Exon 3 Splicing and Mutagenesis Identify Residues Influencing Cell Surface Density of Heterologously Expressed Silkworm (Bombyx mori) Glutamate-Gated Chloride Channels

Shogo Furutani, Makoto Ihara, Yuri Nishino, Miki Akamatsu, Andrew K. Jones, David B. Sattelle, and Kazuhiko Matsuda

Department of Applied Biological Chemistry, Faculty of Agriculture, Kinki University, Nakamachi Nara, Japan (S.F., M.I., K.M.); Graduate School of Life Science, University of Hyogo, Koto, Kamigori-cho, Ako-gun, Hyogo, Japan (Y.N.); Graduate School of Agriculture, Kyoto University, Sakyo-Ku, Kyoto, Japan (M.A.); Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, United Kingdom (A.K.J.); and Department of Medicine, Wolfson Institute for Biomedical Research, University College London, London, United Kingdom (D.B.S.)

Received September 13, 2014; accepted September 26, 2014

ABSTRACT

Glutamate-gated chloride channels (GluCls) mediate fast inhibitory neurotransmission in invertebrate nervous systems. Insect GluCls show alternative splicing, and to determine its impact on channel function and pharmacology, we isolated GluCl cDNAs from larvae of the silkworm (Bombyx mori). We show that six B. mori glutamate-gated chloride channel variants are generated by splicing in exons 3 and 9 and that exons 3b and 3c are common in the brain and third thoracic ganglion. When expressed in Xenopus laevis oocytes, the three functional exon 3 variants (3a, b, c) all had similar EC50 values for L-glutamate and ivermectin (IVM); however, I max (the maximum L-glutamate- and IVM-induced response of the channels at saturating concentrations) differed strikingly between variants, with the 3c variant showing the largest L-glutamate- and IVM-induced responses. By contrast, a partial deletion detected in exon 9 had a much smaller impact on L-glutamate and IVM actions. Binding assays using [3H]IVM indicate that diversity in IVM responses among the GluCl variants is mainly due to the impact on channel assembly, altering receptor cell surface numbers. GluCl variants expressed in HEK293 cells show that structural differences influenced I max but not Kd values of [3H]IVM. Domain swapping and site-directed mutagenesis identified four amino acids in exon 3c as hot spots determining the highest amplitude of the L-glutamate and IVM responses. Modeling the GluCl 3a and 3c variants suggested that three of the four amino acids contribute to intersubunit contacts, whereas the other interacts with the TM2–TM3 linker, influencing the receptor response.

Introduction

The di-cysteine loop ligand-gated ion channels (cys-loop LGICs) permeable to chloride play an important role in inhibitory neurotransmission in both vertebrates and invertebrates. Five subunits, each consisting of four transmembrane domains, assemble to form a chloride-ion permeable channel that opens in response to the binding of neurotransmitters. As the equilibrium potential for chloride is close to the resting membrane potential, activation of this type of channel counteracts excitatory neurotransmitter-induced membrane depolarization. γ-Aminobutyric acid (GABA)-gated chloride channels are widely expressed in the nervous systems of arthropods and nematodes as well as in higher animals (Buckingham et al., 2005). Whereas glycine-gated chloride channels are also present in vertebrates, chloride channels gated by L-glutamate (GluCls) (Wolstenholme, 2012), dopamine (Ringstad et al., 2009), tyramine (Ringstad et al., 2009), histamine (Hardie, 1989; Gengs et al., 2002; Gisselmann et al., 2002; Zheng et al., 2002; Pantazis et al., 2008), and acetylcholine (Putrenko et al., 2005) are found only in invertebrates. Such channels are important candidate targets for the development of anthelmintics and insecticides (Wolstenholme, 1997; Raymond and Sattelle, 2002; Wolstenholme and Rogers, 2005; Wolstenholme et al., 2007).

GluCls were first discovered in electrophysiological studies on locust muscle. When L-glutamate was applied, a biphasic (depolarizing and hyperpolarizing) change in muscle membrane potential was observed; the hyperpolarizing phase was the result of enhanced chloride ion permeability (Cull-Candy, 1976). L-Glutamate–enhanced chloride permeability was also observed in the fast coxal depressor motor neurone of the...
American cockroach (Wafford and Sattelle, 1986). The molecular components of a GluCl were elucidated by the isolation of the gluc-α and β genes from the nematode Caenorhabditis elegans as the target of an antihelmintic drug ivermectin (IVM) (Cully et al., 1994). When expressed alone in Xenopus laevis oocytes, the α-subunit was activated by IVM, but not by L-glutamate, whereas the reverse was the case for the β-subunit (Cully et al., 1994). The pharmacology of the recombinant nematode GluCl most resembled that of the native receptor when both α and β subunits were coexpressed in oocytes. Subsequently, third and fourth genes were shown to contribute to IVM sensitivity (Wolstenholme and Rogers, 2005), and six C. elegans GluCl subunits are now known (Jones and Sattelle, 2008). In contrast, a single GluCl subunit was isolated from Drosophila melanogaster, which generates an IVM-sensitive channel when expressed in X. laevis oocytes (Cully et al., 1996). Subsequent analysis of genome sequences has shown that several insect species possess only a single gluc gene (Jones and Sattelle, 2006, 2007; Jones et al., 2010).

Even a single gene can yield diverse receptor subtypes. For example, the gene encoding the Drosophila GABA-gated chloride channel [resistant to dieldrin (RDL)] exhibits alternative splicing at exons 3 and 6, generating multiple products (ffrench-Constant and Rocheleau, 1993). Splicing and A-to-I modulations vary depending on the stage of development. Notably, the RNA editing occurs more frequently in adults than in embryonic and larval stages (Jones et al., 2009). Recently, a detailed characterization of the pharmacology of the most abundantly expressed splice/edit isoform of Drosophila RDL has been described (Lees et al., 2014).

In the case of GluCls, splice variants have been found in Drosophila larvae (Semenov and Pak, 1999), where exon 3 is alternatively spliced. This splicing is conserved in diverse insect species (Jones et al., 2009). However, little is known about the role of GluCl splicing diversity in the nervous system. The silkworm (Bombyx mori) genome of about 475 Mb has been fully sequenced (Mita et al., 2004; Xia et al., 2004). Its large larval size, compared with other model insects, permits the isolation of various organs. Also, the silkworm is evolutionally close to lepidopteran insect pests, offering a platform for screening candidate pesticides. Therefore, we have isolated from the silkworm nervous system cDNAs transcribed from the single GluCl [Bombyx mori glutamate-gated chloride channel (BmGluCl)] gene. We show that, although splicing-induced variations of BmGluCl do not impact on the EC50 values for L-glutamate and IVM, they do profoundly influence the peak (Imax) BmGluCl response to both ligands and that four amino acids play key roles in determining the cell surface numbers of BmGluCl.

Materials and Methods

Chemicals. L-Glutamate and IVM were purchased from Sigma-Aldrich (St. Louis, MO) and used without further purification.

Cloning of GluCl cDNAs and Their Sequences. Whole brains and the third thoracic ganglia from the last instar larvae of B. mori (p50, 'Daizo' strain) were isolated and homogenized separately with TRIzol reagent (Life Technologies, Carlsbad, CA) to extract RNAs, which were further treated with TURBO DNase (Life Technologies). To obtain the GluCl 5’ end, first-round polymerase chain reaction (PCR) was carried out with KOD-Plus-DNA polymerase (Toyobo, Osaka, Japan) and a pair of primers (forward, 5’-CGACCTGAGGACGAGGACTCTGTA-3’; reverse, 5’-GGTCCGATTTGCTGGA-3’G-3’ using first-strand cDNA prepared by the GeneRacer kit (Life Technologies), according to the following PCR cycles: 94°C for 2 minutes, followed by 30 cycles of 94°C for 15 seconds, 56°C for 30 seconds, and 68°C for 2 minutes. An aliquot (1 μl) of this reaction was used for second-round PCR by KOD-Plus-DNA polymerase using primers (forward, 5’-GGACGTGACTGAGGACTGAAAGTA-3’; reverse, 5’-GGTCCGATTTCTCTGCTC-3’) with the same cycle reaction as used in the first-round PCR. The PCR product was treated with Taq DNA polymerase (Takara Bio, Shiga, Japan) at 72°C for 30 minutes, gel purified, and cloned into either pGEM-T (Promega, Madison, WI), or TOPO cloning vector (Life Technologies).

The 3’ cDNA end was amplified by nested PCR using KOD-Plus-DNA polymerase, a pair of primers [first-round PCR (forward, 5’-TGAGACCATAGATGCAGCATG-3’; reverse, 5’-GGTGCTCAAGAGCTGCTTTCC-3’) and second-round PCR (forward, 5’-GGTGCCATTTGCAACGCTTCC-3’; reverse, 5’-GGTGCTCAAGAGCTGCTTTCC-3’)] and the first-strand cDNA prepared with the GeneRacer kit, according to the reaction cycle described above. In some cases, the 3’ end was determined using SMARTer RACE cDNA Amplification kit (Clontech Laboratories, Mountain View, CA).

Full-length cDNAs of BmGluCls were amplified by KOD-Plus-DNA polymerase using forward (5’-CGGGGTACCATGGGAATTCCTCGCGGCTATGT-3’) reverse (5’-CAAGGATCTCCTACGGTAAGCTCCCATAATTCGATGTGACTGTAAGGAGTA-3’) and reverse (5’-GGTGACCTGACCTCAAACTGAGTA-3’) primers, respectively) according to the following PCR cycle: 94°C for 2 minutes, followed by 30 cycles of 94°C for 15 seconds, 56°C for 30 seconds, and 68°C for 2 minutes. Amplified full-length cDNA of BmGluCl was gel purified, digested with KpnI and BamHI, and cloned into the same restriction sites of the pcDNA3.1(+) vector (Life Technologies). The entire cDNA sequence was determined using a 3100 Genetic Analyzer (Life Technologies).

Real-Time PCR Analysis. The mRNAs for BmGluCl were quantified by real-time PCR using a 7500 Real Time PCR System (Life Technologies) with exon-specific primers [exon 3a, exon 3b, exon 3c, exon 3 deleted (3Δ), exon 9, exon 9 partially deleted (9p); see Supplemental Table 1]. The PCR was conducted using 500 ng total RNA and the PrimeScript RT Reagent Kit (Real Time; Takara Bio) together with FastStart Universal SYBR Green Master (Rox; Agilent Technologies), according to the following PCR cycle: denaturing at 94°C for 2 minutes, followed by a cycle reaction up to 40 cycles of 94°C for 15 seconds, 60°C for 30 seconds, and 68°C for 2 minutes. B. mori actin A3 gene (GenBank accession number X04507) was amplified as reference by the same reaction protocol using forward (5’-GGGTGGTCTGTGCTCCTACAC-3’) and reverse (5’-GGATGTCCAGTGCCTGACTTCA-3’) primers to obtain a ΔCt value [= Ct (target gene) – Ct (actin)]. Relative mRNA expression levels were compared by normalizing the ΔCt value to that for exon 3a sequence.

cRNA Preparation for Functional Expressions of BmGluCl Variants in X. laevis Oocytes. The pcDNA3.1 vector carrying a BmGluCl cDNA was linearized with BamHI and used as a template for transcription of cRNA. The cRNA was prepared using the mMESSAGE mMACHINE T7 Ultra kit (Life Technologies) together with the linearized cDNA and was dissolved in RNase-free water at a concentration of 1 mg ml⁻¹ and stored at –80°C until use.

Functional Expression of BmGluCls in X. laevis Oocytes. The ovary of X. laevis was removed from anesthetized X. laevis according to the United Kingdom Animals (Scientific Procedures) Act, 1986. The oocytes were treated with 2.0 mg ml⁻¹ collagenase (type IA; Sigma-Aldrich) in the Ca²⁺-free standard oocyte saline (SOS) of the following composition: 100 mM NaCl, 2 mM KCl, 1 mM MgCl₂, and 5 mM HEPES 5.0 (pH 7.6), and then transferred into SOS consisting of 100 mM NaCl, 2 mM KCl, 1.8 mM CaCl₂, 1 mM MgCl₂, and 5 mM HEPES 5.0 (pH 7.6). Oocytes at stage V or VI were defolliculated manually and cultured.
using a pair of fine forceps. Then each oocyte was injected with 50 nl cRNA solution of BmGluCl and incubated at 16°C in SOS supplemented with penicillin (100 U ml\(^{-1}\)), streptomycin (100 \(\mu\)g ml\(^{-1}\)), gentamycin (20 \(\mu\)g ml\(^{-1}\)), and 2.5 mM sodium pyruvate. Electrophysiology was conducted 1 day after cRNA injection.

Voltage-Clamp Electrophysiology. The recording of the l-glutamate–induced currents in oocytes under voltage-clamp was carried out at room temperature (18–23°C). The \(X.\) laevis oocytes were secured in a recording chamber that was continuously perfused with SOS at a flow rate of 7–10 ml min\(^{-1}\). Membrane currents were recorded with a GENECCLAMP 500B amplifier (Molecular Devices, Sunnyvale, CA) at a holding potential of \(-80\) mV. The electrodes were filled with 2 M KCl and had a resistance of 1–5 MΩ when measured in SOS. Signals were digitized by a Digidata 1200 data acquisition system (Molecular Devices) and recorded using Clampex 8 (Molecular Devices). l-Glutamate was directly dissolved in SOS. In the case of IVM, each test solution was prepared by diluting the 10 mM stock solution in dimethyl sulfoxide with SOS. Test solutions were applied to oocytes for 3–5 seconds, with an interval of 3 minutes between applications. However, it was difficult to completely remove IVM when tested at concentrations above 1 \(\mu\)M. In such cases, only a single exposure to IVM was applied per oocyte.

Analysis of Electrophysiological Data. Membrane currents were analyzed using Clampfit 9 (Molecular Devices). The concentration–response curves for l-glutamate and IVM of BmGluCls were fitted with the following equation, using Prism 4 (GraphPad Software, La Jolla, CA):

\[
Y = \frac{I_{\text{max}}}{1 + 10^{(\log EC_{50}-A)/C_138}}
\]

(1)

where \(Y\) is the normalized response, \(I_{\text{max}}\) is the peak current amplitude (\(\mu\)A) of the l-glutamate (or IVM)–induced response, \(EC_{50}\) (M) is the half-maximal effective concentration, [A] is the logarithm of the concentration of a ligand (M), and \(n_H\) is the Hill coefficient.

\([\text{3H}]\text{IVM} Binding to Oocyte Membranes. One hundred \(Xenopus\) oocytes expressing each GluCl variant were homogenized in homogenizing buffer (10 mM HEPES, 250 mM sucrose, 1 mM EGTA, and 2 mM MgCl\(_2\); pH 7.4) supplemented with Complete protease inhibitor cocktail (F. Hoffmann-La Roche) on ice, and the homogenates were centrifuged at 500 \(\times\) g for 10 minutes. The supernatants were centrifuged at 25,000 \(\times\) g for 15 minutes. The membrane fraction, which was suspended in 50 mM HEPES buffer (pH 7.4), and the membrane homogenates (20 \(\mu\)g protein) of \(Xenopus\) oocytes were incubated with 1 mM \([\text{3H}]\text{IVM}\) in 0.5 ml 50 mM HEPES buffer (pH 7.4) containing 0.02% Triton X-100 at 22°C for 60 minutes. Reaction mixtures for the determination of nonspecific binding included 1 \(\mu\)M unlabeled IVM. After the incubation, reactions were terminated by rapid filtration through GF/B glass fiber filters with a Brandel M-24 cell harvester. The filters were subsequently washed with cold distilled water containing 0.25% Triton X-100. Radioactivity on the filters was counted with the LSC-5100 liquid scintillation counter, and the \(K_d\) and \(B_{\text{max}}\) values of \([\text{3H}]\text{IVM}\) were determined as described for BmGluCls expressed in \(Xenopus\) oocytes.

BmGluCl transcripts in the HEK293 cells were quantified by reverse-transcription PCR (RT-PCR). Total RNA was isolated from HEK293 cells using RNeasy Plus Mini Kit (Qiagen, Hilden, Germany). The isolated RNA (2.5 \(\mu\)g) was reverse-transcribed using PrimerScript RT Reagent Kit (Takara Bio) and oligo (dT)\(_{30}\) primer. A 250-bp BmGluCl gene fragment was amplified by PCR from single-stranded cDNA and primers (forward, 5’-TTCAGTACATCTCATTCA-3’; reverse, 5’-GGGGCAACTCGTAGTACA-3’). A 272-bp fragment of HEK293 cell \(\beta\)-actin cDNA was amplified as an internal control using primers (forward, 5’-ATCGTGAGAGTCCTCC-3’; reverse, 5’-TCGTAATCTCTCAGGAG-3’). PCR amplification was performed using KOD-Plus- (Toyobo, Osaka, Japan), as follows: an initial denaturation at 94°C for 4 minutes, followed by 30 cycles at 98°C for 10 seconds, 57°C for 30 seconds, and 68°C for 15 seconds.

Amino Acid Substitutions in Exon 3a and Exon 3c Variants. In exons 3a and 3c, block I nucleotide sequences were exchanged by overlap extension PCR with primers shown in Supplemental Table 2, whereas the block II nucleotide sequences were mutated by inverse PCR with primers shown in Supplemental Table 3. DNA sequences of all the mutants were confirmed by DNA sequencing.

Modeling of BmGluCl Variants. Homology models of BmGluCl exon 3a and exon 3c variants were constructed using the homology modeling software Protein Discovery Full Automatic Modeling System (PDFAMS Pro/Ligand&Complex; In-Silico Sciences, Tokyo) and the molecular modeling software package Sybyl (version 7.3; Tripos Associates, St. Louis, MO). First, primary sequences of exon 3a and exon 3c variants of BmGluCl were aligned with the sequence of \(C.\) elegans GluCl a subunit, and then the homodimer models complexed with l-glutamate and IVM were constructed based on the crystal structure of \(C.\) elegans GluCl a subunit with the two ligands (Protein Data Bank code 3RIP) (Hibbs and Gouaux, 2011) by PDFAMS. The receptor model constructed in this way was energy-minimized for 5000 iterations of conjugated gradients using the force field and partial charges of the molecular mechanics MMFF94 (Halgren, 1999, 1999b) using Sybyl. Finally, each model was represented graphically using Sybyl to identify structural features underpinning the characteristics of the variants. The Protein Data Bank files of the homology models of BmGluCl exon 3a (BmGluCl3a.pdb) and 3c variants (BmGluCl3c.pdb) are provided in Supplemental Material.

Results

Expression of BmGluCl Variants in the Silkworm. We amplified full-length BmGluCl cDNAs by RT-PCR from the silkworm larval brain and sequenced randomly selected cloned cDNAs. The BmGluCl cDNAs encode peptide sequences possessing common features to cys-loop ligand-gated ion channels (Fig. 1B), including the following: an N-terminal signal peptide (first 24 residues); an extracellular N-terminal region containing the ligand-binding site and the di-cysteine loop (cys-loop); four transmembrane regions TM1–4 and a long intracellular TM3–TM4 linker. The BmGluCl gene consists of 11 exons, the last exon encoding the stop codon (Fig. 1A). Splice variants generated at exons 3 and 9 gave multiple cDNA products from the BmGluCl gene (Fig. 1B). Alternative splicing...
at exon 3, which encodes a part of the N-terminal ligand binding domain, generates three variants [exons 3a (GenBank accession number KC342243), 3b (KC342244), and 3c (KC342245)], whereas a fourth variant was observed, which completely lacks exon 3 [exon 3a (KC342246)]. Some BmGluCls containing either exon 3b or 3c possess an attenuated amino acid sequence after splicing at exon 9 (Fig. 1B). The exon 9 partial Δ variant is referred to in this study as 9pΔ. We also detected two variants in the C-terminal amino acid sequences [NLAYW-COOH (type I) and NLAYWSTYLFRDEEEEK-COOH (type II)] in the larval brain (Fig. 1B). No RNA editing resulting in amino acid mutations in BmGluCls was observed from the larval brain cDNAs.

A comparison of sequence identities as well as the use of a phylogenetic tree (Supplemental Fig. 1) shows that BmGluCl is most closely related to the GluCl of another lepidopteran insect, the diamond-back moth Plutella xylostella, sharing 90% identity. With GluCls of coleopteran, dipteran, and hymenopteran insects, BmGluCl shows 77–83% identity. Compared with arachnids, BmGluCl shares considerably lower identity, showing 49% identity with the red spider mite Tetranychus urticae, and lower identity still when compared with nematode GluCls (39 and 36% with GLC-1 and GLC-2, respectively).

From the 50 type II clones analyzed, we found exon 3b (48%) to be the most abundant, followed by exon 3c (40%), exon 3a (10%), and exon 3Δ (2%) (Fig. 1C). The deletion of exon 3 resulting from an in-frame stop codon led to the generation of an incomplete, nonfunctional BmGluCl. Leaving aside exon 3Δ, the detection frequencies for variants containing the exon 9 and 9pΔ were 90% and 8%, respectively (Fig. 1D).

BmGluCl Gene Expression. We quantified the BmGluCl gene expression in the larval nervous system. The order of abundance of BmGluCl splice variants was exon 3b, exon 3c > exon 3a > exon 3Δ (Fig. 1E). Also, variants containing exon 9 complete were expressed at a much higher level than those containing the truncated version (Fig. 1F). The GluCl gene expression level in the third thoracic ganglion of the Bombyx larvae resembled those for the brain, with exons 3b and 3c being predominant (Fig. 1G). Also, the exon 9 complete variant was more abundant than the truncated counterpart (Fig. 1H).

Functional Expression of BmGluCls in X. laevis Oocytes. The cRNA for each GluCl variant was injected into X. laevis oocytes to determine the concentration-response relationships for l-glutamate and IVM. Although BmGluCls carrying type I C-terminal sequence were not functionally expressed, those carrying type II C-terminal sequence combined with either exon 3a, exon 3b, exon 3b/exon 9pΔ (KC342247), exon 3c, or exon 3c/exon 9pΔ (KC342248) formed robust functional GluCls that responded to bath-applied 1mM l-glutamate (Fig. 2A). However, the exon 3Δ variant was not functional because the transcript has an in-frame stop codon in the exon 3–encoded sequence.

No significant difference was observed between variants in terms of pEC50 (–logEC50) (Fig. 2, B and C; Table 1) when current amplitude data were plotted against the concentration.
of L-glutamate. In contrast, approximately 3.6-fold differences were noted in the amplitude of the peak response to L-glutamate. The amplitude of the peak response was highest for exon 3c variant, followed, respectively, by exon 3b and exon 3a variants (Fig. 2, B and D; Table 1). The differences between exon 3a versus 3c, between exon 3a versus exon 3c/exon 9pΔ, between exon 3b versus exon 3c/exon 9pΔ, and between exon 3b/exon 9pΔ versus exon 3c/exon 9pΔ were all significant ($P < 0.05$, by Tukey’s test (one-way analysis of variance [ANOVA])). However, the effect of the exon 9 truncation on the L-glutamate response was not significant.

We also tested IVM on the BmGluCl variants expressed in Xenopus oocytes. IVM-induced inward currents (Fig. 2E) increased more slowly than the L-glutamate–induced currents (Fig. 2A). As found for L-glutamate–activated each variant with similar EC$_{50}$ (Fig. 2, F and G), but the IVM-induced maximum current amplitude was affected by exon 3 sequence variations (Fig. 2H). The exon 3c and exon 3c/exon 9pΔ variants showed significantly larger responses to IVM than the exon 3a variant ($P < 0.05$, by Tukey’s test (one-way ANOVA)) (Fig. 3, F and H; Table 1).

[3H]IVM Binding to Oocyte and HEK293 Cell Membranes Expressing BmGluCl Variants. We measured specific binding of 1 nM [3H]IVM to Xenopus oocyte membranes expressing splice variants of BmGluCls at a saturating concentration of IVM (1 μM) (Fig. 2I). [3H]IVM bound at the lowest level of 35 ± 11 fmol/mg protein to oocyte membranes expressing the exon 3a variant, whereas it bound at the highest level (197 ± 76 fmol/mg protein) to membranes expressing the exon 3c variant, with binding to membranes of the exon 3b variant at an intermediate level (96 ± 13 fmol/mg protein) (Fig. 2I). A significant difference of the specific [3H]IVM binding was observed when the exon 3a and exon 3c variants were compared ($P < 0.05$, by Tukey’s test (one-way ANOVA)).

We further conducted [3H]IVM-binding assays using HEK293 cells expressing the exon 3a, 3b, 3c, and exon 3c/ exon 9pΔ variants (Fig. 2J). The cDNAs of variants were expressed at a similar level in the cell as evaluated by semiquantitative RT-PCR (Fig. 2J, left). No significant specific [3H]IVM binding was observed for cells expressing the exon 3a variant, whereas significant binding was detected from cells expressing other variants (Fig. 2J, middle). [3H]IVM bound with a B_{max} order of exon 3c (656.2 ± 88.7 fmol/mg protein) > exon 3c/exon 9pΔ (316.9 ± 31.5 fmol/mg protein) > exon 3b (243.6 ± 31.7 fmol/mg protein) (Fig. 2J, right), whereas there was no significant difference in K_d (exon 3b, 222 ± 99 μM (mean ± SEM, n = 3); exon 3c, 268 ± 113 μM (n = 3); exon 3c/ exon 9pΔ, 217 ± 75 μM (n = 3)).

Amino Acid Residues Determining the Response Amplitude of BmGluCl Variants to L-Glutamate and IVM. To identify structural features of the exon 3c–coding region underpinning enhanced responses to L-glutamate and IVM, we first divided the region into two parts, blocks I and II, and exchanged each block between exon 3a and 3c GluCl isomers (Fig. 1B). Exchanging block I had no significant impact on the response amplitude to L-glutamate and IVM (Fig. 3, A and B). In contrast, replacing block II of exon 3a with that of exon 3c resulted in enhanced amplitude of the responses to L-glutamate and IVM (Fig. 3C), whereas an inverse exchange in exon 3c resulted in reduced responses (Fig. 3D). These findings indicate that block II plays a more important role than block I in determining the response amplitude.

In block II, Thr77, Thr78, Ser80, and Ile82 of exon 3a isoform differ from corresponding amino acids (Ser78, Lys79, Asp81, and Tyr83) of exon 3c isoform (Fig. 1). Hence, these four amino acids were exchanged either singly, or in combinations, between exon 3a and 3c splice variants, and resultant mutants were expressed in Xenopus oocytes to identify which amino acids are critical in determining the response amplitude to L-glutamate. Replacing one, two, or three of these four amino acids in the exon 3a variant did not yield significantly higher responses than those seen in wild type (Fig. 3E).

We also examined the effects of single amino acid mutations in the exon 3c variant, changing to the corresponding amino acids found in exon 3a. Of the four single amino acid mutations, only S78T and Y83I significantly reduced the current amplitude of the response to L-glutamate when compared with the control (Fig. 3F, n = 4, $P < 0.05$, one-way ANOVA, Tukey’s test).

Similar results were obtained when the impacts of single, double, and triple mutations were examined on the response to IVM (Fig. 3G). Except in the case of the T77S;S80D;I82Y mutations, even when three of Thr77, Thr78, Ser80, and Ile82 in block II of the exon 3a variant were substituted by the corresponding amino acids in exon 3c, the response amplitude to IVM did not significantly increase compared with the response observed in wild-type exon 3a. In studies of mutations on IVM response of exon 3c, S78T and Y83I mutations significantly reduced the response amplitude to IVM (Fig. 3H, n = 4, $P < 0.05$, one-way ANOVA, Tukey’s test).

Modeling of GluCl Variants. To elucidate the mechanism for the receptor-density determining effects of the exon 3–coding sequence, the BmGluCl exon 3a and 3c variants complexed with L-glutamate and IVM were modeled using the crystal structure of the C. elegans GluCl α subunit (Fig. 4, A and B) (Hibbs and Gouaux, 2011). Block I is located close to or at the L-glutamate binding domain (Fig. 4, C and E), whereas block II is present at the interface of adjacent two subunits (Fig. 4, D and F). In block II of the exon 3a splice variant model, Thr77 and Thr78 do not appear to have a particular role, whereas Lys83 forms a salt bridge with Glu85 (Fig. 4E). In contrast, in block II of the exon 3c splice variant, Lys79 of one subunit forms a salt bridge with Glu86 of another subunit where Asp81 forms a salt bridge with Lys84 (Fig. 4F). Additionally, Tyr83 contacts the TM2–TM3 linker (Fig. 4F).

Discussion

Lepidopteran larvae are among the world’s most important agricultural pests. Lepidopteran adults can also be beneficial pollinators, and, in the case of Bombyx mori, larvae are important for commercial silk production. Thus, Lepidoptera present complex challenges for sustaining the world’s harvest and for other important industries. The cys-loop LGICs are targets for several of the current generation of crop protection chemicals (Raymond-Delpech et al., 2005), but to date there are very few studies of cloned and functionally expressed lepidopteran cys-loop LGICs. In this study, we describe for the first time robust functional expression of B. mori GluCls. We also provide the first study of the effects of splicing-induced diversity on the pharmacology of BmGluCls expressed in the brain and third thoracic ganglion of the last instar larvae. Functional diversity is generated by the incorporation of one of three alternatives for exon 3 (Fig. 1A). The equivalent exon is...
Fig. 2. Inward current responses of BmGluCl splice variants to L-glutamate and ivermectin B1a, and concentration-response relationships for these ligands. (A) Inward currents induced by 1 mM L-glutamate in *X. laevis* oocytes expressing BmGluCl splice variants. (B) Concentration-response relationships for L-glutamate. (C) EC50s for L-glutamate. (D) Maximum current amplitudes of variant responses to 1 mM L-glutamate. (E) Inward currents induced by 10 μM ivermectin (IVM) in *X. laevis* oocytes expressing BmGluCl variants. (F) Concentration-response relationships for IVM. (G) EC50s for IVM. (H) Maximum current amplitudes (I_max) of the response to 10 μM IVM. The data shown in (B–D and F–H) are presented as the mean ± S.E. of repeated experiments (n = 4). (I) Specific [3H]IVM binding to membranes of *Xenopus* oocytes expressing BmGluCl variants. A total of 20 μg protein was used for each assay. Data are represented as the mean ± S.E. of repeated experiments (n = 3). (J) Specific [3H]IVM binding to membranes of HEK293 cells expressing BmGluCl variants. (Left) RT-PCR of BmGluCl isoforms expressed in HEK293 cells compared with actin gene expression. (Middle) Specific
also spliced in other insects, although the number of possible alternative exons can vary between species. For instance, there are three possible alternatives for the GluCls in Tribolium castaneum (Jones and Sattelle, 2007), Apis mellifera (Demaures et al., 2013), and Musca domestica (Kita et al., 2014), whereas only two are found in D. melanogaster (Semenov and Pak, 1999) and Nasonia vitripennis (Jones et al., 2010). The variant we observed in this work in which exon 3 is omitted (Fig. 1B) has to date only been seen in the GluCl of B. mori. However, the exclusion of exons has been observed in other insect cys-loop ligand-gated ion channels such as the α6 nicotinic acetylcholine receptor subunit (Grauso et al., 2002).

In Drosophila GluCl diversity is further increased by the addition of a small number of residues at the C terminus (Semenov and Pak, 1999). This is also to be the case for BmGluCl (Fig. 1B). The complete exon 9–encoded sequence in Bombyx may be considered as an insertion from the partially Δ sequence. However, the frequency of the complete exon 9 sequence was higher than that of the truncated one (Fig. 1). Hence, we depict the longer exon 9–encoded sequence as the norm (Fig. 1B).

In Drosophila GluCl, several residues undergo RNA editing (Semenov and Pak, 1999). We found no amino acid changing RNA editing in the BmGluCl message from the larval brain. However, we cannot rule out that editing of BmGluCl may occur in adults, as much lower editing was observed in the embryo and larval stages than in adult stages in the case of the Drosophila GABA receptor, RDL (Jones et al., 2009), and in general RNA editing is more pronounced in adult insect nervous tissue (Keegan et al., 2005).

We detected two C-terminal sequences, types I and II (Fig. 1B). The variant with type I C terminal was not functional on its own. The type I variant, as well as the peptide resulting from the deletion at exon 3, may prevent functional expression of other splice variants, resulting in a dominant-negative effect. In such an event, inhibitory control in the nervous system would be reduced, leading to enhanced excitability that may accelerate hatching, molting, and eclosion.

For the Drosophila RDL GABA receptor, alternative splicing as well as RNA editing profoundly affected the EC50 for GABA (Jones et al., 2009). In contrast, the splicing-induced variations in BmGluCl scarcely influence the EC50 for L-glutamate and IVM. Alternative splicing of the Musca domestica GluCl was also found not to affect L-glutamate sensitivity (Kita et al., 2014). However, we show that such diversity at exon 3 resulted in dramatic changes in the peak amplitude of the responses to L-glutamate (Fig. 2D) and IVM (Fig. 2H). The rank order of exon 3c > exon 3b > exon 3a for 3H[1]IVM binding to BmGluCls expressed in oocytes (Fig. 2I) and HEK293 cells (Fig. 2J) resembles the rank order of the response amplitude to L-glutamate and IVM (Fig. 2, D and H), suggesting that changes in the response amplitude, at least in part, result from altered surface receptor numbers. However, such phenomena may be limited to the vertebrate expression vehicles deployed in this study, Xenopus oocytes and HEK293 cells. Thus, studies using insect cell lines are needed in the future prior to any broader conclusion that the exon 3–coded amino acids always regulate the functional expression of GluCls.

Amino acids which influence the membrane traffic of LGHs other than BmGluCls have been identified. For example, the amino acid (Arg607) in the RNA editing site of the AMPA-type glutamate receptor subunit GluA2 has been recognized as a determinant of membrane trafficking and, thus, cell surface density (Greger et al., 2002). Notably, RNA editing at Arg607 controls the AMPA receptor exit from the endoplasmic reticulum (ER). Also, RNA editing in the ligand binding domain and subunit interface of AMPA receptors has been shown to alter surface expression via the quality check at ER (Penn and Greger, 2009). In the case of vertebrate GABA receptor subunit α3, the editing-induced Ile to Met switch in TM3 has been shown to reduce its expression in HEK293 cells (Daniel et al., 2011). We have identified four amino acids as key determinants of the cell surface receptor numbers of BmGluCls (Fig. 3). In the case of the GluA2 receptor, stronger interface contacts result in prolonged ER retention, thereby enhancing receptor biogenesis. Of the four key amino acids in BmGluCls, three are involved in intersubunit contacts at the subunit interface (Fig. 4). These amino acids may determine the ER retention time and, thus, membrane trafficking. However, if the difference of the response amplitude of BmGluCl variants was solely due to trafficking, then radio-ligand binding to the splice variants would be similar, but this was not the case. Therefore, the difference in ligand binding of 1 nM [3H]IVM to membranes (10 µg protein) of HEK293 cells expressing BmGluCl variants (n = 3). No detectable specific [3H]IVM binding was observed to membranes of HEK293 cells transfected with the exon 3a variant cDNA. (Right) Saturation isotherms of specific [3H]IVM binding to membranes (10 µg protein) of HEK293 cells expressing BmGluCl variants. Data are shown as the mean ± S.E. (n = 3). A significant difference was observed in Bmax between exon 3b and exon 3c variants (P < 0.05, one-way ANOVA), whereas no such difference was observed in Bmax for exon 3b, exon 3c, and exon 3c/exon 9pΔ variants. In (C, D, G, and H–J), x, y, or z indicates groups of data that are statistically different (P < 0.05, one-way ANOVA, Tukey’s test).

<table>
<thead>
<tr>
<th>Variants</th>
<th>L-Glutamate</th>
<th>IVM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>pEC50</td>
<td>Imax</td>
</tr>
<tr>
<td>Exon 3a</td>
<td>4.51 ± 0.26</td>
<td>2.55 ± 0.25</td>
</tr>
<tr>
<td>Exon 3b</td>
<td>4.35 ± 0.23</td>
<td>2.41 ± 0.35</td>
</tr>
<tr>
<td>Exon 3b/Exon 9 partially Δ</td>
<td>4.48 ± 0.14</td>
<td>4.28 ± 0.22</td>
</tr>
<tr>
<td>Exon 3c</td>
<td>4.71 ± 0.19</td>
<td>9.56 ± 0.73</td>
</tr>
<tr>
<td>Exon 3c/Exon 9 partially Δ</td>
<td>4.70 ± 0.13</td>
<td>11.40 ± 0.62</td>
</tr>
</tbody>
</table>
binding may be due to differences in assembly of the subunits into a functional pentamer or translation efficiency of the cRNAs.

In the computationally generated model, only one salt bridge is formed between Lys83 and Glu85 within each subunit of the exon 3a variant (Fig. 4E). In addition to one within-subunit salt bridge formed between Asp81 and Lys84, an intersubunit salt bridge between Lys79 and Glu86 in a separate subunit is formed in the exon 3c variant (Fig. 4F), strengthening subunit assembly. However, the K79T mutation in exon 3c had no

Fig. 3. The current amplitude of the responses to L-glutamate and ivermectin of the wild-type BmGluCl splice variants 3a and 3c and their chimeras and mutants. Each bar graph shows mean ± S.E.M. (n = 4–8). (A) Wild-type exon 3a variant and its chimera containing exon 3c sequence in block I region. (B) Wild-type exon 3c and its chimera containing exon 3a sequence in block I region. (C) Wild-type exon 3a and its chimera containing exon 3c sequence in block II region. (D) Wild-type exon 3c and its chimera containing exon 3a sequence in block II region. (E) Responses to L-glutamate of the wild-type exon 3a and its mutants in which single-three amino acids were exchanged with corresponding amino acids in exon 3c in block II region. (F) Responses to L-glutamate of the wild-type exon 3c and its mutants in which a single amino acid was exchanged with the corresponding amino acid in exon 3a in block II region. (G) Responses to IVM of the wild-type exon 3a and its mutants in which single-three amino acids were exchanged with corresponding amino acids in exon 3c in block II region. (H) Responses to IVM of the wild-type exon 3c and its mutants in which a single amino acid was exchanged with the corresponding amino acid in exon 3a in block II region. In (E–H), the same wild-type and chimera (block II 3a to 3a and block II 3c to 3a) data as those indicated in (C) and (D) were used to facilitate understanding of the changes resulting from the amino acid swapping. In (A–D), the Student’s t tests were carried out (*P < 0.05; **P < 0.01; ***P < 0.001). In (E–H), one-way ANOVA (Tukey’s tests) were carried out. Different letters (a–e) were used to indicate groups showing significant differences (P < 0.05).
significant effect on the response amplitude to L-glutamate (Fig. 3F) and only a small impact on the response amplitude to IVM (Fig. 3H). At first glance, this appears to contradict the salt bridge–assisted assembly mechanism, yet the observation can be accounted for as follows. Ser78 assists in Lys79 access to Glu86, promoting the assembly, and, in the K79T mutant, Ser78 forms a hydrogen bond with Glu86, counteracting the loss of Lys79–Asp81 salt bridge.

In this way, the diversified response in current amplitude of BmGluCl variants can be explained, in part, by the changes of receptor density. Nevertheless, the factors influencing the current amplitude are not limited to just this process. Tyr83 in exon 3c interacts with the TM2–TM3 linker (see Fig. 4F), whereas Ile82 in exon 3a does not contact the linker (Fig. 4E). Since the TM2–TM3 linker is located close to the transmembrane allosteric site (Hibbs and Gouaux, 2011), such a Tyr83 contact may promote gating of the ion channel, resulting in higher current amplitude of the IVM response. Alternatively, the stabilized open conformation may accelerate exit from the ER, thereby enhancing the number of functional BmGluCls as in the case of ionotropic L-glutamate–gated cation channels (Fleck, 2006; Penn et al., 2008; Coleman et al., 2009; Gill et al., 2009).

In addition to the interactions with the linker, we cannot rule out a possible contribution of block I to the observed amplitude variations. Thr77 in exon 3a and Ser78 in exon 3c are located in the vicinity of block I where L-glutamate binds (Fig. 4). Thus, these connector amino acids may indirectly affect the response amplitude. Indeed, the exon 3a chimera where only block II region was replaced with the corresponding exon 3c region (Fig. 3C) showed smaller amplitudes of L-glutamate and IVM responses than those of the wild-type exon 3c variant (Fig. 3D), reflecting some block I contributions to the determination of the response amplitude. Also, the effects of the mutations in block II of the two variants were not complete mirror images (Fig. 4, E–H), further supporting this. Nonetheless, we show that mutations of the four amino acids in block II can affect the GluCl response amplitude to the orthosteric ligand L-glutamate and the allosteric ligand IVM (Fig. 3, E–H).

Thus, from our own and other studies, exon 3 splicing is now known to affect both ligand-gated union channel cell surface expression levels and affinity for ligands, thereby influencing
apparent EC$_{50}$ and efficacy, respectively. For the first time, we have shown that four residues (Thr77, Thr78, Ser80, and Ile82 in the exon 3a variant; Ser78, Lys79, Asp81, and Tyr83 in the exon 3c variant) can influence cell surface receptor density. The splice variants of BmGluCls expressed in the brain and the third thoracic ganglion show diverse amplitudes in response to L-glutamate and IVM, depending on the level of cell surface expression. It is important to examine whether such GluCl regulation is general in insects and can be extended to other cys-loop LGICs. It will also be of interest to elucidate the role of nonsense variants, which may offer a possible means of downregulating inhibitory neurotransmission, as is the case for the mouse a7 nAChR subunit, in which a truncated variant acts as a dominant negative when co-transfected with full-length a7 in HEK 293 cells (Saragoza et al., 2003).

The BmGluCls study enhances our current understanding of the diverse functional impact of ligand-gated anion channel exon 3 splicing on the response to orthosteric and allosteric ligands.

Acknowledgments
The authors thank Dr. Hiroaki Noda and Dr. Yukiko Matsumoto of National Institute of Agricultural Sciences for assistance in cloning and sequencing the cDNAs. The authors also thank Dr. Keiji Tanaka of Kinki University for assistance in the binding assay and Yoshishita Ozoe, Dr. Tomo Kita, Takahiro Irie, and Toshinori Fuse of Shimane University for advice on the binding assay. The authors also thank Dr. Hirokazu Ueda of National Institute for Agro-Environmental Sciences for assistance with the quantitative PCR.

Authorship Contributions
Participated in research design: Matsuda, Sattelle.
Conducted experiments: Furutani, Ibara, Nishino, Akamatsu, Jones.
Performed data analysis: Furutani, Ibara, Jones, Sattelle, Matsuda.
Wrote or contributed to the writing of the manuscript: Furutani, Ibara, Nishino, Akamatsu, Jones, Sattelle, Matsuda.

References
Cull-Candy SG (1976) Two types of extrajunctional L-glutamate receptors in locust brain and the third thoracic ganglion show diverse amplitudes in response to L-glutamate and IVM, depending on the level of cell surface expression. It is important to examine whether such GluCl regulation is general in insects and can be extended to other cys-loop LGICs. It will also be of interest to elucidate the role of nonsense variants, which may offer a possible means of downregulating inhibitory neurotransmission, as is the case for the mouse a7 nAChR subunit, in which a truncated variant acts as a dominant negative when co-transfected with full-length a7 in HEK 293 cells (Saragoza et al., 2003).

The BmGluCls study enhances our current understanding of the diverse functional impact of ligand-gated anion channel exon 3 splicing on the response to orthosteric and allosteric ligands.

Acknowledgments
The authors thank Dr. Hiroaki Noda and Dr. Yukiko Matsumoto of National Institute of Agricultural Sciences for assistance in cloning and sequencing the cDNAs. The authors also thank Dr. Keiji Tanaka of Kinki University for assistance in the binding assay and Yoshishita Ozoe, Dr. Tomo Kita, Takahiro Irie, and Toshinori Fuse of Shimane University for advice on the binding assay. The authors also thank Dr. Hirokazu Ueda of National Institute for Agro-Environmental Sciences for assistance with the quantitative PCR.

Authorship Contributions
Participated in research design: Matsuda, Sattelle. Conducted experiments: Furutani, Ibara, Nishino, Akamatsu, Jones. Performed data analysis: Furutani, Ibara, Jones, Sattelle, Matsuda. Wrote or contributed to the writing of the manuscript: Furutani, Ibara, Nishino, Akamatsu, Jones, Sattelle, Matsuda.

References
Cull-Candy SG (1976) Two types of extrajunctional L-glutamate receptors in locust brain and the third thoracic ganglion show diverse amplitudes in response to L-glutamate and IVM, depending on the level of cell surface expression. It is important to examine whether such GluCl regulation is general in insects and can be extended to other cys-loop LGICs. It will also be of interest to elucidate the role of nonsense variants, which may offer a possible means of downregulating inhibitory neurotransmission, as is the case for the mouse a7 nAChR subunit, in which a truncated variant acts as a dominant negative when co-transfected with full-length a7 in HEK 293 cells (Saragoza et al., 2003).

The BmGluCls study enhances our current understanding of the diverse functional impact of ligand-gated anion channel exon 3 splicing on the response to orthosteric and allosteric ligands.

Acknowledgments
The authors thank Dr. Hiroaki Noda and Dr. Yukiko Matsumoto of National Institute of Agricultural Sciences for assistance in cloning and sequencing the cDNAs. The authors also thank Dr. Keiji Tanaka of Kinki University for assistance in the binding assay and Yoshishita Ozoe, Dr. Tomo Kita, Takahiro Irie, and Toshinori Fuse of Shimane University for advice on the binding assay. The authors also thank Dr. Hirokazu Ueda of National Institute for Agro-Environmental Sciences for assistance with the quantitative PCR.

Authorship Contributions
Participated in research design: Matsuda, Sattelle. Conducted experiments: Furutani, Ibara, Nishino, Akamatsu, Jones. Performed data analysis: Furutani, Ibara, Jones, Sattelle, Matsuda. Wrote or contributed to the writing of the manuscript: Furutani, Ibara, Nishino, Akamatsu, Jones, Sattelle, Matsuda.