Chaperoning of the A₁-Adenosine Receptor by Endogenous Adenosine—An Extension of the Retaliatory Metabolite Concept

Justyna Kusek, Qiong Yang, Martin Witek, Christian W. Gruber, Christian Nanoff, and Michael Freissmuth

Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria

Received May 28, 2014; accepted October 29, 2014

ABSTRACT

Cell-permeable orthosteric ligands can assist folding of G protein–coupled receptors in the endoplasmic reticulum (ER); this pharmacocaching translates into increased cell surface levels of receptors. Here we used a folding-defective mutant of human A₁-adenosine receptor as a sensor to explore whether endogenously produced adenosine can exert a chaperoning effect. This A₁-receptor-Y288A was retained in the ER of stably transfected human embryonic kidney 293 cells but rapidly reached the plasma membrane in cells incubated with an A₁ antagonist. This was phenocopied by raising intracellular adenosine levels with a combination of inhibitors of adenosine kinase, adenosine deaminase, and the equilibrative nucleoside transporter: mature receptors with complex glycosylation accumulated at the cell surface and bound to an A₁-selective antagonist with an affinity indistinguishable from the wild-type A₁ receptor. The effect of the inhibitor combination was specific, because it did not result in enhanced surface levels of two folding-defective human V₂-vasopressin receptor mutants, which were susceptible to pharmacocaching by their cognate antagonist. Raising cellular adenosine levels by subjecting cells to hypoxia (5% O₂) reproduced chaperoning by the inhibitor combination and enhanced surface expression of A₁-receptor-Y288A within 1 hour. These findings were recapitulated for the wild-type A₁ receptor. Taken together, our observations document that endogenously formed adenosine can chaperone its cognate A₁ receptor. This results in a positive feedback loop that has implications for the retaliatory metabolite concept of adenosine action: if chaperoning by intracellular adenosine results in elevated cell surface levels of A₁ receptors, these cells will be more susceptible to extracellular adenosine and thus more likely to cope with metabolic distress.

Introduction

It is intuitively evident that the density of receptors at the cell surface determines the magnitude of the cellular response to their cognate extracellular ligands. This has been repeatedly verified for G protein–coupled receptors (GPCRs). In fact, depending on the mode by which a given receptor engages its cognate G protein(s), there are two possible effects of increasing receptor surface levels. First, if the receptor has access to all G proteins on the cell surface, the resulting unrestricted collision coupling translates increases in receptor density in shifts of the concentration-response curve to the left. An impressive example is the transgenic overexpression of β₂-adrenergic receptors in the murine heart, which shifts the concentration-response curve for isoproterenol-induced cAMP accumulation by an order of magnitude to the left (Milano et al., 1994). Alternatively, a receptor undergoes restricted collision coupling. In this instance, an increase in receptor number results in an increased maximum response rather than a shift in the EC₅₀ (Keuerleber et al., 2012). The number of receptors is determined by the rate of their delivery to the cell surface and by their removal and recycling. The latter process is understood in considerable detail (Hanyaloglu and von Zastrow, 2008). Receptor expression is obviously regulated by changes in mRNA transcription and stability. In contrast, it is not clear to what extent receptor levels are dependent on the rate of their export from the endoplasmic reticulum (ER). Like all other integral membrane proteins, GPCRs are synthesized in the ER; their hydrophobic core, which is composed of the seven transmembrane helices, is inserted via the SEC61 translocon channel into the endoplasmic reticulum. In the nascent polypeptide chain, the transmembrane helices are sequentially released into the lipid bilayer by lateral gating of the SEC61 channel (Park and Rapoport, 2012). Because helices exit individually (or as pairs), annular packing of the helices can only be initiated after all helices have emerged from the SEC61 channel. Accordingly, folding, rather than receptor synthesis, is likely

ABBREVIATIONS: DPCPX, 8-cyclopentyl-1,3-dipropylxanthine; EHNA, erythro-9-(2-hydroxy-3-nonyl)adenine; EndoH, endoglycosidase H; ENT, equilibrative nucleoside transporter; ER, endoplasmic reticulum; GFP, green fluorescent protein; GPCR, G protein–coupled receptor; HEK293, human embryonic kidney 293; NBMPR, S-(4-nitrobenzyl)-6-thioinosine; PBS, phosphate-buffered saline; PNGaseF, peptide-N-glycosidase F; SF-TAP tag, Strep-Tactin II-FLAG tandem affinity purification tag; SR121463, N-tert-butyl-4-[5'-ethoxy-4-(2-morpholin-4-yloxy)-2'-oxospiro[cyclohexane-1,3'-indole]-1'-yl]sulfonyl-3-methoxybenzamide; YFP, yellow fluorescent protein.

This work was supported by the doctoral program Cell Communication in Health and Disease, which was jointly funded by grants from the Austrian Science Fund/FWF – Fonds zur Förderung der wissenschaftlichen Forschung [W1205] and the Medical University of Vienna.

dx.doi.org/10.1124/mol.114.094045.

[Review] This article has supplemental material available at molpharm.aspetjournals.org.
to be rate-limiting (Nannon and Freissmuth, 2012). Circumstantial evidence supports this conjecture. First, a considerable fraction of newly synthesized δ-opioid and A1-adenosine receptors is misfolded and is eliminated by sequential ubiquitination, retrotranslocation, and proteasomal degradation (Petäjä-Repo et al., 2000, 2001; Pankevych et al., 2003). Second and conversely, overexpression of a deubiquinating enzyme or inhibition of the proteasome shifts the equilibrium to anterograde trafficking and raises A2A-adenosine receptor surface levels (Milojevic et al., 2000, 2001; Pankevych et al., 2003). Third, manipulations of the heat-shock protein relay, which assists receptor folding in the ER, affect surface levels of the A2A-adenosine receptor (Bergmayr et al., 2013). Fourth, it has long been known that prolonged treatment of β-adrenergic receptors with antagonists can result in exaggerated responses to endogenous agonists, if the treatment is suddenly stopped (“propranolol withdrawal rebound”; see Alderman et al., 1974; Miller et al., 1975), because surface receptor levels increase (Aarons et al., 1980). Originally, the increase in receptor expression was attributed to an antagonist-induced inhibition of endocytosis and downregulation. Currently, this effect is thought to reflect—at least in part—pharmacochaperoning by cell-permeable antagonists, i.e., orthosteric ligands can assist receptor folding in the ER by binding to and stabilizing conformational intermediates on the trajectory to the stable low-energy state of the mature receptor (Morello et al., 2000; Nannon and Freissmuth, 2012).

Endogenous agonists of GPCRs are not necessarily confined to the extracellular space. Accordingly, they may also accumulate within the cell and thus affect receptor folding. We explored this hypothesis by manipulating cellular levels of adenosine: as a sensor, we used a folding-deficient mutant of the human A1-adenosine receptor that is exquisitely sensitive to the pharmacochaperoning action of orthosteric ligands, i.e., agonists and antagonists (Málaga-Díezuez et al., 2010). Raising endogenous adenosine levels by a combination of enzyme inhibitors that mimics the effect of hypoxia and by hypoxia promoted ER export and cell surface delivery not only of the mutated but also of the wild-type A1 receptor. Thus, these observations document that a physiologic ligand may also act as a chaperone and regulate the level of its target receptor.

Materials and Methods

Materials and Receptor Constructs. Erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA) was purchased from Enzo Life Sciences (Lausen, Switzerland), whereas 5-iodotubercidin, dipyridamole, and standard compounds of high-performance liquid chromatography grade (adenosine, ATP, ADP, cAMP, AMP) were from Sigma-Aldrich (St. Louis, MO). The sources of other reagents and chemicals are listed in Table 1. Where indicated, cells expressing A1 receptor were fixed in 0.3 ml of PBS containing 1% paraformaldehyde, 5% bovine serum albumin. Cells expressing yellow fluorescent protein (YFP) was performed on cell membranes using either endoglycosidase H (EndoH) or peptide-N-glycosidase F (PNGaseF) according to the protocol provided by the manufacturer (New England BioLabs, Ipswich, MA).

Immunoblotting and Enzymatic Deglycosylation. Cell membranes (10–50 μg of protein) expressing A1 receptor were fixed in 0.3 ml of PBS containing 1% paraformaldehyde, 5% bovine serum albumin and 25 mM HEPES, NaOH (pH 7.4), 0.75 mM MgCl₂, 1 mM EDTA buffer, adenosine deaminase (1 unit/ml), and the indicated concentrations of [3H]DPCPX (8-cyclopentyl-1,3-dipropylxanthine, specific activity 110 Ci/mmol; PerkinElmer, Waltham, MA). Nonspecific binding was determined in the presence of 10 μM xanthine amine congener (Sigma-Aldrich). The assays were performed in duplicates. After 1-hour incubation at room temperature, the reactions were terminated by rapid filtration over glass fiber filters (GF/B, Whatman-GE Healthcare, Maidstone, UK) using a Skatron cell harvester (Skatron, Lier, Norway). The filters were dissolved in scintillation medium and counted for radioactivity.

Confocal Microscopy. Stably transfected human embryonic kidney cells (HEK293) were seeded onto poly-L-lysine–coated 10-mm glass coverslips. Confocal microscopy was performed as described earlier (Málaga-Díezuez et al., 2010) using a Zeiss LSM510 confocal microscope (argon laser, 30 mW; helium/neon laser, 1 mW; Zeiss, Jena, Germany) equipped with an oil immersion objective (Zeiss Plan-Neofluar 40/1.3). Images were captured with identical microscope settings and analyzed with Fiji (ImageJ, NIH, Bethesda, MD) software by applying the same settings for brightness and contrast.

Cell Culture and Transfection. Cell cultures were maintained at 37°C in a humidified atmosphere containing 5% CO₂ in Dulbecco’s modified Eagle’s medium, supplemented with 10% fetal calf serum, 100 units/ml penicillin, and 0.1 mg/ml streptomycin. Cells were transfected using the calcium phosphate precipitation method or Turbofect (Thermo Scientific, Waltham, MA). Stable cell lines were generated after transfection by selecting for genetin (G418) resistance (at a concentration of 0.8 mg/ml) and were screened by radioligand binding. In hypoxia experiments, cells were incubated in 5% O₂, 5% CO₂ balanced with N₂ for up to 24 hours.

Membrane Preparation. Cell membranes (10–50 μg of protein/assay) were incubated in a final volume of 0.2 ml of buffer containing 25 mM HEPES (pH 7.4), 2 mM MgCl₂, 1 mM EDTA buffer, adenosine deaminase (1 unit/ml), and the indicated concentrations of [3H]DPCPX (8-cyclopentyl-1,3-dipropylxanthine, specific activity 110 Ci/mmol; PerkinElmer, Waltham, MA). Nonspecific binding was determined in the presence of 10 μM xanthine amine congener (Sigma-Aldrich). The assays were performed in duplicates. After 1-hour incubation at room temperature, the reactions were terminated by rapid filtration over glass fiber filters (GF/B, Whatman-GE Healthcare, Maidstone, UK) using a Skatron cell harvester (Skatron, Lier, Norway). The filters were dissolved in scintillation medium and counted for radioactivity.

Radioligand Binding. Cell membranes (10–50 μg of protein) expressing A1 receptor were loaded onto an SDS-polyacrylamide gel. The resolved proteins were electrophoretically transferred to nitrocellulose membranes, which were blocked with 3% bovine serum albumin in 20 mM Tris-HCl (pH 7.5), 150 mM NaCl, and 0.1% Tween 20. Blots were probed with affinity-purified rabbit anti-GFP polyclonal antibodies (1:1500; a gift from Werner Sieghart, Medical University of Vienna, Vienna, Austria) or with antisemur 7 (1:2000) directed against the common N-terminal epitope in G protein β-subunits (Hohenegger et al., 1996) as a loading control. The horseradish peroxidase–conjugated antirabbit antibody was used as a secondary antibody (1:5000; GE Healthcare). Immunoreactive proteins were detected using a chemiluminescent substrate (SuperSignal West Pico Chemiluminescent Substrate or SuperSignal West Femto Chemiluminescent Substrate; Thermo Scientific), which was recorded with a charge-coupled device camera. The enzymatic degradylation was performed on cell membranes using either endoglycosidase H (EndoH) or peptide-N-glycosidase F (PNGaseF) according to the protocol provided by the manufacturer (New England BioLabs, Ipswich, MA).

The reaction was performed for 16 hours at 37°C. The deglycosylated products were visualized by immunoblotting as described earlier.
Fig. 1. Accumulation of mature A1-adenosine receptor-Y288A in cells subjected to an incubation with DPCPX or to inhibition of adenosine kinase, adenosine deaminase, and adenosine transport. (A) HEK293 cells stably expressing A1-receptor-Y288A fused to YFP were incubated for 24 hours with vehicle (lane labeled “untreated”), 1 \textmu M DPCPX as positive control; 2 \textmu M EHNA and 0.5 \textmu M iodotubercidin (IODO); or 2 \textmu M EHNA, 0.5 \textmu M iodotubercidin, and 10 \textmu M dipyridamole (EHNA/IODO/DIP). Subsequently, membranes (20 \textmu g/lane) prepared from these cells were electrophoretically resolved and the receptor detected by blotting for the YFP moiety (upper blot). Immunodetection of G protein \(\beta \)-subunits served as a loading control (lower blot). The right-hand panel represents the densitometric quantification of the blot, analyzed by ImageJ software. The pixel density of the upper band (\(\sim 70-72 \) kDa) was determined and normalized by setting the mean density observed in untreated control cells as 1. Data are means from six independent experiments, error bars represent the S.E.M. (B) Effect of sole inhibition of adenosine kinase, adenosine deaminase, or adenosine transport on the accumulation of mature A1-adenosine receptor-Y288A. HEK293 cells stably expressing A1-receptor-Y288A fused to YFP were incubated for 24 hours with vehicle (lane labeled “untreated”), 1 \textmu M DPCPX as positive control, and one of the inhibitors: 0.5 \textmu M iodotubercidin, 2 \textmu M EHNA, or 10 \textmu M dipyridamole. Membranes (15 \textmu g/lane) prepared from these cells were separated electrophoretically and immunoblotted as in (A). The experiment is...
paraformaldehyde; for detection of the FLAG tag, cells were first incubated for 1 hour with mouse anti-FLAG M2 primary antibody (1:1000; Stratagene), washed three times in PBS, subsequently incubated in the dark with the Alexa Fluor 488 goat antimouse IgG (1:2000), washed again in PBS, and fixed. The suspension was then kept in the dark at 4°C. Cells, which had been incubated only in the presence of the secondary antibody, served as a negative control. Fluorescence of at least 10,000 cells/sample was recorded using a FACSCalibur flow cytometer (BD Biosciences, San Jose, CA) and analyzed with the FlowJo software (BD Biosciences).

Statistics and Data Analysis. Data are presented as the mean ± S.E.M. Different conditions were compared using one-way analysis of variance followed by Tukey’s post-hoc test or by t test with the appropriate Bonferroni correction. Curve fitting was done by nonlinear regression using the algorithm provided by GraphPad Prism (GraphPad, La Jolla, CA).

Results

Combined Inhibition of Adenosine Kinase, Adenosine Deaminase, and Adenosine Transport Resulted in Accumulation of Mature A1-Adenosine Receptor-Y288A. Point mutations in the conserved NPxxY(x)5,6F sequence at the junction of helix 7 and the carboxyl terminus/helix 8 disrupt surface targeting of the A1-adenosine receptor and result in its retention in the ER (Málaga-Díezguez et al., 2010). These mutants can be rescued and their cell surface expression restored upon incubation with cognate ligands, e.g., the antagonist DPCPX. Here, we used the mutant A1-receptor-Y288A as a sensor. Our working hypothesis posits that intracellular adenosine can act as an endogenous chaperone for the A1-adenosine receptor. We explored this conjecture by providing a condition that promotes the accumulation of adenosine within the cell. Adenosine has a short half-life, both within a cell and in the extracellular space, and is rapidly redistributed by equilibrative nucleoside transporters ENT1/SLC29A1 and ENT2/SLC29A2 (Olsson and Pearson, 1990). We inhibited the two limbs of adenosine metabolism and prevented its efflux to raise intracellular levels, namely 1) deamination to inosine with the adenosine deaminase inhibitor EHNA, 2) phosphorylation to AMP with the adenosine kinase inhibitor 5-iodotubercidin, and 3) efflux via the equilibrative nucleoside transporters by dipyridamole. The combination of these compounds mimics the metabolic changes induced by chronic hypoxia (Kobayashi et al., 2000) and results in elevations of intracellular adenosine (Supplemental Fig. 1). Incubation of HEK293 cells stably expressing a YFP-tagged version of A1-receptor-Y288A in the presence of DPCPX or of the combination of inhibitors (i.e., EHNA, 5-iodotubercidin, and dipyridamole) for 24 hours resulted in elevated levels of the receptor protein (cf. lanes 1, 2, and 4 in Fig. 1, A and B). Blockage of adenosine efflux by dipyridamole or S-(4-nitrobenzyl)-L-thioinosine (NBMPR; Supplemental Fig. 2, A and B) was indispensable for receptor upregulation, because the effect was not observed in the sole presence of EHNA and 5-iodotubercidin (Fig. 1A, lane 3). This effect was also not present when cells were incubated with only one of the inhibitors (EHNA, dipyridamole, or 5-iodotubercidin) (Fig. 1B).

The A1 receptor immunoreactivity in Fig. 1A migrated as a collection of diffuse bands in the range of 60–72 kDa. This heterogeneity was to be expected because the protein is subject to sequential glycosylation with modifications of the branched sugar moieties that are stochastic in nature. We incubated the cell membranes carrying wild-type (YFP-tagged) A1 receptor and A1-receptor-Y288A with the endoglycosidases EndoH and PNGaseF to verify the extent of glycosylation (Fig. 1B). Membrane proteins that reside in the ER carry glycan moieties, which are cleaved by EndoH. In contrast, PNGaseF removes all glycan moieties, including the complex, mature glycosylation, which is acquired in the Golgi apparatus. Addition of EndoH resulted in the shift of the band labeled “C” in Fig. 1C to a lower position labeled “D.” The upper band (denoted as “M”) shifted to the D position only upon incubation with PNGaseF. Therefore, we concluded that band C represents the immature, core-glycosylated receptor species, which resides in the ER. The upper band M corresponds to the fully glycosylated, mature form of the receptor. This band accumulated upon treatment with DPCPX and the combination of inhibitors (cf. Fig. 1B). The chaperoning effect of DPCPX and the combination of inhibitors (lanes labeled EHNA/IODO/DIP) increased with time, and the maximum effect appeared after 24 hours (Fig. 2A). We also visualized the distribution of the receptor within the cells by imaging the YFP moiety attached to the receptor (Supplemental Fig. 3): it is evident that, under basal conditions, the bulk of the mutant A1-receptor-Y288A resided within the cell and delineated the perinuclear membrane (Supplemental Fig. 3A), which is consistent with ER retention. Upon treatment with 1 µM DPCPX (Supplemental Fig. 3B) or the combination of inhibitors (Supplemental Fig. 3C), the fluorescence was visualized on the cell surface. Note that these images were captured at the same settings as that taken under basal conditions. Because receptor levels increased in the presence of DPCPX and the combination of inhibitors, the images are overexposed.

In most experiments, we observed that DPCPX and the combination of inhibitors increased both the mature glycosylated and the core glycosylated form of the receptor (cf. Fig. 1A). This is consistent with the conjecture that pharmacochaperoning must initially increase the level of receptors in the ER, which are then subsequently exported, by preventing their degradation. We verified this assumption by incubating cells with kifunensine, which inhibits mannosidases required for ER-associated degradation. This resulted in the substantial accumulation of core-glycosylated mutant A1-receptor-Y288A (Fig. 2B, third lane). However, these additional receptors, which accumulated in the presence of kifunensine, failed to bind the antagonist radioligand [3H]DPCPX (Fig. 2C). In contrast, the receptors, which accumulated in the presence of DPCPX (Fig. 2B, second lane) or the combination of DPCPX and kifunensine (Fig. 2B, fourth lane), did bind the radioligand. This is consistent with the conclusion that a large fraction of the mutant A1-receptor-Y288A is rapidly degraded, because it is misfolded and thus incapable of binding. In addition, receptor

representative of three independent observations. (C) Comparison of the glycosylation pattern of the wild-type A1 receptor and of the mutant A1-receptor-Y288A fused to YFP in membranes prepared from cells that had been treated with vehicle (untreated), DPCPX, or the combination of inhibitors (IODO/EHNA/DIP) as in (A). Membranes (10 µg/lane) prepared from cells expressing wild-type and mutant A1 receptor fused to YFP were incubated overnight with endoglycosidase H or with peptide-N-glycosidase F as outlined in Materials and Methods. The bands are denoted as M (mature), C (core glycosylated), and D (deglycosylated). The experiment was replicated twice more with similar results. A1R, A1 receptor.
synthesis was blocked by cycloheximide in cells expressing mutant A1-receptor-Y288A after they had been treated in the absence and presence of DPCPX or the combination of inhibitors (EHNA, dipyridamole, and iodotubercidin) for 4 hours. Under these conditions, it was possible to examine the subsequent fate of the mutant A1-receptor-Y288A, which had accumulated in the

Fig. 2. (A) Time-dependent accumulation of mutant A1-receptor-Y288A. HEK293 cells stably expressing A1-receptor-Y288A fused to YFP were incubated for 1, 2, 4, 8, or 24 hours with a vehicle (left-hand blot); 1 μM DPCPX (middle blot); or 2 μM EHNA, 0.5 μM iodotubercidin (IODO), and 10 μM dipyridamole (DIP; right-hand blot). Subsequently, membranes (20 μg/lane) prepared from these cells were electrophoretically resolved and the receptor detected by blotting for the YFP moiety (upper blot). Immunodetection of G protein β-subunits served as loading control (lower blot). A second experiment gave similar results. (B) The folding-defective mutant A1-receptor-Y288A is eliminated by the ER-associated degradation. HEK293 cells stably expressing A1-receptor-Y288A fused to YFP were incubated for 24 hours with a vehicle (untreated), 1 μM DPCPX; 2 μM kifunensine (KIF), or 1 μM DPCPX and 2 μM kifunensine combined (KIF/DPCPX); assay conditions were as outlined in (A). The right-hand panel represents the densitometric quantification of the blot, analyzed by ImageJ software. The pixel density of the immature core-glycosylated (lower) and mature (upper) band was determined and normalized by setting the mean density observed in untreated control cells as 1. Data are means from two independent experiments, and error bars represent the S.E.M. (C) HEK293 cells stably expressing A1-receptor-Y288A fused to SF-TAP on the N terminus were treated as outlined in (B). The expression of the receptor was determined in membrane preparations (10 μg) by determining specific binding of a single saturating concentration of [3H]DPCPX (15 nM). Data are the means ± S.E.M from three experiments. Statistically significant differences were assessed by repeated-measures analysis of variance followed by Tukey’s post-hoc test (*P < 0.05). (D) Accumulation of the mature mutant A1-receptor-Y288A upon combined inhibition of adenosine kinase, adenosine deaminase, and adenosine transport is independent of the translation rate. HEK293 cells stably expressing A1-receptor-Y288A fused to YFP were preincubated for 4 hours with vehicle (untreated); 1 μM DPCPX as positive control; or 2 μM EHNA, 0.5 μM iodotubercidin, and 10 μM dipyridamole [inhibitor combination (inh. c.)]. Thereafter (time = 0), cycloheximide (50 μg/ml) was added to the cells. Cells were then incubated for 2 or 4 hours in the absence or continued presence of DPCPX or the inhibitor combination. Subsequently, membranes (15 μg/lane) prepared from these cells were electrophoretically resolved and the receptor detected by blotting for the YFP moiety (upper blot). Immunodetection of G protein β-subunits served as loading control (lower blot). A1R, A1 receptor; CHX, cycloheximide.
ER in the absence of any further protein synthesis. Over the next 4 hours, the ER-resident core glycosylated receptor rapidly declined under control conditions (cf. 55 kDa band in lanes 1, 4, and 7 of Fig. 2D), but the mature glycosylated band did not increase to any appreciable extent (cf. bands in the 70 kDa range in lanes 1, 4, and 7 of Fig. 2D). A rapid decrease of the ER-resident receptor was also evident in cells treated in the presence of DPCPX (cf. 55 kDa band in lanes 2, 5, and 8 of Fig. 2D) or of the combination of inhibitors (cf. 55 kDa band in lanes 3, 6, and 9 of Fig. 2D), but it was accompanied by a concomitant increase in the mature glycosylated forms of the receptor. These observations are also consistent with the conclusion that the ER-resident receptor is degraded unless it is rescued by pharmacochaperoning.

Combined Inhibition of Adenosine Kinase, Adenosine Deaminase, and Adenosine Transport Increased the Level of Binding-Competent Mutant A1-Receptor-Y288A. We verified that the accumulation of the highly glycosylated species of the A1-receptor-Y288A translated into higher binding of the antagonist [3H]DPCPX. Binding assays were done with membrane preparations from cells stably expressing two different tagged versions of the receptor, i.e., with a C-terminal YFP (Fig. 3A) and an SF-TAP tag on the N terminus (Fig. 3B) at substantially different levels. It is evident from a comparison of Fig. 3, A and B that the pretreatment with the inhibitors resulted in a comparable relative increase in receptor levels (by about 2.5-fold). We therefore conclude that the nature of the tag did not interfere with the chaperoning action. We also verified separately that neither EHNA nor 5-iodotubercidin nor dipyridamole per se, nor their combination, used in the experiments bound to the A1 receptor in the nanomolar to micromolar range (Supplemental Fig. 4). Finally, we also carried out saturation experiments to confirm that the chaperoned receptor recognized the radioligand with high affinity (shown for receptors carrying the N-terminal SF-TAP tag in Fig. 3C; $K_D = 4.3 \pm 1.6$ nM, $B_{max} = 486.3 \pm 80.0$ fmol/mg; $K_D = 2.6 \pm 0.3$ nM, $B_{max} = 835.2 \pm 34.0$ fmol/mg; and $K_D = 1.0 \pm 0.2$ nM, $B_{max} = 1046.0 \pm 42.0$ fmol/mg for untreated, DPCPX, and inhibitor cocktail conditions, respectively).

Raising Intracellular Adenosine Did Not Result in the Protein Accumulation of the V2-Vasopressin Receptor Folding Mutants. A trivial explanation for these observations is to assume that a change in adenosine recycling affects cellular ATP levels and thus alters the activity of heat-shock proteins. Accordingly, we compared the ability of the combination of inhibitors to rescue the mutant A1-receptor-Y288A and mutated versions of the V2-vasopressin receptor. There are numerous variants of the V2 receptor, which cause nephrogenic diabetes insipidus because they are retained in the ER due to a folding defect. Their cell surface expression can be restored by pharmacochaperoning with cell-permeable antagonists (Wuller et al., 2004). We selected V2-receptor-I318S and V2-receptor-T273R, which carried either an N-terminal FLAG tag (Fig. 4B) or a GFP moiety at the C terminus (Fig. 4C), and determined their expression level by flow cytometry. The levels of both receptors increased in response to incubation of the cells with the specific antagonist N-tert-butyl-4-[5'-ethoxy-4-(2-morpholin-4-ylthoxy)-2-oxospiro[cyclohexane-1,3'-indole]-1'-yl]sulfonyl-3-methoxybenzamide (satavaptan, SR121463) for 24 hours (left-hand panels in Fig. 4, B and C). However, the combination of inhibitors (EHNA, 5-iodotubercidin, and dipyridamole) did not cause any appreciable change in V2-receptor-I318S and V2-receptor-T273R (cf. bar diagrams in Fig. 4, B and C, respectively). In contrast, the positive control experiment, which was done in parallel in cells expressing the YFP-tagged A1-receptor-Y288A, showed that both DPCPX and the combination of inhibitors caused a substantial accumulation of YFP fluorescence (Fig. 4A).
Concentration-Dependent Effect of 5-Iodotubercidin, EHNA, and Dipyridamole on the Accumulation of A1-Adenosine Receptor-Y288A. As documented earlier (see Fig. 1A), the three inhibitors must be added in combination to chaperone the A1-receptor-Y288A. We explored which reaction was rate-limiting by incubating cells expressing the A1-receptor-Y288A for 24 hours with increasing concentrations of one compound while keeping the other two components constant. The increase in receptor accumulation was determined by flow cytometry and immunoblotting (Figs. 5A and 6, A–C). EHNA, 5-iodotubercidin, and dipyridamole increased the total levels of the receptor in a concentration-dependent manner, with EC_{50} values in the range of 636 ± 205, 36 ± 14, and 96 ± 36 nM, respectively (Fig. 5B). The low EC_{50} of iodotubercidin was also verified by quantifying its effect on receptor accumulation by immunoblotting (Fig. 6A) and by quantifying its effect by radioligand binding, which also gave an EC_{50} of 32 ± 3 nM (Fig. 6D). EHNA and 5-iodotubercidin inhibit adenosine deaminase with a K_{i} of 33 nM (Ingolia et al., 1985) and 25 nM (Davies et al., 1984), respectively. The affinity of dipyridamole for human ENT1 and ENT2 is in the range of 5 and 350 nM, respectively (Ward et al., 2000). Thus, the EC_{50} for 5-iodotubercidin–induced increase in receptor accumulation closely matched its affinity for adenosine kinase. In contrast, >90% of adenosine deaminase and of ENT1 must be blocked to result in intracellular accumulation sufficient to chaperone the receptor.

Fig. 4. Combined inhibition of adenosine kinase, deaminase, and transport does not result in the accumulation of folding-deficient V2-vasopressin receptor mutants on the cell surface. HEK293 cells stably expressing N-terminally Flag-tagged V2-receptor-I318S (A), V2-receptor-T273R-GFP (B), or A1-receptor-Y288A-YFP (C) were incubated with vehicle, the cognate antagonist as a pharmacochaperone [5 and 10 μM SR121463 in (A) and (B), respectively; 1 μM DPCPX in (C)], or the combination of 2 μM EHNA, 0.5 μM 5-iodotubercidin, and 10 μM dipyridamole [inhibitor combination (inhibitors c.)]. After 24 hours, receptor expression was analyzed by quantifying fluorescence intensity [emitted by YFP/GFP in (A) and (C) and by Alexa Fluor 488–labeled secondary antibody against the primary anti-FLAG antibody (B)] by flow cytometry. Shaded histograms represent untreated samples and open histograms indicate treatment with a pharmacochaperone or the combination of inhibitors. Bar diagrams show means ± S.E.M. from three independent experiments performed in triplicate. Statistically significant differences were assessed by repeated-measures analysis of variance followed by Tukey’s post-hoc test (**p < 0.001).
As noted, sole addition of a single inhibitor did not cause any appreciable increase in receptor levels (Fig. 5C). Similar results were obtained if receptor expression was analyzed by radioligand binding (Supplemental Fig. 5).

Hypoxia-Driven ER Export of A1-Receptor-Y288A. Hypoxia and/or ischemia results in a dramatic increase in tissue levels of adenosine, both within cells and in the extracellular space (Newby, 1984; Olsson and Pearson, 1990). We therefore examined whether the hypoxia-induced increase in adenosine translated into enhanced folding and subsequent ER export of the mutant A1-receptor-Y288A. The findings were as follows: Fig. 7, A and B shows that, after 24-hour incubation under hypoxic conditions (5% of O2), the mature, fully glycosylated band (band M) increased at the expense of the core-glycosylated form (band C). Thus, hypoxia recapitulated the action of the combination of inhibitors (cf. Figs. 7A and 1, A and B). The effect was rapid, as it was already detectable as early as after 1-hour incubation under 5% oxygen (Fig. 7, B and C). Whereas the pharmacochaperoning action of DPCPX or the combined inhibitors increased up to 24 hour (cf. Fig. 2A), the effect of hypoxia did not increase further after 2 hours (Supplemental Fig. 6). We confirmed that the enhanced accumulation of mature receptor protein translated into an increase in binding-competent receptors (Fig. 7C). In cells expressing endogenous A1 receptors, chronic hypoxia may result in augmented receptor levels as a result of increased transcription of the cognate gene (Hammond et al., 2004), possibly because the promoter contains several candidate binding sites for HIF (hypoxia-inducible factor) (St Hilaire et al., 2009). However, we placed the A1 receptor under the control of the cytomegalovirus promoter. In fact, a hypoxic challenge of HEK293, in which stable expression of the V2-receptor-T273R was also driven from the cytomegalovirus promoter, did not result in accumulation of protein (Supplemental Fig. 7).

Combined Inhibition of Adenosine Kinase, Adenosine Deaminase, and Adenosine Transport or Hypoxia Increased the Levels of Wild-Type A1-Receptor. Taken together, our experiments documented that intracellular accumulation of adenosine (caused by inhibition of the enzymes metabolizing adenosine or by hypoxia) facilitated the folding and maturation of the ER-retained mutant of A1-receptor-Y288A. The wild-type receptor is also susceptible to pharmacochaperoning, albeit to a lesser extent than folding-deficient mutants (Malaga-Dieguez et al., 2010). Accordingly, we also explored whether the wild-type A1 receptor (carrying an N-terminal FLAG tag) was subject to endogenously produced adenosine by incubating stably transfected HEK293 cells for 24 hours in the presence of the combination of inhibitors. The receptor was detected by flow cytometry via its N-terminal FLAG tag (Fig. 8, A and B) or by binding with the antagonist.
pretreatment with the combined inhibitors resulted in a more substantial enhancement of the binding-competent wild-type receptors: the saturation hyperbola showed that receptors in membranes from hypoxic cells bound [3H]DPCPX with an affinity indistinguishable from those in control membranes, but the levels increased (B_max = 12.2 ± 0.3 pmol/mg, K_D = 2.2 ± 0.2 nM and B_max = 15.0 ± 0.8 pmol/mg, K_D = 1.9 ± 0.3 nM for normoxic and hypoxic conditions, respectively; Fig. 8F). We determined the effect of hypoxia in cells that stably expressed different N-terminally tagged versions of the wild-type A1 receptor (FLAG or SF-TAP) at different levels by exposing the membranes to a single concentration of [3H]DPCPX (10 nM, i.e., close to saturation). On average, hypoxia increased the levels of receptors by ~20% regardless of the nature of the tag and of the expression levels; the pooled data are shown in Fig. 8G.

Discussion

It is generally accepted that folding of both soluble and membrane proteins is assisted by proteinaceous chaperones. In addition, a large collection of low molecular weight ligands (e.g., metal ions, substrates and cosubstrates, prosthetic groups such as heme, etc.) stabilize their target proteins against thermal denaturation: occupancy of their cognate binding site allows these ligands to promote a conformational state that approaches the minimum energy conformation. Accordingly, it is not surprising that these small ligands also chaperone their target proteins during the conformational search associated with folding, regardless of whether they bind to allosteric or orthosteric sites (Leidenheimer and Ryder, 2014). This concept posits that endogenous agonists ought to chaperone their cognate receptors. In the present work, we verified this postulate for the A1-adenosine receptor by demonstrating that the intracellular accumulation of adenosine caused upregulation of the A1-adenosine receptor at the cell surface. The increased level of adenosine in the cell was achieved by concerted inhibition of adenosine deaminase, adenosine kinase, and equilibrative nucleoside transporters or by application of hypoxia. Adenosine facilitated maturation and ER export of both 1) an ER-retained receptor with a mutation in the conserved NPxxY(x)5,6F motif (at the junction of helix 7 and C-tail) and 2) the wild-type receptor. The conclusion that adenosine acted as a chaperone was confirmed by the following evidence: 1) inhibition of adenosine kinase, deaminase, and transport phenocopied the effect of the pharmacochaperone DPCPX and resulted in the accumulation of the mature highly glycosylated form of the receptor mutant; 2) flow cytometry and confocal microscopy provided an independent confirmation that this treatment upregulated the A1 receptor at the cell surface; 3) binding experiments confirmed that these additional A1 receptors were correctly folded, because they bound the antagonist radioligand with an affinity comparable to the wild-type receptor; 4) the effect of adenosine was specific for the A1-adenosine receptor as it did not increase expression of another representative GPCR, namely folding-deficient versions of the V2-vasopressin receptor; and 5) the effect of inhibitors was
recapitulated by hypoxia, which is the physiologic stimulus to raise adenosine levels.

This chaperoning action of an endogenous ligand on its cognate transmembrane receptor is not unprecedented: at high concentrations (i.e., 1 mM), choline facilitated the ER export and the maturation of heterologously expressed αβ2 nicotinic acetylcholine receptor (Sallette et al., 2005). This observation was recapitulated with another ligand-gated ion channel, namely GABA receptors composed of αβ2γ2L pentamers; the chaperoning action was enhanced by coexpression of the GABA transporter 1/SLC6A1 (Eshaq et al., 2010). Similarly, dopamine chaperones the D4 receptor and the folding-deficient mutant D4-receptor-M345T provided that its intracellular concentration is raised by coexpression of the dopamine transporter/SLC6A3 (Van Craenenbroeck et al., 2005). However, it is difficult to envisage a situation in which the intracellular concentration of choline, GABA, or dopamine reaches levels in vivo that are compatible with their chaperoning action. The plasma membrane transporters for GABA and dopamine, for instance, operate in a relay with the vesicular transporter, which results in rapid sequestration of neurotransmitters into synaptic vesicles. In contrast, our approach also relied on a physiologic manipulation, namely hypoxia. Thus, to the best of our knowledge, the A1-adenosine receptor is the first GPCR documented to respond to chaperoning by its endogenous agonist in a physiologically relevant context.

We suspect that our observations are relevant to those receptors which respond to cell-permeable agonists—e.g., the G protein–coupled estrogen receptor GPR30 (Filardo and Thomas, 2012) or endogenous metabolites, which reach high (micromolar to millimolar) levels: fatty acids, lactate, ketone bodies, succinate, bile acids that activate (recently deorphanized) GPCRs GPR40 and GPR120, the hydrocarboxylic acid receptors (GPR81, GPR109a, and GPR109b), GPR91, and TGR5, respectively. These receptors sense the levels of substrates or intermediates of energy metabolism and thus orchestrate the adaptation of the organism to changes in caloric input and demand (Tonack et al., 2013). The ER has been proposed to serve as a reservoir of folding-competent GPCR intermediates (Leidenheimer and Ryder, 2014). It is conceivable that, upon an increase of endogenous ligand within the cell, this pool of protein is exported from the ER and traffics to the cell surface. This results in a positive feedback loop that shifts the sensitivity of the target cell. Thus, the adenosine-induced chaperoning of the A1 receptor is consistent with its role as a retaliatory metabolite (Newby, 1984): the extracellular concentration of adenosine increases after tissue damage and due to hypoxia (Fredholm, 2007). In vivo, metabolic distress also
results in an up to 20-fold increase in intracellular adenosine; in fact, adenosine kinase is particularly sensitive to hypoxia (Decking et al., 1997). Signaling via inhibitory A_1-adenosine receptors suppresses cellular activity (e.g., in the brain or in the heart) and thus counteracts the impact of hypoxia. Based on our observations, we propose that the retaliatory metabolite concept be extended to include adenosine-induced chaperoning of A_1 receptors. This action may not be restricted to A_1 receptors. In fact, in PC12 cells, intracellular A_{2A} receptors were found to be translocated to the plasma membranes in response to oxygen deprivation (Arslan et al., 2002). It is attractive to speculate that this increase in A_{2A} receptors at

Fig. 8. Increase in wild-type A_1 receptor levels in response to combined inhibition of adenosine kinase, deaminase, and transport and to hypoxia. HEK293 cells stably expressing the wild-type A_1 receptor with a FLAG epitope on the N terminus were incubated for 24 hours with vehicle, 1 μM DPCPX, or the combination of inhibitors, i.e., 2 μM EHNA, 0.5 μM 5-iodotubercidin, and 10 μM dipyridamole (inhibitors c.). Subsequently, the expression of the receptor was analyzed by flow cytometry (A and B) or by radioligand saturation binding (C and D). (A) Shaded and open histogram represents vehicle-treated control cells and cells exposed to the combination of inhibitors, respectively. (B) The fluorescence intensities of three separate experiments conducted as illustrated in (A) were quantified as geometric means. Error bars represent the S.E.M. (C) Membranes were prepared from cells subjected to the conditions outlined earlier and incubated with the indicated concentrations of the antagonist radioligand $[^3H]$DPCPX. Data are means from duplicate determinations in a representative experiment. The curves represent specific binding. (D) B_{max} values are means \pm S.E.M. from three separate saturation binding experiments. *$P < 0.05$ when compared with the vehicle control by repeated-measures analysis of variance followed by Tukey’s post-hoc test. (E) HEK293 cells stably expressing the wild-type A_1 receptor tagged with YFP were incubated for 24 hours under normoxic or hypoxic conditions (5% O_2) in the absence and presence of the combined inhibitors (inhibitors c.). A_1 receptors were quantified in cell membranes (15 μg of protein) by immunoblotting for the YFP moiety and for G_β-subunits as loading control. The blot represents one of three independent experiments. (F) HEK293 cells stably expressing wild-type A_1 receptor tagged with an SP-TAP epitope on its N terminus were incubated under normoxic or hypoxic conditions (5% O_2) for 24 hours. The expression of the receptor was determined in membrane preparations by saturation binding with the indicated concentrations of $[^3H]$DPCPX. Data are means from duplicate determinations in a representative experiment. (G) The experiment depicted in (G) was performed on HEK293 cells stably expressing differently N-terminally tagged versions of the wild-type A_1 receptor (FLAG or SP-TAP). The expression of the receptor was determined in membrane preparations by determining specific binding of a single saturating concentration of $[^3H]$DPCPX (10 nM). Shown is the fold increase over control (expression level in hypoxia over normoxia) to account for variations in expression levels in the different cell lines. Error bars represent the S.E.M. ($n = 8$). *$P < 0.05$, paired t test. A_1R, A_1 receptor.
the cell surface was the result of the chaperoning by endogenously formed adenosine.

In class A (rhodopsin-like) GPCRs, the ligand binding pocket is buried in the hydrophobic core, but they engage their (orthosteric) ligands via an entry pathway that is accessible from the extracellular face of the membrane. In the ER, the topological equivalent is the luminal side. It is therefore not clear how hydrophilic ligands such as dopamine (Van Craenenbroeck et al., 2005) or adenosine gain access to the receptor to exert their chaperoning action. One possible explanation is the presence of transporters in the ER membranes. In fact, the equilibrative nucleoside transporter-3 (ENT3/SCL29A3) is confined to intracellular membranes and is insensitive to dipyridamole and NBMPR (Baldwin et al., 2005); accordingly, it may also be operative in the ER under our experimental conditions. However, an alternative explanation appears more plausible based on the following arguments: molecular dynamics simulations of rhodopsin (Grossfeld et al., 2008) and of the β2-adrenergic receptors (Romo et al., 2010) reveal that activation of the receptors is associated with increased hydration of the ligand binding cavity; in these simulations, the water molecules enter into the hydrophobic core via a pathway that is contiguous with the cytosolic face and eventually adopts the structure of a water-filled channel (Leiottats et al., 2014). In fact, for rhodopsin, it is clear that bulk water, rather than the structural water, is involved in hydrolytic cleavage of the chromophore (Jastrzebska et al., 2011). Ordered water molecules can also be visualized in the structure of the A2A-adenosine receptor; they extend from the ligand binding pocket to the intracellular face (Li et al., 2012). Thus, it appears safe to conclude that a hydrophilic pathway exists in many—if not all—rhodopsin-like GPCRs. During folding of a rhodopsin-like GPCR, conformational states are likely to be visited in which this water-filled pathway is large enough to allow for entry of orthosteric ligands from the cytosolic side. Possibly, the actions of orthosteric pharmacophorones is—at least in part—accounted for by their ability to occupy the nascent ligand binding pocket. This ought to both preclude excessive hydration and reconcile active rhodopsin structures.

 Kusek, Nanoff, Freissmuth.

Address correspondence to: Michael Freissmuth, Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, Währinger Str. 13a, A-1090 Vienna, Austria. E-mail: michael.freissmuth@meduniwien.ac.at