-labeling scheme (Zhorov and Tikhonov, 2004). A residue

\[
\text{Fluoxetine Blocks Na\textsubscript{\textit{v}1.5} Channels 379}
\]
is labeled by its domain number (1–4), segment (i, inner helix S6; o, outer helix S5; p, P-loop), and the relative number from the N end of a transmembrane helix or from the DEKA (i.e., the four amino acids thought to form the selectivity filter of the Na\(^+\) channel: aspartate, glutamate, lysine, and alanine) locus positions 1p50, 2p50, and so on. For example, P\(^{1415/1769}\) designates phenylalanine in the domain IV inner helix, 15 positions downstream from the start of the segment. In some cases, the sequence-based residue number is included in the label in parentheses.

- The alignment of bacterial Na\(_{\text{Ah}}\) and Na\(_{\text{Ms}}\) with eukaryotic sodium channels was taken as previously proposed elsewhere (Payandeh et al., 2011; McCusker et al., 2012; Tikhonov and Zhorov, 2012). An insertion downstream from the DEKA locus was proposed (Tikhonov and Zhorov, 2012), but in our models this insertion was not introduced as the ligand was docked in the pore and residues above the DEKA locus would not affect ligand binding. The models contained the pore region (S5, P, and S6) of the human Na\(_{1.5}\). The closed model also contained the L4-5 linker (the linker between domain 4 and 5) because it is available in the x-ray structure. The extracellular linkers between P-loops and transmembrane helices were truncated to match the length of the x-ray structure templates, which does not affect ligand docking in the inner pore as they are distant. Ionizable residues were modeled as neutral, but the ionizable residues of DEKA locus were modeled as charged.
- All calculations were performed using the ZMM program (ZMM Software, Flamborough, Ontario, Canada). The nonbonded energy was calculated using the AMBER force field (Weiner et al., 1984, 1986) with a cutoff distance of 8 Å. Atomic charges at fluoxetine were calculated with the MOPAC software using the semiempirical method AM1 (Dewar et al., 1985). The hydration energy was calculated by using the implicit-solvent method (Lazaridis and Karplus, 1999). Electrostatic energy was calculated using the environment- and distance-dependent dielectric function without desolvation energy (Garden and Zhorov, 2010). The DEKA locus was loaded with an explicit water molecule, which was initially constrained to the Asp and Lys side chains; subsequently once constraints were removed the water did not move away from the DEKA locus. The Monte Carlo minimization method (Li and Scheraga, 1987) was used to optimize the models. All torsional angles of the protein and ligand were allowed to vary during energy calculations, while bond angles were rigid in the protein and flexible in the ligand. To prevent large deviations of the channel models from the x-ray structure templates during energy minimizations, the α-carbons of the model were constrained to the template using a flat-bottom energy function that allows atoms to deviate penalty-free up to 1 Å, but imposes a penalty of 10 kcal mol\(^{-1}\) Å\(^{-1}\) for larger deviations. All molecular images were created using MVM (ZMM Software). No specific energy terms were used for cation–π interactions, which were accounted for with partial negative charges at the aromatic carbons (Bruhova et al., 2008).

- The homology models were first MC-minimized without ligand until the 3000 consecutive energy minimizations did not improve the apparent global minimum found. The optimal binding modes of S-fluoxetine were searched by a two-stage random-docking approach. In the first stage, 60,000 different binding modes of the ligand were randomly generated within a cube with 14-Å edges. This sampling volume covered the entire inner pore including the domain interfaces. Each binding mode was MC-minimized for only five steps to remove steric overlaps with the protein. Energetically favorable conformations within 200 kcal/mol from the apparent global minimum were accumulated and then clustered based on ligand-generalized coordinates. In the second stage, the 500 energetically best conformations found in the first stage were further MC-minimized for 1000 MC-minimization steps. The energetically most favorable ligand-receptor complexes within 4 kcal/mol were collected and analyzed.

Results

Fluoxetine and Its Optical Isomers Block the Na\(_{1.5}\) Channel. We studied the effect of fluoxetine on Na\(_{1.5}\) stably expressed in HEK-293 cells. Figure 1A shows an example of whole-cell current traces before (control) and after superfusion of 25 and 100 \(\mu\)M racemic fluoxetine. Fluoxetine inhibited Na\(^{+}\) currents, with a maximum blockade occurring at 100 \(\mu\)M. The inhibition was partially reversible. The superfusion of increasing concentrations of fluoxetine (1, 10, 25, 50, 100, and 200 \(\mu\)M) showed that the blockade by fluoxetine was dose dependent. The dose-response curves (Fig. 1B) showed that the sensitivities of the optical isomers were similar, with an IC\(_{50}\) of 39.4 \(\mu\)M for racemic fluoxetine, and 40.0 \(\mu\)M and 46.7 \(\mu\)M for the (+) and (−) isomers, respectively. When the cells were maintained at a holding potential of −90 mV instead of −140 mV, where a proportion of the channels are inactivated, the affinity of racemic fluoxetine for Na\(_{1.5}\) significantly increased with an IC\(_{50}\) of 4.7 \(\mu\)M. Surprisingly, norfluoxetine, a fluoxetine metabolite, displayed a significantly higher affinity than fluoxetine, with an IC\(_{50}\) of 29.5 \(\mu\)M at holding potential of −140 mV.

The effects of three other monoamine transporter (MAT)-targeting drugs were also tested using HEK-293 cells stably expressing Na\(_{1.5}\). The norepinephrin reuptake inhibitor nisoxetine, the dopamine reuptake inhibitor methylphenidate, and fenfluramine, which like fluoxetine targets SERT, were all less effective in blocking the channels than fluoxetine, with an IC\(_{50}\) of 104.5, 618.7, and 203.5 \(\mu\)M, respectively, at a holding potential of −140 mV (Fig. 1C). The inhibition potency of these three compounds was also increased at a holding potential of −90 mV, with an IC\(_{50}\) of 20.2, 239.5, and 65.5 \(\mu\)M for nisoxetine, methylphenidate, and fenfluramine, respectively (Fig. 1C).

Effect of Fluoxetine on the Steady-State Gating Properties of Na\(_{1.5}\) Channels. The availability of Na\(_{\text{Na+}}\) channels after depolarization depends on a number of parameters, including the membrane potential. Fewer channels become available as the membrane potential progressively becomes more depolarized. This is due to the buildup of channels in the inactivated nonconducting state. We studied this phenomenon using a double-pulse protocol: a 500-millisecond conditioning pulse to voltages ranging from −140 mV to 0 mV, and a test pulse to −30 mV. The current measured after the test pulse is an indicator of the fraction of available channels. The normalized currents after the test pulse were plotted against the conditioning voltage (Fig. 2A). Fluoxetine (30 \(\mu\)M) significantly shifted the \(V_{1/2}\) of inactivation of Na\(_{1.5}\) by 6.7 mV toward more hyperpolarized voltages and resulted in a less steep slope factor (Table 1 and Fig. 2A).

We also investigated the effect of fluoxetine on the steady-state activation of Na\(_{1.5}\). The activation curves were derived from IV curves (see Materials and Methods). The activation curves of Na\(_{1.5}\) in the absence and presence of 30-\(\mu\)M fluoxetine were plotted against voltage (Fig. 2A). Fluoxetine did not significantly shift the midpoint of steady-state activation, but had a little effect on the slope factor by reducing its steepness.
Fluoxetine Slows the Recovery from Inactivation of Naᵥ1.5 Channels. A prominent characteristic of many class 1 antiarrhythmics is their ability to slow the recovery from inactivation of drug-modified Na⁺ channels. We used a two-pulse protocol to investigate the effect of fluoxetine on the recovery from inactivation. We used a 40-millisecond −30 mV conditioning pulse and a 20-millisecond −30 mV test pulse with an interval ranging from 0.1 to 4000 milliseconds to induce recovery from inactivation. The amplitudes of the Na⁺ currents measured after the test pulse were then normalized to the control currents and were plotted against the duration of the recovery interval. Channels that recovered from inactivation displayed a progressive increase in currents after the increase in the recovery interval (Fig. 2B). The recovery from inactivation of Naᵥ1.5 after fluoxetine treatment was strongly slowed with the appearance of a third time constant. In comparison, the control curve had a τ₁ and τ₂ of 1.50 and 9.13 milliseconds, respectively, whereas the fluoxetine had a τ₁, τ₂, and τ₃ of 1.63, 14.90, and 1598.23 milliseconds, respectively (Table 1).

Fluoxetine Blocks Naᵥ1.5 Channels in a Use-Dependent Manner. During depolarization, Na⁺ channels cycle from the resting to the activated and inactivated states. However, when they are subjected to a train of depolarizing pulses, the number of channels available to open is reduced because they are gradually trapped in the inactivated state. This phenomenon...
is referred to as use-dependence or “frequency-dependent” current reduction. In the presence of a drug, further decreases in currents are likely due to the accumulation of drug-modified channels. For example, lidocaine, a class 1 antiarrhythmic drug, is known to cause the use-dependent inhibition of Na+ channels.

We tested the effect of rapid pulsing on Na\textsubscript{v}1.5 by applying a series of 50 short 10-millisecond depolarizing −30 mV pulses. We first characterized the effect of fluoxetine on Na\textsubscript{v}1.5/WT (wild type), and then on the Na\textsubscript{v}1.5/F1760C and Na\textsubscript{v}1.5/Y1767C mutant channels. As shown in Fig. 3A, in the absence of fluoxetine, there was no significant change in the availability of Na\textsubscript{v}1.5/WT channels when they were pulsed up to 10 Hz. However, in the presence of 30 μM fluoxetine, the availability of Na\textsubscript{v}1.5/WT channels was dramatically reduced by 44% (P50/P1) when they were pulsed at 2 Hz (Fig. 3, B and C) in comparison with the control without drug. When 5 and 10 Hz pulses were used, 30 μM fluoxetine reduced the currents of the Na\textsubscript{v}1.5/WT by 58 and 67%, respectively, compared with the control without drug.

To further investigate the role of class 1 antiarrhythmic binding in the current block caused by fluoxetine, we inserted the F1760C or Y1767C mutation into Na\textsubscript{v}1.5. As shown in Fig. 3, B and C, 30 μM fluoxetine reduced the current by 8, 15, and 20% when Na\textsubscript{v}1.5/F1760C was pulsed at 2, 5, and 10 Hz, respectively, in comparison with the control without drug. The Y1760C mutation almost completely prevented the use-dependent inhibition of fluoxetine, with a maximal current inhibition of 5% when pulsed at 10 Hz. These results indicated that fluoxetine blocks Na\textsubscript{v}1.5/WT currents in a use-dependent manner and that the F1760C and Y1767C mutations dramatically reduce the use-dependent inhibition.

Fluoxetine Has a Lower Affinity for Na\textsubscript{v}1.5/F1760C Mutant Channels. We studied the effect of the F1760C and Y1767C mutations on the concentration-dependent block of Na\textsubscript{v}1.5 currents by fluoxetine. Figure 4A shows examples of
current traces recorded from Na\textsubscript{1.5}/WT and the mutant channels before and after a treatment with 50 μM fluoxetine. As shown in Fig. 4B, the IC\textsubscript{50} value of fluoxetine for Na\textsubscript{1.5}/Y1767C (50.1 μM) was slightly higher to that of Na\textsubscript{1.5}/WT (39.4 μM), but the IC\textsubscript{50} value for Na\textsubscript{1.5}/F1760C (82.8 μM) was more than twice that of the WT channels.

Fluoxetine Acts as an Open-Channel Blocker. To investigate the role of inactivation in the blockade of Na\textsubscript{1.5} by fluoxetine in greater detail, we used Nav\textsubscript{1.5}/L409C/A410W mutant transiently expressed in HEK-293 cells. These channels exhibit a significant reduction in fast inactivation in HEK-293 (Wang et al., 2013). A large persistent current was detected in the absence of fluoxetine (Fig. 5A). We applied different concentrations of fluoxetine and determined the IC\textsubscript{30} at the peak current and at the end of the test pulse (90–100 milliseconds). The block at the end of the pulse represents the affinity of the fluoxetine for open channels. As shown in Fig. 5B, the IC\textsubscript{50} (3.5 μM) at the end of the pulse was slightly lower than the IC\textsubscript{50} at the peak current (9.6 μM), suggesting that fluoxetine is an open-channel blocker.

Molecular Modeling of Fluoxetine in the Na\textsubscript{1.5}. To discover the molecular details of the fluoxetine binding site, we have homology modeled the pore domain of Na\textsubscript{1.5} in the closed and open states based on the x-ray structures of bacterial Na channels, Na\textsubscript{Ab} (Aerobacter butzleri sodium channel) (Payandeh et al., 2011) and Na\textsubscript{Ms} (Magnetococcus sp. sodium channel) (Bagnéris et al., 2013), respectively (see Protein Data Bank file in the Data Supplement). A random sampling approach was used to search for the energetically most favorable binding modes of fluoxetine in the Na\textsubscript{1.5}. We seeded 60,000 random orientations of fluoxetine inside the channel within a volume to cover the entire pore cavity and inner helix interfaces (Fig. 6A, B). After two rounds of Monte Carlo energy minimizations, the energetically best fluoxetine complexes bound inside the inner pore. Fluoxetine adopts two distinct binding modes: a horizontal and a vertical binding mode (Fig. 6, C–F). These two binding modes were energetically favorable in both the closed and the open-channel pore.

Fluoxetine resembles a three-pointed star with a chiral center in the middle linking three arms comprising an ammonium group, a benzene ring, and a trifluoromethyl benzene ring. In both of the two binding modes of fluoxetine, its ammonium

<table>
<thead>
<tr>
<th>Property</th>
<th>Na\textsubscript{1.5}/WT Control Mean ± S.E.M. n</th>
<th>Na\textsubscript{1.5}/WT Fluoxetine Mean ± S.E.M. n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steady-state activation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V\textsubscript{1/2}, mV</td>
<td>−43.49 ± 1.46 14</td>
<td>−41.52 ± 1.17 18</td>
</tr>
<tr>
<td>k\textsub{v}</td>
<td>−6.13 ± 0.32 14</td>
<td>7.28 ± 0.17a 18</td>
</tr>
<tr>
<td>Steady-state inactivation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V\textsubscript{1/2}, mV</td>
<td>−87.34 ± 0.94 19</td>
<td>−94.04 ± 1.64b 17</td>
</tr>
<tr>
<td>k\textsub{v}</td>
<td>6.37 ± 0.19 19</td>
<td>7.67 ± 0.29b 17</td>
</tr>
<tr>
<td>Recovery from inactivation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>τ\textsub{1}</td>
<td>1.50 ± 0.1 10</td>
<td>1.63 ± 0.1 6</td>
</tr>
<tr>
<td>A\textsub{1}</td>
<td>78.3 ± 2.7 10</td>
<td>35.7 ± 2.1 6</td>
</tr>
<tr>
<td>τ\textsub{2}</td>
<td>9.13 ± 1.0 10</td>
<td>14.90 ± 2.6 6</td>
</tr>
<tr>
<td>A\textsub{2}</td>
<td>23.7 ± 0.8 10</td>
<td>22.0 ± 2.1 6</td>
</tr>
<tr>
<td>τ\textsub{3}</td>
<td>—</td>
<td>1598.23 ± 41.6 6</td>
</tr>
<tr>
<td>A\textsub{3}</td>
<td>—</td>
<td>42.3 ± 1.7 6</td>
</tr>
</tbody>
</table>

a A, fraction of the r components (%); k\textsub{v}, slope factor for activation or inactivation; n, number of cells; τ, time constant; V\textsubscript{1/2}, midpoint for activation or inactivation.

b P < 0.01.

c P < 0.001.

Discussion

In the present study, we characterized the effects of fluoxetine, a widely used antidepressant drug, on Na\textsubscript{1.5}, the cardiac voltage-gated Na+ channel.

Our results showed that racemic fluoxetine and its optical isomers are equally effective blockers of Na\textsubscript{1.5} when current were recorded at a holding potential of −140 mV. Similar results have been reported for cardiac voltage-gated Ca2+ channels in canine ventricular cardiomyocytes, where both fluoxetine enantiomers have a similar IC\textsubscript{50} (Magyar et al., 2003). We also conducted dose-response curves experiments for racemic fluoxetine in HEK-293 at a holding potential of −90 mV, which is near the resting potential of cardiomyocytes. These experiments
showed that the IC$_{50}$ of fluoxetine is eight times lower at a holding potential of -90 mV compared with -140 mV, going from 39.4 μM to 4.7 μM. In a manner that is hard to explain, these data are in contradiction with those published by Rajamani et al. (2006), who reported that fluoxetine does not inhibit Na$_{\text{ +}}$ currents in HEK-293 cells expressing Na$_{1.5}$. However, our IC$_{50}$ of 4.7 μM is very similar with that published by Harmer et al. (2011), who reported an IC$_{50}$ of 4.9 μM using IonWorks assays from hNa$_{1.5}$-expressing Chinese hamster ovary (CHO) cells maintained at a holding potential of -90 mV. These results suggest that the holding potential of the cell is very important to the affinity of fluoxetine for the channel, as it has been also shown in rat hippocampi neurons (Lenkey et al., 2006), suggesting that the fluoxetine binds with higher affinity to inactivated than to resting channels.

In the nervous system, fluoxetine primary targets SERT, which, together with dopamine transporter and norepinephrine transporter, make up the three major MAT classes. To investigate the effect of other MAT-targeting drugs, we investigated the effect of nisoxetine (norepinephrine transporter-targeting drug) (Tejani-Butt, 1992), methylphenidate (dopamine transporter-targeting drug) (Han and Gu, 2006), and fenfluramine (SERT-targeting drug) (Cosgrove et al., 2010) on Na$_{1.5}$ currents. Our
results showed that the affinity of these drugs for Nav1.5 is dependent on the holding potential. The IC50 of nisoxetine, methylphenidate, and fenfluramine are respectively 5, 2.5, and 3 times lower at a holding potential of −290 mV compared with −140 mV. Similar to fluoxetine, the decrease of IC50 at a more depolarized potential suggests a higher affinity of these three compounds to inactivated than to resting channels. Furthermore, these compounds also exhibited a use-dependent inhibition, especially nisoxetine with a significant current reduction of 26, 36, and 38% when pulsing at 2, 5, and 10 Hz, respectively (data not shown). However, these three compounds are still less potent than fluoxetine at inhibiting Nav1.5.

Our study was designed to investigate the biophysical mechanism of the Nav1.5 block by fluoxetine as well as the possible proarrhythmic properties of this drug. A major finding of our work was that fluoxetine shifts the steady-state inactivation curve by 6.7 mV toward more hyperpolarized values, indicating that it binds to the inactivated state of Nav1.5, as is the case with neuronal Na+ channels (Lenkey et al., 2006). In addition to a tonic block, fluoxetine decreased Nav1.5 currents in a use-dependent manner when pulsing at 2, 5, and 10 Hz. The affinity of fluoxetine for Nav1.5 thus appears to be modulated by the state of the channel, which rapidly switches between the open and inactivated configurations, leading to the progressive accumulation of inactivated Nav1.5. Use-dependence occurs because drug-modified channels slowly recover only at hyperpolarized voltages. Class 1 antiarrhythmic drugs and local anesthetics have a similar effect (Chahine et al., 1992). We thus determined whether fluoxetine could inhibit Na+ currents by mutating residues in the class 1 antiarrhythmic drug binding site.

Amino acids situated near the cytoplasmic ends of the membrane-spanning S6 α-helixes of all four homologous domains (DIS6-DIVS6) form the cytoplasmic entrance of the pore and contribute to the binding sites of both the native inactivation gate and class 1 antiarrhythmic drugs. We previously reported that two highly conserved residues of the DIVS6 segment (F1760, Y1767) contribute directly to the local anesthetic binding site of cardiac Na+ channels (O’Leary and Chahine, 2002). We showed that both mutations (F1760C and Y1767C) markedly reduced the frequency-dependent effect, with the Y1767C mutation having the greatest effect. However, in a tonic block, the F1760C increased the IC50 of fluoxetine more significantly than the Y1767C. These results showed that these residues of DIVS6 are an integral part of the binding site of fluoxetine, as is the case with many class 1 antiarrhythmic drugs. Our data also suggest that F1760 appears to be more involved in binding fluoxetine when the channel is in the resting state, whereas Y1767 appears to be key for fluoxetine binding when the channel is in the open/inactivated state.

Molecular modeling of fluoxetine in Nav1.5 was in agreement with mutational experiments, in which F415(1760) and
Y4i22(1767) were found to be the key residues in binding fluoxetine. However, the models predicted that the ligand is able to assume two energetically favorable binding modes. The vertical binding mode was favored in the open state model, and the horizontal mode in the closed state model. This could suggest that open channel block involves both F4i15(1760) and Y4i22(1767) as visualized in the vertical binding mode. With the same assumption, the horizontal binding mode could represent a resting channel block with F4i15(1760) as the essential residue. Fluoxetine share similarities with local anesthetics. Both are drugs sensitive to mutations at F4i15(1760) and Y4i22(1767). Structurally, fluoxetine resembles most classic local anesthetics in approximate size and by possessing an ammonium group and a benzene ring. Fluoxetine adopts similar binding modes in the closed channel homology model as QX-314 [N-(2,6-dimethylphenylcarbamoylmethyl) triethylammonium bromide], cocaine, and tetracaine (Bruhova et al., 2008; Tikhonov and Zhorov, 2012). Because fluoxetine can protrude between the III–IV inner helix interface while in the horizontal binding mode, it could suggest that fluoxetine may enter or exit through the III–IV domain interface pathway from the extracellular side of the membrane as it has been demonstrated with local anesthetics (Qu et al., 1995; Sunami et al., 2001). Experiments with fluoxetine with a quaternarized ammonium could reveal whether the ligand can block from the extracellular side.

The blockade of Na+,1.5 by fluoxetine should be taken into consideration when prescribing this drug. Blocking the cardiac Na+ channel may cause an intracardiac conduction delay, which may in turn cause a prolongation of the QRS complex on the electrocardiogram (Delk et al., 2007). Given the association between QRS prolongation and mortality, and the potential for drug-induced arrhythmia, caution is required when prescribing fluoxetine (Thanacoody and Thomas, 2005; Delk et al., 2007), especially given that inhibiting the Nav1.5 by as little as 10% may cause a prolongation of the QRS complex in humans (Cordes et al., 2009).

However, a question remains as to how to transpose the significance of the IC50 value of fluoxetine to a pathophysiological setting. The IC50/fCmax ratio, where fCmax represents

![Fig. 5. Open-channel block of Na+,1.5 by fluoxetine. (A) Superimposed I Na recordings obtained after the application of different concentrations of fluoxetine on Na+,1.5/L409C/A410W-expressing cells. The dashed line represents zero current. (B) Dose-response curves of the inhibitory effect of fluoxetine on Na+,1.5/L409C/A410W at the peak current (blue circle) and 90–100 milliseconds after the beginning of the pulse (green square). The IC50 value at the end of the pulse (5.5 μM) was significantly lower than the IC50 value at the peak current (9.6 μM) (***P < 0.001). Currents were elicited from a holding potential of −140 mV with a 50-millisecond test pulse at 0 mV delivered every 5 seconds. Normalized current (I/I Na) values were fitted to a Hill equation. Dotted gray boxes represent the peak current (left box) and the 90- to 100-millisecond (right box) areas used to construct the dose-response curves.](molpharm.aspetjournals.org)
Fig. 6. Searching for the binding site of fluoxetine in the closed and open Nav1.5. The P-loops and S6 helices of domains I, II, III, and IV are colored blue, orange, green, and violet, respectively. The outer helices and the L4–5 linker are shown as gray strands. The side chains of residues in the DEKA locus, Q1p49(372), S4p49(1712), F4i15(1760), and Y4i22(1767), are shown as sticks with yellow carbons. The water molecule at the DEKA locus is rod-shaped. (A and B) The side and extracellular views of the randomly generated starting points of fluoxetine in the closed Nav1.5. Fluoxetine is presented in wire-frame with gray carbons. For clarity, only 6000 of the 60,000 starting points are shown. (C–F) The side views of the lowest energy vertical (C and E) and horizontal (D and F) binding modes of fluoxetine in the closed (C and D) and open (E and F) channel. Fluoxetine is shown in thick sticks with gray carbons. The side chain of P3p49(1236) is shown in (D) and (F). For clarity, the outer helices are not shown in (C–F) (see the Protein Data Bank file in the Data Supplement).
the unbound (free) plasma concentration in a clinical setting, of a drug that evokes a QRS or a change in QT interval has been proposed as a tool for determining whether a drug can be safely prescribed (Redfern et al., 2003; Harmer et al., 2011). An IC50/fCmax ratio above 30 to 100 has been shown to ensure a suitable degree of safety in terms of drug-induced QRS complex prolongation. The fCmax for fluoxetine is 93 nM (Harmer et al., 2011). Thereby, when we mimic the membrane potential of cardiomyocytes in patch-clamp studies by imposing a holding potential of −90 mV to HEK-293 cells, the IC50/fCmax ratio is 50. This is within the 30 to 100 margin, and it should act as a safety flag for a possible cardiotoxicity.

Furthermore, in the case of fluoxetine, fCmax may not be a good indicator of actual plasma concentrations of total Na+,5 blockers in vivo because norfluoxetine, an active metabolite of fluoxetine, has a higher affinity for Na+,5 than fluoxetine itself. Given that norfluoxetine has a half-life of more than a week compared with 70 hours for a single dose of fluoxetine (Rambourg Schepens and Dawling, 1998), there is a possibility of a long-lasting additive effect on cardiac Na+ channels. In fact, in the calculation of the IC50/fCmax ratio, we should take into consideration the unbound (free) plasma concentration of norfluoxetine. Despite the lack of information about the fCmax elimination half-life of fluoxetine and norfluoxetine (Schenker et al., 1988), it is probably underestimated.

In conclusion, caution should be taken when prescribing fluoxetine at the same time as other Na+ channel inhibitors such as class 1 antiarrhythmic drugs, especially class 1A and 1C drugs. In addition, fluoxetine should be prescribed with extreme care for patients suffering from ventricular conduc
tion disorders or liver disease. Indeed, as the liver is the primary site of fluoxetine metabolism, the impairment of liver functions as a result of hepatitis or cirrhosis could affect the elimination half-life of fluoxetine and norfluoxetine (Schenker et al., 1988).

Authorship Contributions

Participated in research design: Poulin, Chahine, Beaulieu, Timour, Theriault.

Conducted experiments: Poulin, Chahine, Beaulieu, Bruhova.

Wrote or contributed to the writing of the manuscript: Poulin, Chahine, Beaulieu, Timour, Frassati, Bruhova.

References

Bagnéris C, Decsen PG, Hall BA, Nayel CE, Clapham DE, Kay CWM, and Wallace BA (2013) Role of the C-terminal domain in the structure and function of tetra

Bruhova I, Tikhonov DB, and Zhorov BS (2008) Access and binding of local anes

Delk C, Holstege CP, and Brady WJ (2007) Electropharmacological abnormalities as

Li Z and Scheraga HA (1987) Monte Carlo-minimization approach to the multiple

nants of drug access to the receptor site for antiarrhythmic drugs in the cardiac Na+ channel. Proc Natl Acad Sci USA 92:11839–11843.

Schenker S, Bergstrom RF, Wolen RL, and Lemberger L (1988) Fluoxetine disposi

Tejani-Butt SM (1992) [3H]fluoxetine: a radioligand for quantitation of norepi
phrine uptake sites by autoradiography or by homogenate binding. J Pharmacol Exp Ther 260:427–436.

Thanasou C, Kurath and Thomas SHL (2005) Tricyclic antidepressant poisoning: car

