In Silico Screening for Inhibitors of P-Glycoprotein That Target the Nucleotide Binding Domains

Frances K. Brewer, Courtney A. Follit, Pia D. Vogel, and John G. Wise

Department of Biological Sciences, the Center for Drug Discovery, Design and Delivery, and the Center for Scientific Computing, Southern Methodist University, Dallas, Texas

Received August 12, 2014; accepted September 29, 2014

ABSTRACT

Multidrug resistances and the failure of chemotherapeutics are often caused by the expression or overexpression of ATP-binding cassette transporter proteins such as the multidrug resistance protein, P-glycoprotein (P-gp). P-gp is expressed in the plasma membrane of many cell types and protects cells from accumulation of toxicants. P-gp uses ATP hydrolysis to catalyze the transport of a broad range of mostly hydrophobic compounds across the plasma membrane and out of the cell. During cancer chemotherapy, the administration of therapeutics often selects for cells which overexpress P-gp, thereby creating populations of cancer cells resistant to a variety of chemically unrelated chemotherapeutics. The present study describes extremely high-throughput, massively parallel in silico ligand docking studies aimed at identifying reversible inhibitors of ATP hydrolysis that target the nucleotide-binding domains of P-gp. We used a structural model of human P-gp that we obtained from molecular dynamics experiments as the protein target for ligand docking. We employed a novel approach of subtractive docking experiments that identified ligands that bound predominantly to the nucleotide-binding domains but not the drug-binding domains of P-gp. Four compounds were found that inhibit ATP hydrolysis by P-gp. Using electron spin resonance spectroscopy, we showed that at least three of these compounds affected nucleotide binding to the transporter. These studies represent a successful proof of principle demonstrating the potential of targeted approaches for identifying specific inhibitors of P-gp.

Introduction

One long-standing problem of significant medical consequence in the chemotherapeutic treatment of cancer is multidrug resistance (MDR), which appears as either an acquired or inherent resistance to chemically diverse pharmaceuticals (Kartner and Ling, 1989; Ford and Hait, 1990; Harris and Hochhauser, 1992). Although MDR can be caused by a number of different mechanisms (Binkthallan and Lavasanifar, 2013), it is often linked to the overexpression of P-glycoprotein (P-gp) (Gros et al., 1986; Roninson et al., 1986; Gottesman and Pastan, 1993).

P-gp in humans is expressed from the multidrug resistance 1 gene (MDR1). As a member of the ATP-binding cassette (ABC) transporter family (subclass ABC1), it exists as a plasma membrane protein of 1280 residues (Gottesman and Pastan, 1993; Persidis, 1999; Binkthallan and Lavasanifar, 2013). Three-dimensional structures of homologs of human P-gp from several bacterial species are known (Dawson and Locher, 2006, 2007; Ward et al., 2007), as well as eukaryotic transporters from Caenorhabditis elegans (Jin et al., 2012) and Mus musculus (Aller et al., 2009; Li et al., 2014). Most eukaryotic P-gps are monomeric and composed of two relatively symmetrical halves connected by a linker polypeptide. Each half is homologous to the homodimeric bacterial ABC1 transporters (Chen et al., 1986) and possesses an N-terminal domain containing six transmembrane (TM) helices followed by a C-terminal nucleotide-binding domain (NBD). Transport substrates appear to bind to multiple binding sites within the TM domains (Dey et al., 1997; Shapiro and Ling, 1997; Loo et al., 2003, 2009; Lugo and Sharam, 2005). The nucleotide-binding and the TM domains of P-gp and other ABC transporters appear to undergo very large conformational changes during the catalytic cycle (Hollenstein et al., 2007; Lee et al., 2008; Aller et al., 2009; Verhalen and Wilkens, 2011; Verhalen et al., 2012; Zoghbi and Altenberg, 2013, 2014; Li et al., 2014). Some of the structural
models show tightly integrated, closed NBD dimers with nucleotides bound at each site while the TM domains are opened to the exterior of the cell (Dawson and Locher, 2006, 2007; Ward et al., 2007). In nucleotide-free structures, the TM domains are opened to the interior of the cell with the NBDs disengaged and sometimes widely separated (Aller et al., 2009; Ward et al., 2007; Jin et al., 2012). Molecular dynamics simulations of the MalK maltose transporter indicate that opening of the NBD dimer is a direct result of ATP hydrolysis at either nucleotide-binding site (Wen and Tajkhorshid, 2008). Targeted molecular dynamics studies of human P-gp based on crystal structures of homologs in various conformations visualized the large, concerted conformational changes required for a catalytic transport cycle (Wise, 2012).

P-gp has been actively investigated as a pharmacologic target in MDR cancers for several decades. P-gp inhibitors have been classified into three generations of compounds (Binkhathlan and Lavasanifar, 2013). Generation 1 included compounds already approved as therapeutics for other indications, including verapamil, quinine, quindine, and cyclosporine A. These agents failed at clinically reversing MDR because the high concentrations required to inhibit P-gp resulted in unacceptable side effects (Palmeira et al., 2012). The second-generation compounds were more effective, but many of these compounds, like the first-generation compounds, were transport substrates for P-gp, requiring relatively high concentrations. Some also affected cytochrome P450 CYP3A isozymes, altering the pharmacokinetics of other drugs (Binkhathlan and Lavasanifar, 2013). The best of the third-generation P-gp inhibitors appears to be tariquidar (Stewart et al., 2000; Walker et al., 2004). However, ongoing clinical trials of tariquidar and other inhibitors have reported only limited successes in reversing MDR (Binkhathlan and Lavasanifar, 2013).

Here, we report efforts aimed at identifying novel inhibitors of P-gp that might be useful as lead compounds for reversing MDR in cancers. We employed very high-throughput, massively parallel computational screens of a very large database of drug-like structures (Irwin and Shoichet, 2005; Irwin et al., 2010) to used that coupled the hydrolysis of ATP by P-gp to the oxidation of NADH to NAD⁺ through the reactions of pyruvate kinase and lactate dehydrogenase (Vogel and Steinhardt, 1976). These reactions were adapted to medium-throughput conditions on 96-well plates. To test the effects of the in silico identified potential inhibitors, a total volume of 5 µl of various concentrations of experimental compounds dissolved in dimethylsulfoxide (DMSO) was added to the cells in a 96-well plate containing 45 µl of equilibration buffer (20% glycerol, 50 mM Tris-Cl, pH 7.5). To each of these wells, 50 µl of a solution containing 80–100 µg/ml lipid-activated, concentrated P-gp (see below) in equilibration buffer in the absence or presence of 300 nM verapamil (dissolved in water) was added.

After incubating the plate for 30 minutes at 37°C, we added to each well 100 µl of a solution containing 50 mM Tris-Cl, pH 7.5, 24 mM MgSO4, 20 mM KCl, 2 mM PEP, 0.0288 mg/ml lactate dehydrogenase, 1.13 mM NADH, and 4 mM ATP, prewarmed to 37°C. Immediately after this addition, ATPase activity was assayed for 20–30 minutes. ATP hydrolysis was assayed as the absorbance decrease at 340 nm using a BioTek Eon plate reader (BioTek, Winooski, VT). An extinction coefficient for NADH of 6300 M⁻¹ cm⁻¹ was used.

All assays were performed in duplicate or triplicate and were repeated at least two times using different P-gp preparations. Control experiments were performed that showed that none of the identified inhibitors affected the other enzymes in the coupling assays. Dose response curves and inhibitor concentration values (IC20, IC50, and IC100 values) were calculated from the data as described by Copeland (Copeland, 2000, 2013) using a four-parameter logistic fit.

Lipid Activation. To stabilize the protein for the ATP hydrolysis assays, lipid activation of the purified P-gp was performed. Lipid stocks were prepared from l-a-phosphatidyl-choline from soybean (~40%) (Sigma-Aldrich, St. Louis, MO) by adding lipid stock buffer (50 mM Tris-Cl, pH 7.5, 0.1 mM EGTA) to solid lipid in glass test tubes. Lipid stock concentrations were 25 mg/ml or 100 mg lipid/ml buffer. The suspension was flushed with argon and subsequently sonicated in a bath sonicator at room temperature for 15–30 minutes until the mixture clarified. The lipid suspension was supplemented with 2 mM dithiothreitol and stored at 4°C under argon until use. To activate the P-gp, we prewarmed lipid stock to 37°C, mixed with concentrated protein (see below) at a ratio of 2:1 (w/w) and then diluted with equilibration buffer at 37°C to a final concentration of typically 100 µg P-gp per ml activated P-gp mix. This mixture was incubated at room temperature for 30 minutes to 1 hour before use in the coupled enzyme assays.

Preparation of Isolated P-gp. The P-gp used in these assays was a close relative of the human P-gp that is found in Mus musculus (MDR3, 87% identical to human P-gp). A mutant form of the mouse

Materials and Methods

In Silico Screening. A database of commercially available compounds that includes molecules with “clean” drug-like characteristics was obtained from the ZINC Web site (http://zinc.docking.org/) (Irwin and Shoichet, 2005; Irwin et al., 2012), and about half these compounds were used for in silico docking experiments with a human P-gp structural conformation as described earlier (Wise, 2012). The modeled protein conformation represents a conformation of P-gp where the NBDs are fully engaged similar to those of the Sav1866 crystal structure (Dawson and Locher, 2006). Nucleotides were removed from the protein before docking studies were performed. Ligand docking used the Autodock 4.2 program (http://autodock.scripps.edu/) (Goodsell et al., 1996; Morris et al., 1996; Osterberg et al., 2002) and the high-performance computational facilities of the Center for Scientific Computing at Southern Methodist University. Ligands were converted to pdbqt file format using the AutoDockTools Python scripts (Morris et al., 2009). Autodock parameters included 100 Lamarckian genetic algorithm runs per ligand with mutation rates of 0.02, crossover set at 0.8, and a population size of 300, with 3,000,000 evaluations and 27,000 generations per tested ligand. Roughly 5 million of these docking studies against the P-gp NBDs were analyzed in the first round of the in silico screening experiments.

As a second part to the experiment, docking against the drug-binding domains (DBD) of the same P-gp structure was performed. This experiment used two overlapping grid maps that encompassed the entire P-gp molecule minus the NBDs. Two grids were required because of the size of the desired zone. A subset of ligands that was found to dock to P-gp with estimated binding affinities of less than 200 nM at the NBD was used in the secondary docking experiments to the DBDs. Only ligands predicted to bind the NBD at least 100-fold more tightly than the DBD were considered for further analysis.

ATP Hydrolysis Assays. A well-established activity assay for ATP hydrolyzing enzymes (Delannoy et al., 2005; Hoffman et al., 2010) was used that couples the hydrolysis of ATP by P-gp to the oxidation of NADH to NAD⁺ through the reactions of pyruvate kinase and lactate dehydrogenase (Vogel and Steinhardt, 1976). These reactions were adapted to medium-throughput conditions on 96-well plates. To test the effects of the in silico identified potential inhibitors, a total volume of 5 µl of various concentrations of experimental compounds dissolved in dimethylsulfoxide (DMSO) was added to the cells in a 96-well plate containing 45 µl of equilibration buffer (20% glycerol, 50 mM Tris-Cl, pH 7.5). To each of these wells, 50 µl of a solution containing 80–100 µg/ml lipid-activated, concentrated P-gp (see below) in equilibration buffer in the absence or presence of 300 nM verapamil (dissolved in water) was added.

After incubating the plate for 30 minutes at 37°C, we added to each well 100 µl of a solution containing 50 mM Tris-Cl, pH 7.5, 24 mM MgSO4, 20 mM KCl, 2 mM PEP, 0.014 mg/ml pyruvate kinase, 0.0288 mg/ml lactate dehydrogenase, 1.13 mM NADH, and 4 mM ATP, prewarmed to 37°C. Immediately after this addition, ATPase activity was assayed for 20–30 minutes. ATP hydrolysis was assayed as the absorbance decrease at 340 nm using a BioTek Eon plate reader (BioTek, Winooski, VT). An extinction coefficient for NADH of 6300 M⁻¹ cm⁻¹ was used.

All assays were performed in duplicate or triplicate and were repeated at least two times using different P-gp preparations. Control experiments were performed that showed that none of the identified inhibitors affected the other enzymes in the coupling assays. Dose response curves and inhibitor concentration values (IC20, IC50, and IC100 values) were calculated from the data as described by Copeland (Copeland, 2000, 2013) using a four-parameter logistic fit.
P-gp where all intrinsic cysteine amino acids had been replaced by alanine residues was recombinantly expressed in the yeast *Pichia pastoris* (Lerner-Marmaro et al., 1999; Tombline et al., 2006). This cysteine-less mouse P-gp was used for assaying the potential inhibitor compounds. Purification of the protein was performed essentially as described by Delannoy et al. (2005) with small modifications resulting in highly enriched P-gp in mixed micelles containing dodecyl maltoside and lysophosphatidyl choline. To obtain concentrated P-gp, the elution fraction of the Ni-NTA column was concentrated 70- to 100-fold using Amicon Ultra centrifugal filters (Amicon/Millipore Corp., Billerica, MA) with a molecular mass cutoff of 100,000 Da. This procedure enriches both protein and micelles and ensures retained solubilization of the membrane protein.

Electron Spin Resonance Measurements. All electron spin resonance (ESR) spectroscopy measurements were performed using a Bruker EMX 6/1 ESR spectrophotometer (Bruker, Karlsruhe, Germany) operating in X-band mode and equipped with a high-sensitivity cavity, as described previously (Delannoy et al., 2005). Briefly, a total of 30–40 μl of sample was pipetted into 50-μl glass capillaries. The top of the capillary was closed and inserted into a quartz cuvette. ESR spectra were acquired at a microwave frequency of 9.33 GHz, microwave power of 12.63 mW, 100 kHz modulation frequency, and a resolution of 1024 points. The center field of the scan was at 3325 G, and an area of 100 G was scanned with a peak-to-peak modulation amplitude of 1 G. The time constant was set to 10,240 milliseconds, and the conversion time to 163.84 milliseconds, resulting in a total time sweep of 167.772 seconds. The signal gain was adjusted for the spin-labeled (SL)–ATP concentrations in the different experiments.

All samples in the ESR experiments were dissolved in buffer containing 50 mM Tris-HCl, pH 7.4, 50 mM NaCl, 20% glycerol, 0.1% dodecyl maltoside, 0.01% lysophosphatidyl choline, and 300 mM imidazole with or without the experimental inhibitor compounds present. All ESR measurements were at room temperature. Titration experiments were performed using increasing concentrations of 2′-SL-ATP, essentially as described in Delannoy et al. (2005). SL-ATP is a substrate of P-gp and is hydrolyzed to the corresponding SL-ADP by the enzyme (Delannoy et al., 2005). Due to this fact, the phosphor- ylation state of the spin-labeled nucleotide is not known throughout the course of an experiment. The spin-labeled nucleotide is therefore referred to as SL-ANP. The amount of protein-bound SL-ANP was determined as the difference between the known total concentration of SL-ATP added and the free spin-labeled nucleotide observed in the experiment. The latter was measured by comparing the amplitude of the high field ESR signal of SL-ANP at each point to a standard curve of P-gp generated in the absence of protein.

The amplitudes of the high-field signals were determined using WINERPR (Bruker) software for each concentration of SL-ATP used. Mole of SL-ANP bound per mole of P-gp were plotted over the free SL-ANP concentration, and nonlinear, hyperbolic curve fitting of the results was performed using Origin 8.5.1 (OriginLab, Northampton, MA) to determine the maximum binding and apparent affinity for the ligands to P-gp.

Chemicals. Potential inhibitors of P-gp identified through in silico screening were purchased in small quantities through SIA MolPort (Riga, Latvia). Dodecyl maltoside was purchased from Inalco Pharmaceuticals (San Luis Obispo, CA). Lysophosphatidyl choline was a generous gift from Lipoid GmbH (Ludwigshafen, Germany).

Results

Targeted In Silico Screening for Inhibitors of Human P-gp Using a Large Database of Drug-like Small Molecules. The goal of this study was to identify inhibitors of P-gp that interrupt ATP-binding to or hydrolysis by P-gp by interacting at the NBDs of P-gp. Using targeted molecular dynamics techniques, we previously visualized structural changes in human P-gp as the transporter transitions from one conformational state to another during a catalytic transport cycle (Wise, 2012). In the present study, we chose one conformation of P-gp for docking analysis that corresponded to a structural conformation of P-gp where the NBDs are fully engaged and the DBDs are partially opened outward. This P-gp conformation, which is similar to that observed in the crystal structural model of the bacterial Sav1886 ABC transporter (Dawson and Locher, 2006), was used as the protein target because it possesses fully formed adenine nucleotide-binding sites. We hypothesized that compounds that interfere with nucleotide binding to P-gp or that disrupt the nucleotide binding sites might make good inhibitors of ATP binding or hydrolysis and thus be inhibitors of drug transport.

Irwin and Shoichet have made publicly available a computational resource containing the three-dimensional coordinates of over 20 million commercially obtainable compounds, including subsets that possess the chemical characteristics often found in approved medicinal drugs (see the ZINC database at http://zinc.docking.org/) (Irwin and Shoichet, 2005; Irwin et al., 2012). In the first round of docking, about 5.3 million out of about 11 million of these drug-like molecules (subset 13 of the ZINC database) were individually tested for binding interactions at the NBDs of human P-gp using the AutoDock4.2 program (Morris et al., 2009), as described in Materials and Methods. The results of these calculations were subsequently analyzed for the estimated binding affinity of the ligands to P-gp. Compounds were identified that were predicted to have potentially strong binding interactions at the P-gp NBD structures. We disregarded any compounds for further study that had predicted estimated *Kd* values that were more than 200 nM.

This first set of 180,142 putative P-gp ligands that possessed predicted affinities to the NBDs of P-gp of at least 200 nM (subset 1) was further analyzed for possible interaction at the DBDs of P-gp in a second round of docking experiments that targeted the transport drug binding sites of P-gp. Ultimately, compounds that interacted strongly at NBDs but weakly at the DBDs of P-gp were sought. The docking results for subset 1 compounds at either of two target grids at the DBD of P-gp (see Materials and Methods) were therefore analyzed for predicted binding affinities at the drug-binding sites. The calculated affinities at the NBDs and the DBDs of P-gp were then compared for each compound in subset 1.

Those molecules with estimated *Kd* values at the DBD of P-gp that were >100 times that of the projected *Kd* at the NBDs (subset 2) were considered to be potential inhibitor candidates for P-gp that specifically target the NBDs of P-gp. Subset 2 consisted of approximately 250 molecules. Of these initial computational leads, 35 compounds were purchased
from commercial sources (numbered 11–45) and used in in vitro biochemical assays to determine their effectiveness in inhibiting ATP-hydrolysis by isolated P-gp. These 35 compounds were representative of the various binding clusters observed in silico both within and outside the nucleotide-binding sites on P-gp.

Screening for ATP Hydrolysis Inhibition by In Silico Identified Putative P-gp Inhibitors. The ability of the molecules identified using in silico methods to function as potential inhibitors of P-gp was tested by assessing their capability to inhibit ATP hydrolysis using purified P-gp. ATP hydrolysis by P-gp is stimulated by transport substrates such as the calcium channel blocker verapamil. Verapamil has been found to inhibit P-gp catalyzed transport by competing for transport cycles (reviewed in Palmeira et al., 2012). Depending on whether a transport substrate such as verapamil is present in the assay, purified P-gp preparations exhibit ATP hydrolysis rates that vary over a range from about 50 nmol min⁻¹ mg⁻¹ (basal activity) to about 750–1000 nmol min⁻¹ mg⁻¹ (stimulated activity).

In our initial screening of the in silico–generated hits of subset 2, we tested the effect on basal ATP hydrolysis activity (inhibition and or stimulation) of the commercially available compounds chosen from subset 2 in assays not containing verapamil. Compounds that stimulated the basal activity of P-gp in the absence of verapamil were assumed to achieve the stimulation by binding to the drug-binding sites of P-gp similar to transport substrates such as verapamil and would therefore not support our premise of finding compounds that specifically interact with the NBDs and not the DBDs. Several of the compounds tested did indeed stimulate basal rates of hydrolysis by P-gp a factor of 1.5 or more (data not shown) and were not further pursued in this work. Only compounds that in addition to stimulating basal activity also showed strong inhibition of stimulated activity were further pursued in this study.

To test the ability of the selected subset 2 compounds to inhibit verapamil-stimulated ATP hydrolysis activities of P-gp, verapamil was added at 150 μM final concentration to assays containing purified P-gp. ATP hydrolysis was determined at near physiologic ATP concentrations (2 mM ATP). Figure 1A shows the relative ATP-hydrolysis activities of P-gp in the presence of 25 μM of a subset of compounds tested. Compounds that in separate experiments induced strong stimulation of basal activity are not shown. Four of the 35 compounds tested were observed to inhibit verapamil-stimulated ATPase activities by P-gp; compound 19 [methyl 4-(bis[2-hydroxy-4-oxochromen-3-yl)methyl]benzoate (ZINC 09973259, CID 4694077)], compound 29 [2-[(5-cyclopropyl-1H-1,2,4-triazol-3-yl)sulfanyl]-N-[2-phenyl-5-(2,4,5-trimethylphenyl)pyrazol-3-yl]acetamide (ZINC 08767731, CID 1755821)], compound 34 [2-[1-(4-methoxyphenyl)piperazin-1-yl]-1-oxobutan-2-yl]-4-methyl-[1]benzothiole[2,3-d]pyridazine-1-one (ZINC 09252021, CID 22514118)], and compound 45 [ethyl 1-[(3-benzoxido-5-carbonyl)-3-(3-phenylpropyl)pyrrolidine-3-carboxylate (ZINC 15078148, ZINC 15078146, CID 26410703, CID 45252040)] (Fig. 1A). Compounds that did not show significant inhibition of ATP hydrolysis in these assays were not further considered. A side-by-side comparison of verapamil-stimulated and basal ATP hydrolysis assays in the presence of the four confirmed inhibitors of P-gp is presented in Fig. 1B. The figure shows that under the conditions used (i.e., in the presence of 2 mM ATP) all compounds inhibited both basal (Fig. 1B, gray bars) and stimulated (Fig. 1B, black bars) ATPase activities. In all cases, the stimulated ATP hydrolysis rate was more strongly affected by the compounds.

The structures of the four targeted inhibitors of P-gp ATP hydrolysis activity are shown in Fig. 2. It should be noted that both compounds 34 and 45 were used as racemic mixtures of the respective enantiomeric compounds.

Dose Response Testing of Identified P-gp Inhibitors. The four identified P-gp inhibitors were investigated further in ATP hydrolysis dose-response inhibition curves. Figure 3 shows the verapamil-stimulated ATP hydrolysis activities of P-gp preparations in the presence of varying concentrations of inhibitor compounds after normalizing to verapamil-stimulated P-gp activity measured in the absence of inhibitor. The IC₂₀, IC₅₀, and IC₉₀ inhibition values were calculated as described in Materials and Methods for the inhibitors in these assays, and the results of these calculations are presented in Table 1. IC₅₀ values in the range of 10⁻⁶ M were observed for all four P-gp inhibitors in these experiments.

Probing Inhibition Mechanisms of Identified P-gp Inhibitors Using ESR Spectroscopy and Spin-Labeled ATP. The possible mechanism of inhibition of ATP hydrolysis by the identified P-gp inhibitors was investigated as in Delannoy et al. (2005) by measuring the maximal binding stoichiometry and binding affinity of an analog of ATP, SL-ATP, to P-gp both in the presence and absence of the identified inhibitors. These methods allowed us to directly follow binding of SL-nucleotide to P-gp under equilibrium binding conditions. Because SL-ATP is a substrate for P-gp catalyzed ATP hydrolysis (Delannoy et al., 2005), both SL-ATP and SL-ADP can potentially bind to P-gp. We therefore refer to the spin-labeled nucleotide in these experiments as SL-ANP.

ESR spectra were acquired for known concentrations of SL-ATP and compared with spectra acquired in the presence of known concentrations of P-gp, verapamil, and the different inhibitor molecules. Free, not-enzyme–bound, SL-ANP results in ESR spectra with three relatively sharp, equidistant signals (see Fig. 4A). The high-field signal of the free SL-ANP can be seen as the sharp signal on the right. The relatively broad signals of the enzyme-bound spin-labeled nucleotide can be seen to the left (low field) and right (high field) of the three signals resulting from the free SL-ANP. The signal gain was increased for better visualization of SL-ANP bound to P-gp. The high-field signal of the freely mobile, unbound SL-ANP was used to calculate the amount of free SL-ANP–analog in the binding assays with P-gp (Materials and Methods) (Fig. 4A). The amount of P-gp–bound SL-nucleotide was then calculated as the difference between the known amount of total SL-ATP added and the measured free SL-ANP, using a standard curve of increasing amounts of SL-ATP as a reference (see Materials and Methods) (Delannoy et al., 2005). The results of SL-ANP binding experiments to P-gp in the absence or presence of P-gp inhibitors are presented in Fig. 4, B–F.

In the absence of drug, but in the presence of 5% (v/v) drug vehicle DMSO, maximum binding to P-gp was found to extrapolate to 2.2 ± 0.2 mol SL-ANP bound per mol of P-gp with an apparent K₅₀ of 88 ± 21.6 μM (Fig. 4B). SL-ATP titrations in the presence of experimental drug-like compounds were all compared with standard curves generated in the presence of 5% DMSO and the experimental compound to control for potential compound–SL-ATP interactions. In an
initial set of titrations, stoichiometric amounts of about 50 M P-gp and 50 M experimental compounds were mixed, and increasing amounts of SL-ATP were added (Fig. 4, C–F). Compounds 19 and 45 significantly decreased the stoichiometry of SL-nucleotide binding under these conditions to approximately 1 or 0.6 mol/mol, respectively (see Fig. 4, C and F). These compounds also caused a decrease of the apparent \(K_d\) of P-gp for SL-ANP binding to about 20 M. Compounds 29 and 34 did not show an obvious change in maximal nucleotide binding or the apparent dissociation constants for SL-ANP when incubated with P-gp at 50 M (Fig. 4, D and E).

When titrations were performed in the presence of 100 M of compound 34, however, maximum binding of SL-ANP to P-gp was decreased to 0.8 mol/mol, while the dissociation constant for SL-ANP binding did not change significantly (Fig. 4E, insert). Titrations in the presence of 100 M of compound 45 were not significantly different from those in the presence of 50 M of compound 45 (not shown). However, when the concentration of compound 45 was decreased to 25 M while P-gp remained at 50 M, maximal binding of about 1.3 moles SL-ANP/mol of P-gp was observed (Fig. 4F, insert), again with decreased apparent \(K_d\). Compound 29 did not significantly affect SL-nucleotide binding at either 50 M or 100 M concentration.

Comparing Success Rates to Other Methods. Schmidt et al. (2007, 2008) reported in two studies that a series of dioxolane-derivatized piperazines and several phenothiazines and related compounds resensitized drug-resistant colon cancer or porcine kidney epithelial cells to vincristine. The cell lines used in these studies were shown to stably express P-gp at moderately high-expression levels. We took 10 of the best compounds identified in (Schmidt et al., 2007, 2008) and assayed them for their effect on ATP hydrolysis by P-gp as if they had passed our docking criteria, although none of them actually did pass these computational criteria (not shown). One of the 10 compounds was observed to moderately inhibit ATPase activity of P-gp, but ESR titrations as described earlier did not indicate any interaction of the compound with the NBD (not shown), indicating that inhibition of P-gp ATP hydrolysis was not caused by binding to or close to the nucleotide binding sites. The hit rate for this quantitative structure activity relationships cell culture resensitization selection method (1 in 10) compares favorably with our computational hit rate (4 in 35) of ATP hydrolysis inhibitors, where three of the four identified inhibitors adversely affected SL-nucleotide binding to P-gp.
This comparison shows that the computational selection method used in this work was at least as good as the quantitative structure activity relationships cell culturing system in identifying inhibitors of ATPase by P-gp and was arguably better at targeting these inhibitors to the NBDs of P-gp.

Discussion

Screening for Inhibitors Targeted to the Nucleotide-Binding Domains of P-gp. Our goal was to identify inhibitors of P-gp that interrupt ATP-binding or hydrolysis by interacting at the NBDs of P-gp. We employed a structural homology model of a conformation of human P-gp that possesses fully formed nucleotide-binding sites that are similar to those observed in the crystal structure of the bacterial Sav1866 ABC transporter (Dawson and Locher, 2006). In this conformation, the Sav1866 transporter bound both ADP and AMPPNP [5'-adenyl-β,γ-imidodiphosphate] (Dawson and Locher, 2006, 2007). To identify drug-like molecules that interact strongly at the NBDs of P-gp, we targeted the entire composite of the N-terminal and C-terminal NBDs of P-gp in massively parallel in silico docking experiments. A large set of drug-like molecules (~11 million compounds) was obtained from the ZINC chemical database, and about half of these were employed in docking calculations. A subset of ~180,000 molecules was identified that was predicted to interact with the NDBs of P-gp with estimated affinities less than 200 nM. It should be noted that the ATP-binding sites in

TABLE 1

<table>
<thead>
<tr>
<th>Inhibitor</th>
<th>IC<sub>20</sub> μM</th>
<th>IC<sub>50</sub> μM</th>
<th>IC<sub>80</sub> μM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compound 19</td>
<td>4 ± 0.7</td>
<td>18 ± 1.5</td>
<td>77 ± 8.1</td>
</tr>
<tr>
<td>Compound 29</td>
<td>7 ± 1.6</td>
<td>27 ± 6.8</td>
<td>108 ± 47.0</td>
</tr>
<tr>
<td>Compound 34</td>
<td>3 ± 0.7</td>
<td>9 ± 1.4</td>
<td>24 ± 6.0</td>
</tr>
<tr>
<td>Compound 45</td>
<td>10 ± 1.5</td>
<td>18 ± 1.5</td>
<td>32 ± 4.6</td>
</tr>
</tbody>
</table>

Inhibition constant values calculated from dose-response curves for the inhibition of verapamil-stimulated ATPase activities of P-gp. ATP assays were performed as described in Materials and Methods in the presence of 150 μM verapamil with the indicated concentrations of inhibitors. The DMSO vehicle did not exceed 5% (v/v). MgATP concentration was at 2 mM. Values are given with S.E.M.
Fig. 4. Spin-labeled nucleotide binding (SL-ANP) in the presence of inhibitors to P-gp. Between 30 and 50 μM Pgp was incubated at no inhibitor or at 25, 50, or 100 μM inhibitor compound with increasing concentrations of SL-ATP. The ESR signal of the free, not protein bound SL-ATP in the presence of P-gp with or without inhibitor was compared with a standard curve obtained in the absence of P-gp. (A) Freely tumbling, not-enzyme–bound SL-ANP results in ESR spectra consisting of three relatively sharp, equidistant signals. The signal amplitude of the high-field signal of the free SL-ANP was used to determine the amount of free spin-labeled nucleotide. For comparison, the ESR signals of increasing amounts of protein-bound SL-ANP are pointed out at the low (left) and the right (high) field of the signal of the free SL-nucleotide. The parts of the ESR spectra shown have been rerecorded at increased signal gain and a modulation amplitude of 2 for better visualization. (B–F) The moles of SL-ANP bound per moles of P-gp were determined as described in Materials and Methods and were plotted against free spin–labeled nucleotide. (B) Binding of SL-ANP to P-gp in the absence of P-gp inhibitor but in the presence of 150 μM verapamil. Nonlinear regression as described in Materials and Methods extrapolated to maximal binding of 2.2 ± 0.2 mol/mol and an apparent K_d of 88 ± 22 μM. (C–F), SL-ANP binding to P-gp as in (B), except for the inclusion of 50 μM of inhibitor compounds 19, 29, 34 and 45, respectively. Maximum binding and apparent K_d were determined to be (C) 1.1 ± 0.1 mol/mol and 18 ± 6 μM in the presence of 50 μM compound 19; (D) 1.9 ± 0.1 mol/mol and 71 ± 12 μM in the presence of 50 μM compound 29; (E) 2.1 ± 0.2 mol/mol and 101 ± 31 μM in the presence of 50 μM compound 34; and (F) 0.6 ± 0.02 mol/mol and 20 ± 5 μM in the presence of 50 μM compound 45. (E, insert) SL-ANP binding to P-gp in the presence of 100 μM of inhibitor compound 34 results in maximum binding of 0.80 ± 0.09 mol/mol and an apparent dissociation constant of 121 ± 33 μM. (F, insert) In the presence of 25 μM of compound 45, maximum binding of SL-ANP to P-gp extrapolates to 1.3 ± 0.04 with an apparent K_d of 9.1 ± 1.5 μM.
the protein structure were left unoccupied and freely available for
docking in these experiments. In a secondary screen, this subset 1
of identified molecules was docked to the DBDs of P-gp using
the same programs. A much smaller subset of about 250 compounds
was identified that was predicted to bind weakly at the DBDs but
have high-affinity interactions at the NBDS. These criteria were
deemed prognostic of putative P-gp inhibitor molecules that may
interfere with ATP use by P-gp while not being transport substrates
of the pump.

Screening In Silico Hits Using ATP Hydrolysis
Assays. From the approximately 250 compounds that were
predicted to bind tightly at the NBDS and significantly less
strongly at the DBDs of P-gp, 35 were analyzed in biochemical
assays using isolated P-gp for effects on basal or transport
substrate stimulated rates of ATP hydrolysis. We expected
that compounds that interacted with the DBDs of P-gp despite
AutoDock predictions to the contrary might stimulate the
basal ATP hydrolysis rates similar to other transport sub-
strates. Compounds that did stimulate basal rates over 1.5-fold
were therefore not considered further.

Four compounds, 19, 29, 34, and 45, showed significant
inhibition of verapamil-stimulated ATP hydrolysis activities
when assayed at 25 μM both at high ATP (10 mM, not shown)
and near physiologic ATP concentration (2 mM ATP, Fig. 1, A
and B). The structural formulas for these four compounds are
shown in Fig. 2. Compounds 29 and 34 cause slight activations
of basal ATPase activity rates of P-gp when assayed at 10 mM
ATP (not shown), indicating that these compounds may interact
with the DBDs of P-gp to some degree. Compounds 19 and 45 did
not stimulate basal hydrolysis rates at either ATP concentration,
suggesting that these compounds do not productively interact
with the DBDs or that the net effect of interaction at these or
other sites is to inhibit P-gp catalyzed ATP hydrolysis.

It is interesting to note that transport-drug–stimulated ATP
hydrolysis was much more affected by the four inhibitor
compounds than basal activity (see Fig. 1B). One possible
explanation for this observation may be that the compounds
tested were selected for binding to NBDS in their closed
conformation, which corresponds to the formation of complete
nucleotide-binding sites (Dawson and Locher, 2006, 2007). It
seems feasible that in a transport-drug–stimulated state, more
of the enzyme adopts the closed NBD conformation and is
thus more susceptible to binding of and being inhibited by
the inhibitor candidates than enzymes performing only basal
level hydrolysis. In addition, previous results from our group
showed that binding of transport substrate indeed altered the
conformation of the nucleotide-binding sites (Delannoy et al.,
2005; Hoffman, Wise and Vogel, unpublished data). This again
may cause better binding of the inhibitor molecules to the
NBDS.

Dose-Response Curves. In further tests using isolated
P-gp preparations, the inhibitor concentrations in verapamil-
stimulated ATP hydrolysis assays were varied, and the
residual activities were monitored. Figure 3 shows the results
of these assays for the four inhibitor compounds. Affinities as
expressed through IC_{50} values ranged from 9 to 27 μM for
the four inhibitors (Table 1). These values are high but were
deemed appropriate for initial screening hits. Lead optimization
studies are in progress to lower these IC_{50} values to a
more useful pharmacologic range.

Mechanisms of Inhibition by the Four Identified
Inhibitors. In a series of experiments designed to elucidate
whether the four inhibitors indeed interacted with the NBDS
of P-gp, spin-labeled analogs of ATP were used in equilibrium
binding studies to determine whether the compounds affected
ATP binding to P-gp. These studies take advantage of the fact
that protein-bound SL-ANP and free SL-ANP have different,
well-resolved ESR spectra that enable the assessment of bind-
ing of the analog under equilibrium conditions. The measured
maximum binding was in good agreement with values
previously reported by us (Delannoy et al., 2005) and others
(Qu et al., 2003). The difference between the previously reported
K_d of P-gp for SL-ANP and the K_d reported in this article may be
due to the presence of DMSO and/or the somewhat improved
purity of the protein.

Inclusion of compounds 19 or 45 at concentrations equimo-
lar to protein (about 50 μM) resulted in maximum binding of
about 1 mol/mol SL-ANP in the presence of compound 19 and
of about 0.5 mol/mol in the presence of the same concentration
of compound 45. The apparent K_d was decreased to about
20 μM in the presence of either compound. Lowering of the
number of accessible nucleotide-binding sites in addition to
lowering of the dissociation constant for nucleotide binding
strongly suggests that these two inhibitors are directly affecting
the ATP binding sites of P-gp. Earlier studies have shown that it
is possible to inhibit ATP hydrolysis by P-gp by abolishing
function at a single NBD (e.g., Urbatsch et al., 1998, 2003). Such
“half-site reactivity” might be expected from agents that interact
strongly at one of the nucleotide-binding sites of P-gp. In
earlier experiments, we observed that SL-ANP binding to

Fig. 5. The location of docked inhibitors in the human P-gp model. The
protein is shown in cartoon representation in silver-gray. Only the
cytoplasmic portion of P-gp has been shown with the two NBDS oriented
horizontally. P-gp inhibitors and nucleotides (ADP or ATP) are shown in
van der Waal spheres color coded to atom types (O in red, N in blue, P in
orange, C in turquoise, Mg in pink, S in yellow). Nonpolar hydrogens
have been left out for clarity. Ligands have been labeled in the figure
with arrows. Left: The location of nucleotide bound to the human P-gp model
used for docking is shown. Note that nucleotides were removed from
the model before docking was performed. For orientation, the catalytic glutamate
residues E556 and E1201 are located on the right and left sides of the
representation, respectively. Right: The approximate locations of the
highest affinity interaction predicted by docking studies for the four
identified inhibitors of P-gp are shown relative to the protein structure.
Both compounds 19 and 45 bound to the E556-binding site are superposed in the representation. The figure shows that three of the
four identified inhibitors (19, 34, and 45) are bound in the nucleotide-
binding sites. These are the same compounds that altered ATP binding
in the ESR titration experiments described. Compound 29 was predicted
to bind outside the nucleotide-binding sites in the docking experiments.
This compound did not alter the binding characteristics of SL-ATP at the
concentrations used for the experiments reported here. Residues within
5 Å of the putative docking clusters of the inhibitor molecules are
presented in Table 2.
vanadate-inhibited P-gp was reduced to about 1 mol/mol and also exhibited a decreased K_d for SL-ANP binding (Delannoy, unpublished data). The fact that binding of SL-ANP was reduced to less than 1 mol/mol in the presence of equimolar concentration of compound 45 may be explained by a strong interaction of compound 45 with P-gp that affects binding to both nucleotide-binding sites. Because the K_d for SL-ANP and compound 45 are within the same overall range, we speculate that in equilibrium a subset of the protein molecules has no inhibitor bound and is therefore able to bind the nucleotide. The number of accessible nucleotide binding sites did not further decrease when the concentration of compound 45 was increased to 100 μM, but about doubled when the compound 45 concentration was reduced to 25 μM. Because compound 45 was obtained as a racemic mixture of the two enantiomers, these results suggest that both enantiomers actively interact with the P-gp NBDs.

At equimolar inhibitor and transporter concentrations, no effect on the stoichiometry of nucleotide binding was observed with inhibitor 34. When the concentration of 34 was doubled to 100 μM, however, reduced binding of about one mol/mol SL-ANP was observed. This may indicate that two molecules of compound 34 are needed to interact with each molecule of P-gp to exert its inhibitory effect. Alternatively, because compound 34 was also obtained as a racemic mixture, this result may be explained with only one of the stereoisomers binding to the protein and affecting nucleotide accessibility of the nucleotide-binding sites.

Table 2

<table>
<thead>
<tr>
<th>Compound</th>
<th>Compound 19 (ATP-binding site)</th>
<th>Compound 29 (Allosteric binding site)</th>
<th>Compound 34 (ADP-binding site)</th>
<th>Compound 45 (ATP-binding site)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residues within 5.0 Å of docked inhibitors</td>
<td>ILE 160</td>
<td>THR 422</td>
<td>ARG 262</td>
<td>ILE 160</td>
</tr>
<tr>
<td>GLY 161</td>
<td>VAL 423</td>
<td>THR 483</td>
<td>GLY 161</td>
<td></td>
</tr>
<tr>
<td>ASP 164</td>
<td>ALA 424</td>
<td>LEU 516</td>
<td>ASP 164</td>
<td></td>
</tr>
<tr>
<td>PHE 399</td>
<td>LEU 552</td>
<td>PRO 517</td>
<td>PHE 399</td>
<td></td>
</tr>
<tr>
<td>TYR 401</td>
<td>LEU 554</td>
<td>HIS 518</td>
<td>TYR 401</td>
<td></td>
</tr>
<tr>
<td>PRO 402</td>
<td>THR 563</td>
<td>ASP 521</td>
<td>PRO 402</td>
<td></td>
</tr>
<tr>
<td>ILE 409</td>
<td>GLU 566</td>
<td>THR 522</td>
<td>ILE 409</td>
<td></td>
</tr>
<tr>
<td>ASN 428</td>
<td>ALA 567</td>
<td>LEU 523</td>
<td>LEU 410</td>
<td></td>
</tr>
<tr>
<td>SER 429</td>
<td>VAL 569</td>
<td>VAL 524</td>
<td>ASN 428</td>
<td></td>
</tr>
<tr>
<td>GLY 430</td>
<td>GLN 570</td>
<td>GLY 525</td>
<td>SER 429</td>
<td></td>
</tr>
<tr>
<td>CYS 431</td>
<td>VAL 571</td>
<td>GLU 526</td>
<td>GLY 430</td>
<td></td>
</tr>
<tr>
<td>GLY 432</td>
<td>LEU 573</td>
<td>ALA 529</td>
<td>CYS 431</td>
<td></td>
</tr>
<tr>
<td>LYS 433</td>
<td>ASP 574</td>
<td>GLN 530</td>
<td>GLY 432</td>
<td></td>
</tr>
<tr>
<td>SER 434</td>
<td>ARG 577</td>
<td>LEU 531</td>
<td>LYS 433</td>
<td></td>
</tr>
<tr>
<td>THR 435</td>
<td>THR 582</td>
<td>VAL 801</td>
<td>SER 434</td>
<td></td>
</tr>
<tr>
<td>GLN 438</td>
<td>ILE 583</td>
<td>SER 802</td>
<td>THR 435</td>
<td></td>
</tr>
<tr>
<td>LEU 443</td>
<td>VAL 584</td>
<td>TRP 803</td>
<td>THR 436</td>
<td></td>
</tr>
<tr>
<td>TYR 444</td>
<td>ARG 588</td>
<td>PHE 804</td>
<td>GLN 438</td>
<td></td>
</tr>
<tr>
<td>GLN 475</td>
<td>SER 590</td>
<td>ASP 805</td>
<td>TYR 444</td>
<td></td>
</tr>
<tr>
<td>GLU 556</td>
<td>THR 591</td>
<td>ASN 809</td>
<td>GLN 475</td>
<td></td>
</tr>
<tr>
<td>ILE 558</td>
<td>VAL 592</td>
<td>ASN 1043</td>
<td>GLU 556</td>
<td></td>
</tr>
<tr>
<td>HIS 587</td>
<td>ARG 593</td>
<td>TYR 1044</td>
<td>ILE 585</td>
<td></td>
</tr>
<tr>
<td>PHE 601</td>
<td>ASN 594</td>
<td>PRO 1045</td>
<td>HIS 587</td>
<td></td>
</tr>
<tr>
<td>ARG 605</td>
<td>ALA 595</td>
<td>ARG 1047</td>
<td>ARG 605</td>
<td></td>
</tr>
<tr>
<td>ILE 1127</td>
<td>ASP 596</td>
<td>VAL 1052</td>
<td>ILE 1127</td>
<td></td>
</tr>
<tr>
<td>PHE 1157</td>
<td>VAL 1273</td>
<td>SER 1077</td>
<td>PHE 1157</td>
<td></td>
</tr>
<tr>
<td>ILE 1158</td>
<td>GLN 1274</td>
<td>THR 1078</td>
<td>ILE 1158</td>
<td></td>
</tr>
<tr>
<td>LEU 1161</td>
<td>GLY 1276</td>
<td>GLN 1081</td>
<td>LEU 1161</td>
<td></td>
</tr>
<tr>
<td>PRO 1162</td>
<td>THR 1277</td>
<td>TYR 1087</td>
<td>PRO 1162</td>
<td></td>
</tr>
<tr>
<td>ASN 1163</td>
<td>LYS 1278</td>
<td>GLN 1118</td>
<td>ASN 1163</td>
<td></td>
</tr>
<tr>
<td>THR 1167</td>
<td>ARG 1279</td>
<td>LYS 1164</td>
<td>THR 1167</td>
<td></td>
</tr>
<tr>
<td>VAL 1169</td>
<td>GLN 1280</td>
<td>THR 1174</td>
<td>GLN 1175</td>
<td></td>
</tr>
<tr>
<td>THR 1174</td>
<td>THR 1174</td>
<td>GLN 1175</td>
<td>LEU 1176</td>
<td></td>
</tr>
<tr>
<td>GLN 1175</td>
<td>GLN 1175</td>
<td>LEU 1176</td>
<td>SER 1177</td>
<td></td>
</tr>
<tr>
<td>LEU 1176</td>
<td>LEU 1176</td>
<td>SER 1177</td>
<td>GLY 1178</td>
<td></td>
</tr>
<tr>
<td>SER 1177</td>
<td>SER 1177</td>
<td>GLY 1178</td>
<td>GLY 1179</td>
<td></td>
</tr>
<tr>
<td>GLY 1178</td>
<td>GLY 1178</td>
<td>GLY 1179</td>
<td>GLN 1180</td>
<td></td>
</tr>
</tbody>
</table>
Other groups have shown that flavonoids are strong modulators of P-gp activity and that they interact with the NBs of the enzyme (Di Pietro et al., 2002). It is of interest to point out that one of the inhibitors identified here, compound 19, contains both the A and C rings of flavonoids with a modification of the B ring (Fig. 3). Compound 19 may therefore be considered a flavonol analog. Comparison of the binding modality of 19 with those of flavonoids reported in Badhan and Penny (2006) shows that the modified B ring of 19 is in close contact with the tyrosine of the A-loop (Y401 in our study; Y1044 in the Badhan and Penny study), very similar to the B-rings of flavonoids studied by Badhan and Penny (2006).

Conclusion

The present study demonstrates that high-throughput in silico docking studies can be used to generate inhibitor leads that target specific areas within ABC transporters responsible for MDR in cancer chemotherapy. The novel “subtractive” screening methods employed here that target one section of the protein and deemphasize binding at a different section of the protein may be generalizable. Although exploratory in nature, the presented study yielded productive leads for both catalytic sites and an allosteric site inhibitors. These inhibitor-binding sites are now being investigated more thoroughly in current experiments. We are also expanding the docking selections to other conformations of P-gp from the targeted molecular dynamics trajectories. This approach, pioneered by McCammon and colleagues (Amaro et al., 2008), adds a protein dynamic component to docking studies such as presented here.

It is easy to foresee the use of similar subtractive screening methods applied to other difficult drug discovery projects that may generate sets of drug leads that discriminate between desired drug targets and other proteins that should be excluded from interactions with the leads. Optimization studies to increase the affinities of the P-gp inhibitors identified in these studies are currently in progress.

Acknowledgments

The authors thank Iselina Rossi, Stephen Christopher Wheelis, Mindy McClean, and Collette Marchesseault for assistance in the growth of *Pichia pastoris* and the preparation of P-gp, and the Hamilton family of Dallas for their sustained support of Southern Methodist University (SMU) undergraduate research through the Hamilton Undergraduate Research Scholars Program and the SMU Undergraduate Research Assistantship Program for support of the undergraduate researchers. Computational resources were provided by the SMU Center for Scientific Computing. A special thanks to Joe Gargiula and Amit Kumar of the SMU Office of Information Technology for their assistance with this work and to Dr. Jürgen Zirkel, Lipoid AG, Halle, Germany, for generous gifts of modulator compounds.

Authorship Contributions

Participated in research design: Brewer, Follett, Vogel, Wise.

Conducted experiments: Brewer, Follett, Wise.

Performed data analysis: Brewer, Follett, Wise.

Wrote or contributed to the writing of the manuscript: Brewer, Follett, Vogel, Wise.

References

Palmeira A, Sousa E, Vasconcelos MH, and Pinto MM (2012) Three decades of P-gp research: modulators of P-gp activity and that they interact with the NBs of the enzyme (Di Pietro et al., 2002). It is of interest to point out that one of the inhibitors identified here, compound 19, contains both the A and C rings of flavonoids with a modification of the B ring (Fig. 3). Compound 19 may therefore be considered a flavonol analog. Comparison of the binding modality of 19 with those of flavonoids reported in Badhan and Penny (2006) shows that the modified B ring of 19 is in close contact with the tyrosine of the A-loop (Y401 in our study; Y1044 in the Badhan and Penny study), very similar to the B-rings of flavonoids studied by Badhan and Penny (2006).