Reporting Sodium Channel Activity Using Calcium Flux: Pharmacological Promiscuity of Cardiac Nav1.5

Hongkang Zhang, Beiyian Zou, Fang Du, Kaiping Xu, and Min Li

The Solomon H. Snyder Department of Neuroscience, High Throughput Biology Center (H.Z., B.Z., F.D., K.X., M.L.); Johns Hopkins Ion Channel Center (H.Z., B.Z., F.D., K.X., M.L.), Johns Hopkins University, Baltimore, Maryland; and GlaxoSmithKline, King of Prussia, Pennsylvania (M.L.).

Received July 16, 2014; accepted November 24, 2014

ABSTRACT

Voltage-gated sodium (Nav) channels are essential for membrane excitability and represent therapeutic targets for treating human diseases. Recent reports suggest that these channels, e.g., Nav1.3 and Nav1.5, are inhibited by multiple structurally distinctive small molecule drugs. These studies give reason to wonder whether these drugs collectively target a single site or multiple sites in manifesting such pharmacological promiscuity. We thus investigate the pharmacological profile of Nav1.5 through systemic analysis of its sensitivity to diverse compound collections. Here, we report a dual-color fluorescent method that exploits a customized Nav1.5 [calcium permeable Nav channel, subtype 5 (SoCa5)] with engineered-enhanced calcium permeability. SoCa5 retains wild-type (WT) Nav1.5 pharmacological profiles. WT SoCa5 and SoCa5 with the local anesthetics binding site mutated (F1760A) could be expressed in separate cells, each with a different-colored genetically encoded calcium sensor, which allows a simultaneous report of compound activity and site dependence. The pharmacological profile of SoCa5 reveals a hit rate (>50% inhibition) of around 13% at 10 μM, comparable to that of hERG. The channel activity is susceptible to blockage by known drugs and structurally diverse compounds. The broad inhibition profile is highly dependent on the F1760 residue in the inner cavity, which is a residue conserved among all nine subtypes of Nav channels. Both promiscuity and dependence on F1760 seen in Nav1.5 were replicated in Nav1.4. Our evidence of a broad inhibition profile of Nav channels suggests a need to consider off-target effects on Nav channels. The site-dependent promiscuity forms a foundation to better understand Nav channels and compound interactions.

Introduction

Voltage-gated sodium (Nav) channels play critical roles in controlling membrane excitability (Catterall, 2012). They are activated in response to membrane depolarization and mediate rapid influx of sodium ions during the rising phase of action potentials. There are nine highly homologous subtypes: Nav1.1 to Nav1.9, expressed in neuronal, cardiac, skeletal muscle, and endocrine cells. Both genetic evidence and pharmacological studies have demonstrated their validity as therapeutic targets for human diseases.

Recently, several reports have suggested Nav channels are promiscuous drug targets when evaluated with a subset of known drugs (Huang et al., 2006; Harmer et al., 2011). For example, Lounkine et al. (2012) reported that 70 out of 126 tested drugs (56%) showed at least 50% inhibition at 30 μM on Nav1.5. It is suggested that Nav1.5 may exhibit more promiscuous interactions with compounds than hERG (hit rate as 30%), which is a widely appreciated promiscuous drug target (Lounkine et al., 2012). The hERG promiscuity is attributed primarily to its wide inner cavity and two aromatic residues (Y652 and F656) that directly interact with diverse compounds (Mitcheson et al., 2000; Sanguinetti and Tristani-Firouzi, 2006). However, very limited information is available regarding the promiscuity of Nav channels when evaluated with a large chemical library consisting of structurally diverse compounds. Also, the fundamental principles of the potential Nav channel promiscuity remain largely unanswered. For instance, the number of drug binding sites in Nav channels is still controversial (Mike and Lukacs, 2010). Furthermore, the most well recognized residue for drug binding, F1760 in Nav1.5, was reported to be more important for an inhibitory effect of class Ib antiarrhythmics but not as important for class Ia and Ic antiarrhythmics (Pless et al., 2011). Therefore, it would be of great interest to systematically evaluate the promiscuity of Nav channels and examine the site dependence using structurally diverse libraries in a high-throughput manner.

Traditional methods to examine compound effects on Nav channels may be divided into two major classes depending on whether the method directly reports the channel activity (e.g., ion flux) or indirectly reports a derivative signal (e.g., membrane potential change). As a direct approach, electrophysiological methods measure ionic currents with high resolution; however, they are often difficult to implement in a high-throughput manner.

This work was supported by a Johnson & Johnson COSAT award to B.Z. and the National Institutes of Health [Grant U54-MH084691] to M.L. H.Z. and B.Z. contributed equally to this work.

dx.doi.org/10.1124/mol.114.094789.

This article has supplemental material available at molpharm.aspetjournals.org.

ABBREVIATIONS: DMSO, dimethylsulfoxide; GECO, genetically encoded calcium sensor; HTS, high-throughput screening; LOPAC, Library of Pharmacologically Active Compounds; Nav, voltage-gated sodium; TP, test pulse; TTX, tetrodotoxin; WT, wild type; XE991, 10,10-bis(4-pyridinylmethyl)-9(10H)-anthracenone.
format and are less cost effective. Indirect approaches commonly take advantage of membrane potential changes caused by ionic flux through activated channels; however, they may suffer from high false-positive rates because off-target effects may directly affect membrane potential in the system (Trivedi et al., 2008). In addition, these methods are not designed to specifically examine compound site dependence.

To circumvent the potential issues with existing methods, we engineered Nav channels with elevated sustained calcium conductance, which permitted development of a high-throughput, dual-color calcium sensor-based fluorescent assay to evaluate modulators of Nav function. Unlike conventional electrophysiological methods that can distinguish between tonic and use-dependent inhibitory effects of compounds on Nav channels, the newly developed calcium flux assay measures the combinatorial inhibitory effect for each compound on one target, which parallels compound capability to inhibit Nav persistent current. However, because calcium flux was used as the readout, wild-type (WT), and mutant Nav channels could be expressed in separate cells, each with a different-colored calcium sensor. Thus, by intermixing such cells within assays, simultaneous reporting of compound activity and its site dependence could be performed on WT and mutant Nav channels. Therefore, the assay is more sensitive to the differential effects on two target channels, in particular on WT channels versus channels that harbor mutations at presumed interaction sites for drug action. This strategy provides more rigorous evidence for the site dependence of identified hits. Moreover, differential effects, if observed, strongly support that these compounds act directly on the channel, rather than through off-target effects.

Materials and Methods

Stable Cell Lines. Nav1.5, hERG, and KCNQ2 stable cell lines were generated prior to experimentation. HEK stable cell lines expressing Nav1.5CCW (WT calcium permeable Nav channel, subtype 5 (SoCal5-WT)), Nav1.5CCW-F1760A (SoCal5-F1760A), Nav1.4CCW (WT calcium permeable Nav channel, subtype 4 (SoCal4-WT)), or Nav1.4CCW-F1759A (SoCal4-F1759A) were generated to express channels under the cytomegalovirus promoter on pRS35-5xmyc.

Electroporation. Genetically encoded calcium sensors (G-GECO and R-GECO plasmids) were obtained from Addgene (Cambridge, MA). G-GECO or R-GECO was transfected to cells at a final concentration of 100 µg/ml using the Maxcyte STX system (Maxcyte, Rockville, MD). Following electroporation, cells were incubated at 37°C for 20 minutes, then plated to 15 cm culture dishes and cultured overnight at 37°C. Calcium assays were performed 48 hours after electroporation.

Manual Electrophysiological Recording. Traditional whole-cell voltage clamp recording was performed at room temperature with an Axopatch-200A amplifier (Molecular Devices, Sunnyvale, CA). To record sodium conductance carried by SoCal5 and SoCal5-F1760A, extracellular solution contained (in mM) 148 NaCl, 1 MgCl2, 10 HEPES, and 10 glucose (pH 7.4 with NaOH). To record calcium conductance, extracellular solution contained (in mM) 135 choline-Cl, 1 MgCl2, 10 CaCl2, 10 HEPES, and 10 glucose (pH 7.4 with Tris base). Under both conditions, pipette solution contained (in mM) 140 KCl, 1 MgCl2, 10 EGTA, and 10 HEPES (pH 7.4 with Tris base). The extracellular buffers, containing 2, 5, 15, or 50 mM K+, were made by replacing choline-Cl with KCl at equivalent concentrations. Electrodes were pulled from borosilicate glass capillaries (World Precision Instruments, Sarasota, FL). When filled with the pipette solution, the electrodes have typical resistance ranging from 2 to 4 MΩ. During the recording, constant perfusion of extracellular solution was maintained using a BPS perfusion system (ALA Scientific Instruments, Westbury, NY). Electrical signals were filtered at 2 kHz and acquired with pClamp9.2 software via a DigiData-1322A interface (Molecular Devices). Capacitance and 60–80% series resistance were routinely compensated.

Automated Electrophysiology Assays. Automated voltage-clamp recording was performed using the population patch-clamp mode with IonWorks Quattro (Molecular Devices). In brief, cells were dislodged from flasks and dispersed into a 384-well population patch-clamp plate; after dispensing, the seal resistance of the cells was measured for each well and the cells were perforated by incubation with 50 µg/ml amphotericin B (Sigma-Aldrich, St. Louis, MO). The activity of Nav1.5 and SoCal5 was measured with two multiplex protocols. In the first protocol, cells were held at ~110 mV and sodium currents were elicited by 12 voltage pulses. During the first test pulse (TP1), membrane potential was depolarized to ~30 mV for 20 milliseconds and hyperpolarized to ~110 mV for 100 milliseconds. This was repeated 10 times. Then, membrane potentials were depolarized to ~30 mV for 500 milliseconds and hyperpolarized to ~110 mV for 20 milliseconds prior to the TP12 at ~30 mV for 20 milliseconds. To facilitate inactivation, a second multipulse protocol was used in hit validation, in which cells were held at ~70 mV and sodium currents were elicited by 11 voltage pulses. During the first pulse, membrane potential was depolarized to ~10 mV for 250 milliseconds and hyperpolarized to ~70 mV for 250 milliseconds. This was repeated eight times and followed by TP1 at ~10 mV for 2000 milliseconds. Then, membrane potential was hyperpolarized to ~70 mV for 10 milliseconds prior to TP2 at ~10 mV for 20 milliseconds, followed by a 2000 millisecond pulse at ~120 mV prior to TP3 at ~10 mV for 20 milliseconds. Multipulse protocols were applied to cells before and following 3 minute incubation with test compounds or assay buffer. Peak current amplitudes at the TP1 (TP1 and TP12 in the first protocol; TP1, TP2, and TP3 in the second protocol) were measured before and after compound treatment. Cells with peak current amplitude larger than 0.3 nA, seal resistance ~30 MΩ, and seal resistance drop rate lower than 25% were included for data analysis. Positive (1 mM lidocaine) and negative controls (external buffer with 0.02% (v/v) dimethylsulfoxide (DMSO)) were applied within each plate to evaluate data quality. Compound effects were assessed by the percentage change in the peak current as calculated by dividing the compound treated response by the control response and subtracting from 1. Positive controls in the same plate. If a compound decreased the peak current by 50%, it was classified as an inhibitor.

Compounds were tested on the hERG channel at 10 µM with a two-step voltage protocol as follows: cells were held at ~70 mV, stepped down to ~80 mV for 100 milliseconds to estimate leak currents, and depolarized to ~30 mV for 100 milliseconds to estimate non-hERG
currents. Then, hERG currents were evoked by two voltage pulses at +40 mV. During the first pulse, membrane potential were depolarized to +40 mV for 2 seconds and hyperpolarized to −30 mV for 2 seconds. Prior to the second pulse, cells were held at −70 mV for 3 seconds. Then, membrane potentials were depolarized to +40 mV for 2 seconds followed by a hyperpolarization to +30 mV for 2 seconds. The train of pulses was applied to cells before and following 3 minute incubation of cells with test compounds or controls. Positive (1 mM dofetilide) and negative controls (external buffer with 0.02% (v/v) DMSO) were applied within each plate to evaluate the data quality. Cells with tail current amplitude larger than 0.2 nA, seal resistance >30 MΩ, and seal resistance drop rate lower than 25% were included for data analysis. Peak amplitudes of tail currents before and after compound treatment were measured. Compound effects were assessed by the percentage change in the hERG tail current as calculated by dividing the difference between pre- and postcompound hERG tail currents by the respective pre-compound tail current in the same well. If a compound decreased hERG tail current by 50%, it was classified as an inhibitor.

Whole-cell currents of Nav1.5 and hERG were measured in the following recording buffers: 137 mM NaCl, 4 mM KCl, 1 mM MgCl2, 1.5 mM CaCl2, 10 mM HEPES, and 10 mM glucose, pH 7.4 adjusted with NaOH (extracellular solution); and 40 mM KCl, 100 mM K-gluconate, 1 mM MgCl2, and 5 mM HEPES, pH 7.2 adjusted with potassium hydroxide (intracellular solution). The same internal buffer was applied to SoCal5 whereas CaCl2 was not included in the external buffer in SoCal5 recording since Ca2+ may interfere with Na+ currents through SoCal5. The voltages listed previously were before correction for liquid junction potential. Current signal was sampled at 10 kHz for the first protocol and 5 kHz for the second protocol in the SoCal5 assay and sampled at 625Hz in the hERG assay.

Calcium-Based Fluorescence Assay. The activity of SoCal5-WT, SoCal5-F1760A, SoCal4-WT, and SoCal4-F1759A was monitored using calcium influx detected with green- or red-GECCO proteins. Cells were seeded at 6500 cells per well into poly-D-lysine–coated 384-well plates (Becton, Dickinson and Company, Franklin Lakes, NJ) using a Multidrop (Thermo Scientific, Hudson, NH) and incubated over-night at 37°C under 5% CO2. The medium was removed. Cells were washed once by 1X HBSS buffer (Hanks balanced salt solution; Invitrogen, Carlsbad, CA) with 10 mM HEPES, 10 µM Fura-2 at 4°C and incubated in sodium-free assay buffer. In assay development, to determine optimal assay conditions, the basal assay buffer consisted of 0, 2, 4, or 8 mM K+. Cell plates were loaded to a Hamamatsu FDSS 6000 kinetic imaging plate reader (Hamamatsu Photonics, Hamamatsu, Japan). After establishing a fluorescence baseline by 1 Hz scanning for 10 seconds, membrane potentials were hyperpolarized by addition of 10 µM of sodium (Sigma-Aldrich) and fluorescence measurement was continued at 1 Hz for another 109 seconds; then, channels were activated by addition of stimulant buffer consisting of various K+ and Ca2+ combinations and fluorescence measurement was continued at 1 Hz for another 160 seconds. Peak fluorescence was measured among different conditions. In the compound screen, cells were incubated with test compounds or controls for 20 minutes and then loaded to FDSS 6000 for signal detection. As previously described, the membrane potential was hyperpolarized using gramacin and channels were evoked by stimulus buffer. To evaluate the robustness of the high-throughput screening (HTS) GECCO-based fluorescence assays, terfenadine and amitriptyline at 10 µM were applied as positive controls, whereas assay buffer was employed as the negative control. Both positive and negative controls were prepared in 0.2% (v/v) DMSO, corresponding to 10 µM test concentrations, respectively. The integrated fluorescence was calculated for each well using the entire 160 second detection window after addition of stimulus and then normalized to positive and negative control wells. Compared with the negative controls, if a compound caused signal decrease by more than 50%, it was classified as an inhibitor.

Thallium Flux-Based Fluorescence Assay. Compounds in the validation set were examined at 10 µM on KCNQ2 using a thallium-based fluorescence assay as previously described (Yu et al., 2010). In brief, cells were loaded with FluxOR (Invitrogen). FluxOR-containing buffer was replaced by assay buffer and cells were incubated with compounds for 20 minutes before being loaded to FDSS 6000 for signal detection. After establishing the basal fluorescence, thallium influx was evoked by stimulus buffer. 50 µM XE991 (10,10-bis(4-pyridinylmethyl)-9(10H)-anthracenone) and assay buffer were applied as positive and negative controls. Peak fluorescence was normalized to positive and negative controls. Compared with the negative controls, if a compound caused signal decrease by more than 50%, it was classified as an inhibitor.

Compound Library. The Library of Pharmacologically Active Compounds (LOPAC) (Sigma-Aldrich) and the validation set of the Molecular Libraries Small Molecule Repository (BioFocus DPI, Saffron Walden, UK) were selected for the calcium and electrophysiological assays. The LOPAC contains 1280 known bioactives dissolved in DMSO at 10 mM. The validation set includes 1999 compounds of various structures. All compounds in the validation set are of >90% purity and were dissolved in DMSO with a concentration of 5 mM.

Modeling Analysis for Multiplex Assay for SoCal5-WT and SoCal5-F1760A.

\[
\text{WT response} = \frac{1}{1 + (10/\text{IC50-WT})^n} \\
\text{F1760A response} = \frac{1}{1 + (10/\text{IC50-WT})^n}
\]

For a given compound, when test at 10 µM, its effect on SoCal5 can be predicted by the Hill equation (eq. 2). For the same compound, its effect on SoCal5-F1760A can be predicted by eq. 3 due to the difference in the IC50 value and Hill coefficient. For simplicity and the data from the tool compounds, we assume n = 1. We generate different prediction lines by varying the values of r, while setting the IC50-WT values ranging from infinity small to 10 µM to represent compounds with different potencies on SoCal5.

Data Analysis. Calcium assay data were processed in FDSS 6000 and analyzed using the in-house software ichannel. Automated electrophysiological recording data were processed in IonWorks (Molecular Devices) and then analyzed in Excel (Microsoft, Redmond, WA) and Origin 6.0 (OriginLab, Northampton, MA). The dose-response curve was fitted by the Hill equation in Origin 6.0 software as

\[
E = E_{\text{max}}/[1 + (IC_{50}/C)]P
\]

where \(E_{\text{max}}\) is the maximum response, C is the drug concentration, IC50 is the drug concentration producing half of the maximum response, and P is the Hill coefficient.

Compounds are clustered based on structure similarity. The similarity between two compounds was measured by comparing their respective ECPF_4 fingerprint (using SciTegic Pipeline Pilot from Accelrys Software, Inc., San Diego, CA) with the Tanimoto coefficient. Clustering of five different channel targets was based on their inhibitory profiles by using complete-linkage hierarchical clustering in R statistical software (available at http://www.r-project.org/).

Results

Genetically Engineered Nav1.5 (SoCal5) with Persistent Calcium Conductance. Nav channels exhibit fast inactivation upon depolarization. The sodium influx during each depolarization period is very limited, and the increase over basal [Na+], is negligible when detected by fluorescent dyes. Therefore, traditional optical assays measure indirect readouts such as membrane potential and use pharmacological modulators such as veratridine to attenuate fast inactivation (Felix et al., 2004; Liu et al., 2006; Trivedi et al., 2008). By contrast, calcium ions manifest an approximately 1000-fold difference in concentration across plasma membrane. In addition, calcium reporters, either chemical dyes (Paredes et al., 2008) or genetically
encoded sensors (Behera et al., 2013), are well-developed optical tools and extremely sensitive for detecting small changes in intracellular calcium concentration. To directly detect ionic flux through Nav channels with an enlarged signal window, genetic engineering was applied to generate calcium permeable Nav channels with impaired fast inactivation. The K1237C mutation in the domain III selectivity filter of rNav1.4 dramatically increased the Ca\(^{2+}\)/Na\(^{+}\) permeation ratio (Pérez-García et al., 1997). In addition, rNav1.4 channels with L398C/A399W mutation exhibit significantly impaired fast inactivation and robust expression in HEK293 cells (Wang et al., 2003). The three residues are highly conserved among all the Nav subtypes (Fig. 1A). Therefore, we generated an equivalent triplet mutant K1418C/L409C/A410W in hNav1.5 (SoCal5). SoCal5 channels conduct robust sustained calcium currents, which is absent in WT Nav1.5 (Fig. 1, B and D). Under bionic conditions with 10 mM [Ca\(^{2+}\)] and 140 mM [Na\(^{+}\)]\(_{o}\), WT hNav1.5 only conducts outward sodium currents, whereas both inward calcium and outward sodium currents flow through SoCal5 (Fig. 1C) with a reversal potential of 19.6 ± 0.4 mV (Fig. 1E), indicating that P_{Ca^{2+}}/P_{Na^{+}} is approximately 7.0, comparable to reported values for rNav1.4-K1237C mutant channels (Pérez-García et al., 1997).

SoCal5 Retained Nav1.5 Pharmacology. To test whether the introduced mutations altered the hNav1.5 pharmacology, effects of tool compounds on WT hNav1.5 and SoCal5 channels were compared. Compound effects were examined with a multipulse voltage protocol using automated electrophysiology, IonWorks (Molecular Devices; Fig. 2). TP1 and TP12 were used to evaluate compound effects on closed and inactivated channels, respectively. Amitriptyline shows increased tonic inhibition on SoCal5 at TP12 than at TP1. Similar to its effects on hNav1.5 channels, amitriptyline exhibits a more prominent inhibitory effect on SoCal5 at TP12 than at TP1, with complete inhibition at TP12 at 12 μM (Fig. 2A), suggesting that SoCal5 and hNav1.5 may exhibit similar pharmacology at TP12. This was confirmed by similar IC\(_{50}\) values for hNav1.5 and SoCal5, when evaluated by known sodium channel inhibitors belonging to different drug classes (Fig. 2, B–D). Except for TTX (tetrodotoxin), the IC\(_{50}\) values for the other nine tool compounds were no more than a fivefold difference in hNav1.5 versus SoCal5 at TP12 (Fig. 2D). Therefore, SoCal5 serves as a surrogate to assess compound effects on hNav1.5 in the following studies.

Development of Fluorescence-Based Calcium Assays for SoCal5. Nav channels usually have limited availability for activation in the recombinant expression systems such as HEK293 cells due to their depolarized resting membrane potential (~40 to ~20 mV). Although fast inactivation was greatly reduced in SoCal5 channels, slow inactivation may be still present (Wang et al., 2003). The steady-state activation and slow inactivation curves of SoCal5 suggest that most channels are in the inactivated state in HEK293 cells under rest conditions (Fig. 3A). To release SoCal5 from the inactivated state, a reported gramicidin-based method (Belardetti et al., 2009) was used to hyperpolarize membrane potential. In the presence of gramicidin, membrane potential is changed toward the reversal potential of K\(^{+}\) when extracellular Na\(^{+}\) is replaced by choline and potassium is the primary permeable cation through the membrane (Supplemental Fig. 1). Using such a method, a SoCal5-specific calcium influx was detected by a chemical calcium indicator, fluo-4 (Fig. 3B).

To develop a fluorescence-based assay to evaluate Nav1.5 pharmacology by using the SoCal5 calcium influx, we further optimized assay conditions and determined the pharmacology of the tool compounds. An ideal assay condition should possess a robust fluo-4 signal window while the sensor is still within its nonsaturated linear response phase. To achieve that, three major parameters were tuned systematically, including basal [K\(^{+}\)]\(_{o}\), [K\(^{+}\)], and [Ca\(^{2+}\)] in the stimulus buffer (Fig. 4C). After fluo-4 was loaded into cells, the cells were incubated in sodium-free external buffer with either of 0, 2, 4, or 8 mM potassium. As expected, lower [K\(^{+}\)]\(_{o}\) values are more effective in hyperpolarizing membrane potential and give rise to higher peak fluorescence (ΔF/F0) (Fig. 4A).

To find the best combinations of [K\(^{+}\)] and [Ca\(^{2+}\)] in the stimulus buffer, a two-dimensional matrix was generated, in which [K\(^{+}\)] and [Ca\(^{2+}\)] in the stimulus buffer were tested in a 1:2 gradient with the highest testing concentration at 32 mM, respectively (Fig. 4C). The SoCal5-specific fluo-4 signal was measured by the difference between samples treated with buffer and with lidocaine at 10 mM, a concentration for 100% inhibition (Fig. 4B). An optimal condition was expected to exhibit at least a onefold increase in the SoCal5-specific fluorescent signal. Sensor saturation was estimated by the decay index, which was calculated and normalized based on the ratio of the residual fluorescent signal at 200 seconds (dashed line in Fig. 4A) over the peak signal. More than 50% decay is considered to be a sign indicating the sensor is not saturated. Based on the criterion described previously, a condition of 2 mM basal [K\(^{+}\)]\(_{o}\), in combination with 8 mM [K\(^{+}\)] stimulus buffer was chosen for the fluo-4–based assay. Under the identified optimal condition, the IC\(_{50}\) values of the known sodium inhibitors on SoCal5 in the calcium fluorescence assay were similar to their IC\(_{50}\) values on WT Nav1.5 at the inactivated state (TP12) (Fig. 4D). Therefore, the SoCal calcium assay can authentically evaluate compound inactivated state inhibition on WT Nav1.5.

High-Throughput Dual-Color Assay Indicates F1760-Dependent Promiscuity of Nav1.5. Several studies have suggested that known drugs may inhibit Nav channels with great promiscuity; however, the number of testing drugs in these studies is small (Huang et al., 2006; Harmer et al., 2011; Lounkine et al., 2012). More importantly, molecular mechanisms for promiscuity are not well understood. The local anesthetic site is the most well studied site responsible for Nav and drug interaction. Also, a conserved phenylalanine (Phe) residue in the domain IV S6 segment appears to be most critical (Wang and Strichartz, 2012). To better understand Nav pharmacology, it is important to investigate whether Nav channels manifest promiscuous interaction with compounds and whether the Phe residue (F1760 in hNav1.5) is responsible for promiscuity. To address these questions systematically, the SoCal5 calcium assay was further optimized toward a multiplex HTS assay by taking advantage of recently developed GECOs (Zhao et al., 2011) with different excitation and emission spectra (e.g., green and red). WT SoCal5 and SoCal5-F1760A channels could be expressed separately in different cells, each with a distinct-colored GECO. By intermixing the two groups of cells, this dual-color approach simultaneously monitors calcium signals in different cell populations under the same experimental conditions, and thus provides more accurate evaluation for compound differential effects on WT and mutant channels.
To identify an optimal condition, similar strategies used in the fluo-4 assay were applied in GECO-based assays (Supplemental Fig. 2). A condition of 0 mM K1 external buffer in combination with 16 mM K1 stimulus buffer was chosen for the GECO-based HTS of SoCal5. The IC\textsubscript{50} values of the tool compounds, obtained using green-GECO, were nearly identical to those obtained using red-GECO. The compound pharmacology evaluated by GECOs was similar to that using fluo-4 and correlated well with that at TP12 in electrophysiology (Supplemental Fig. 3). Therefore, the different observed responses of green and red fluorescence for the same compound is expected to reflect its differential inhibitory effects on the WT and F1760A mutant channels.

The F1760A mutation in SoCal5 slightly changed the channel biophysical properties in terms of activation and inactivation (Supplemental Fig. 4A). Consistent with the early literature, most tool compounds exhibited lower potency on SoCal5-F1760A in the GECO assay (Supplemental Fig. 4B). To examine the promiscuity of hNav1.5 and SoCal5 under different external buffer conditions. The holding potential was -100 mV; 50 milliseconds of depolarization pulse were used to elicit the step current. (C) Representative traces of Nav1.5 and SoCal5 under bionic conditions. The holding potential was -100 mV and the depolarization pulse ranged from -70 to $+40$ mV in 10 mV increments. (D) The ratio of $I_{\text{sustain}}/I_{\text{peak}}$ for Nav1.5, SoCal5, and SoCal5 calcium conductance. The sustained current amplitude was measured at the end of the 50 millisecond depolarization pulse. (E) The I-V relationship plot of Nav1.5 and SoCal5 under the protocol and condition stated in (C).
inhibited both. If a hit was defined as a compound causing at least 50% reduction in activity at 10 μM (IC_{50}, 10 μM), then 176 of 1280 LOPAC compounds were identified as inhibitors for SoCal5-WT with a hit rate of 13.8%, which is slightly higher than a reported hit rate of hERG (11.9%) for the LOPAC compounds (Titus et al., 2009), suggesting Nav1.5 is a promiscuous target. However, only 42 of these identified hits inhibited SoCal5-F1760A (Fig. 5B), suggesting that the high hit rate is indeed a channel-specific effect and F1760 is important for the observed promiscuity (Fig. 5B). Then, a Hill equation-based model was used to give quantitative assessments of the site dependence of these identified hits. The model suggests that a greater deviation from the identity line reflects a greater dependence on the F1760 site, and most hits show estimated 3–30-fold changes in the IC_{50} values (see Materials and Methods; Fig. 5C). The identified hits were further validated...
by automated electrophysiology. Half of the hits showed more than 50% inhibition on WT Nav1.5 when using a protocol facilitating compound binding to the inactivated state and most hits exhibited strong state dependence (Fig. 5D).

Phe-Dependent Promiscuity of Nav Channels. Considering that the LOPAC is composed of known bioactives that might present a potential bias for interactions with sodium channels, the validation set (Fig. 6A), a representative collection of the Molecular Libraries Small Molecule Repository diverse compound library (Zou et al., 2010), was selected for further studies. Compared with the LOPAC, the validation set contains more distinct novel structures (Fig. 6A). Compounds were tested in duplicate at 10 μM, and two repeats exhibited good correlation with \(R = 0.99 \) for both targets (Supplemental Fig. 5). The average of two repeats was used to reflect compound effects. Consistent with the observation in the LOPAC screen, 12.3% (245/1999) compounds reduced more than 50% SoCal5 channel activity and most hits showed less inhibition on F1760A (Fig. 6B). This finding confirmed Phe-dependent promiscuous interaction of hNav1.5 with diverse chemical structures.

The hERG potassium channel is well known as a promiscuous drug target. The effects of compounds on the validation set were compared between Nav1.5, hERG, and a nonpromiscuous channel, KCNQ2. By a hit criterion of 50% reduction in channel activity (IC\(_{50} < 10 \) μM), SoCal5 and hERG exhibited remarkably higher hit rates (Fig. 7A). Moreover, similar to hERG inhibitors, the SoCal5 inhibitors differed dramatically in the chemical structures (Fig. 7D), demonstrating that Nav1.5 is a promiscuous target susceptible to blockage by various structurally diverse compounds.

F1760 residue in hNav1.5 is highly conserved among the mammalian Nav channel family (Fig. 7B). If the promiscuity is dependent on this residue, all the Nav subtypes are expected to exhibit promiscuous interactions with diverse chemical structures. To test this hypothesis, compounds in the validation set were tested on SoCal4 (rNav1.4-CCW) at 10 μM using a fluo-4 assay. Supporting our hypothesis, the hit rate for SoCal4 was 12.2 and 68% of the identified SoCal4 hits also inhibited SoCal5 by more than 50% (Fig. 7C). In addition, the SoCal4 hits also exhibited great dependence on the homologous F1759 residue, which further supports the importance of Phe in mediating compound interactions (Supplemental Fig. 6).

Discussion

Several fluorescence-based approaches have been established for identification and characterization of Nav modulators, including membrane potential dye–based indirect assays and sodium dye–based direct assays. Although direct assay is reported to show better correlation with electrophysiological assays (Trivedi et al., 2008), both the direct and indirect assays described previously apply ligands (e.g., veratridine) to activate channels, which may interact with test compounds and thus increase false-positive and false-negative rates. Additionally, both assays evaluate compound effects on one target at one time. Compared with these methods, the dual-color optical assay detects Nav channel activity by measuring persistent calcium flux through two genetically engineered SoCal channels simultaneously. This assay has several attractive features. First, it directly detects ionic flux, which may reduce the false-positive rate associated with indirect readout. Second, channels are activated by depolarization, a more physiologic stimulus, which avoids the risk from application of ligands. Indeed, among the 68 unbiased selected internal controls in the LOPAC with reported IC\(_{50}\) values by electrophysiology (Harmer et al., 2011), compounds with IC\(_{50} < 10 \) μM all exhibited at least 50% inhibition, and those with IC\(_{50} > 10 \) μM all exhibited less than 50% inhibition in our assay (Supplemental Fig. 7; Supplemental Table 1), strongly supporting the low false-positive and false-negative rates. Third, in principle the assay strategy can be applied to the entire Nav channel family since the CCW residues are highly conserved (Fig. 1A). Finally, the assay was performed in multiplex format, which may offer a unique
advantage that allows evaluation of compound effects on two targets simultaneously. It can be adaptable to scenarios where a differential effect is of the greatest interest. For example, in addition to examining the site dependence of compound effects, the platform may be applied to screening for subtype-selective compounds in one assay. Different types of SoCal channels may be coupled with calcium sensors of different optical properties in different cells and monitored in the same optical field. This can minimize the variability from separate measurements, and thus be more sensitive to the differential effects. Admittedly, only one IC50 value is reported for each compound on one target in our assay and the assay cannot distinguish between tonic and use-dependent blockers based on our current screening protocol. An electrophysiological approach is required to characterize the state dependence of hit compounds. Nevertheless, our multiplexed HTS assay can serve as a powerful platform to systemically determine the site dependence of compounds and isolate subtype-specific compounds.

The SoCal5 fluorescent assay measures very similar pharmacology when compared with the SoCal5 and WT Nav1.5 channel in TP12 (inactivation state) in electrophysiology (Figs. 2D and 4D). This similarity can be interpreted in the following three aspects. First, in the SoCal fluorescent assay, channels are activated by high potassium triggering a single sustained depolarization. The increase in integrated fluorescent intensity should correlate with the cumulative total ionic flux \(\Delta I dt \) during this depolarization. Based on a previously published kinetic model (Edrich et al., 2005) of inactivation deficient Nav1.5, the compound effect on total ionic flux \(\Delta I dt \) is closer to its effect on persistent current than on peak current (Supplemental Fig. 8). Although ionic conductivities differ between open and inactivation states, the persistent open state of Nav1.5 may share similar conformation with its inactivation state in terms of the architecture of critical residues mediating compound binding. Traditional inactivated state blockers (e.g., lidocaine, benzocaine, and amitriptyline) were reported to inhibit persistent open states with similar potency (Wang et al., 2004a,b). Second, three residues mutated in SoCal5 may not be molecular determinants in the inactivated channels for most compounds. The potency of TTX is reduced since its interaction site may be physically close to the selectivity filter. However, our data suggest that the vast majority of Nav inhibitors appear to differ from the TTX site by acting within the channel.
inner cavity via the conserved phenylalanine residue. We observed an increased tonic inhibition on SoCal by compounds such as lidocaine or amitriptyline, consistent with an earlier report that mutations at K1237 in Nav1.4 selectivity filter (K1418 in SoCal5) will increase lidocaine block at the resting state because neutralization of the positive charge in the lysine residue can reduce electrostatic repulsion from the positively charged amine group of lidocaine (Sunami et al., 1997). The similar mechanism may also apply to amitriptyline, which also has an amine group on the side chain. However, state-dependent Nav inhibitors might interact with different residues during tonic and activity-dependent blocks. In our electrophysiological experiments amitriptyline had very similar IC50 values at TP12 on SoCal5 (1.74 ± 0.34 µM) and Nav1.5 (2.82 ± 0.31 µM), suggesting the K1418 residue is not a key determinant for activity-dependent inhibition.

Fig. 5. F1760- and state-dependent promiscuous interactions of SoCal5 with the LOPAC compounds. (A) Representative image and traces in dual-color calcium assay. Open bar, 20 µM. (B) Differential effects of the LOPAC compounds on SoCal5-WT and SoCal5-F1760A. Effects of compounds in the LOPAC library were tested on SoCal5-WT and SoCal5-F1760A using a dual-GECO calcium assay. Compounds were tested at 10 µM. (C) Modeling of F1760A-dependent IC50 shift of identified hits. (D) Validation of the SoCal5 hits in automated electrophysiology assay, IonWorks (Molecular Devices). Hit compounds were tested at 10 µM using the voltage protocol shown in (D). Effects at TP1, TP2, and TP3 were used to evaluate use-dependent, state-dependent, and state-independent compound inhibitory effects.

Fig. 6. Dual-color screen of SoCal5 channels using structurally diverse compounds. (A) Composition of validation set compounds and comparison of compound similarity between the validation set and LOPAC library; 616 LOPAC compounds have structurally similar neighbors in the validation set using a cutoff of Tanimoto = 0.80. Special set: known bioactives. (B) Comparison of compound effects on SoCal5-WT and SoCal5-F1760A. The effects of compounds in the validation set were tested on SoCal5-WT and SoCal5-F1760A. Compounds were tested at 10 µM in duplicate. The average of two repeats was used to compare compound effects. Black circle, buffer; gray circle, compounds in validation set; red circle, 10 µM terfenadine. GPCR, G protein–coupled receptor.
Finally, calcium ions may not have significant impacts on compound pharmacology in the fluorescence assay. Within a certain range of voltages (−90 to −20 mV), calcium ions affect inactivation of SoCal5 channels (Fig. 3A). However, in the imaging experiments, the voltage is not clamped and it is possible that a single long depolarization can drive the membrane potential positive enough, under which the fraction of inactivated/opened channel will not be affected by the type of permeation ion.

The gating of SoCal differs from WT Nav1.5 since it has greatly impaired fast inactivation and enhanced slow inactivation. The $V_{1/2}$ (half maximum voltage) of WT Nav1.5 fast inactivation is −87 mV, whereas the $V_{1/2}$ of SoCal5 slow inactivation is −67 mV (calcium) or −60 mV (sodium). SoCal5 also developed a persistent open state, which is absent in the WT Nav1.5. A potential limitation of our approach would be the following: if a compound could distinguish these states, then its pharmacology based on SoCal5 may not be able to reflect its original pharmacology on Nav1.5. Therefore, although the SoCal fluorescent assay generally shows good approximation with WT Nav1.5 inactivated state inhibition for the vast majority of the tested compounds, it is still recommended that the hits identified by the SoCal assay should be further validated by electrophysiological testing in WT Nav1.5.

A promiscuous target describes a given target interacting with multiple diverse ligands (Pérez-Nueno and Ritchie, 2012), for example, the hERG channel. The promiscuity underlies off-target side effects, and conversely allows development of new therapeutic applications for old drugs. Similar to hERG, our screens revealed SoCal5 channels were inhibited by substantial structurally diverse compounds in both the LOPAC and validation set collections with a hit rate of approximately 13%. By an automated patch clamp study in WT Nav1.5, at least 50% of the hits have been validated. Extended from earlier observations from known drugs, this finding has demonstrated Nav1.5 is a promiscuous target using extensive experimental evidence from diverse compounds and provides a rationale to include Nav1.5 in the cardiac safety evaluation since Nav1.5 inhibition can lead to QRS complex prolongation (Erdemli et al., 2012). Indeed, a very
Pharmacological Promiscuity of Nav1.5

Recent report from the pharmaceutical industry categorized both hERG and Nav1.5 as being in the same class in terms of their high degree of promiscuity (Bowes et al., 2012). A second important finding is that the promiscuity is F1760 residue dependent; F1760A mutation slightly changed SoCα5 activation and the inactivation curve, and may contribute to the slower decay in the fluorescent signal (Fig. 5A). However, our assay condition was tuned to set up membrane voltages that can minimize the influence from these differences. In the SoCα5 fluorescent assay, consistent with the literature (Pless et al., 2011), class Ib antiarrhythmics (such as lidocaine) has more than 10-fold change in IC50 values by F1760A mutation, whereas class Ia and Ic antiarrhythmics (such as flecaïnide, quinidine, and propafenone) only show five-to-sevenfold change (Supplemental Fig. 4B). Therefore, the SoCα5-F1760A fluorescent assay could be used to investigate the site dependence of different classes of drugs. The local anesthetic site in Nav channels is a well established drug binding site for local anesthetics and related compounds. F1760 was reported to be the most important residue within the local anesthetic site for drug interaction (Mike and Lukacs, 2010). In our screens, most compounds deviated from the identity line in the plot of SoCα5-F1760A and SoCα5 WT activity (Figs. 5D and 6B), indicating that they rely on F1760 residue, albeit to different extents. The differential dependence at F1760 may reflect a partial overlap of multiple binding sites (Mike and Lukacs, 2010), consistent with recent indications that multiple drug binding sites in Nav may exist (Mike and Lukacs, 2010). Given that the Phe residue is highly conserved among all the Nav subtypes, promiscuity may exist in the entire Nav channel family. This indeed is supported by the high hit rate in SoCα5. Finally, the conservation of this Phe residue also partially explains why most Nav inhibitors lack subtype selectivity.

Taken together, the present study has revealed a single phenylalanine residue and inactivated state-dependent promiscuity of Nav channels. This finding has shed light on designs of sodium channel inhibitor screens. To date, only a few small molecule sodium channel inhibitors exhibit subtype selectivity (Jarvis et al., 2007; Bregman et al., 2011; McCormack et al., 2013). Screens using Phe mutant Nav channels may enrich subtype-selective inhibitors and identify inhibitors acting on novel sites with less conservation, such as the voltage sensor domain.

Acknowledgments
The authors thank the members of the Li laboratory for valuable discussions and comments on the paper, Yixin Zhang for excellent technical assistance, and Alison Neal for editorial assistance.

Authorship Contributions
Participated in research design: Zhang, Zou, Li
Conducted experiments: Zhang, Zou, Xu
Contributed new reagents or analytic tools: Zhang, Zou, Du
Performed data analysis: Zhang, Zou, Du
Wrote or contributed to the writing of the manuscript: Zhang, Zou, Li

References

Address correspondence to: Dr. Min Li, GlaxoSmithKline, 709 Swedeland Road, King of Prussia, PA 19406. E-mail: min.x.li@gsk.com

Downloaded from mendips.aspetjournals.org at ASPT Journals on June 21, 2017
Supplementary data (Molecular Pharmacology)

Reporting sodium channel activity using calcium flux: pharmacological promiscuity of cardiac Nav1.5

Hongkang Zhang, Beiyan Zou, Fang Du, Kaiping Xu, Min Li

The Solomon H. Snyder Department of Neuroscience, High Throughput Biology Center (H.Z., B.Z., F.D., K.X., M.L.), Johns Hopkins Ion Channel Center (H.Z., B.Z., F.D., K.X., M.L.), Johns Hopkins University, Baltimore, MD 21205, USA, GlaxoSmithKline (M.L.)

Equal Contribution: Hongkang Zhang and Beiyan Zou
Supplementary Materials and Methods

Cell Culture

Cells were routinely cultured in complete DMEM (Invitrogen, Carlsbad, CA) or DMEM/F-12 (Invitrogen) supplemented with 10% fetal bovine serum (Gemini, Calabasas, CA), 2 mM L-glutamine (Invitrogen). Cells expressing Nav1.5 or hERG cells were supplemented with 500 µg/mL G418 (Invitrogen). Cells expressing wild-type or mutant SoCal4 and SoCal5 were supplemented with 2 µg/mL puromycin (Sigma, St. Louis, MO). Cells were cultured at 37°C under 5% CO₂.

Fluo4-Based Fluorescence Assay

Activity of SoCal5 was monitored by the influx of calcium detected using Fluo4 (Invitrogen). Cells were seeded at 6,500 cells per well into BD Biocoat poly-D-lysine–coated 384-well plates using a Multidrop (Thermo Scientific, Hudson, NH) and incubated overnight at 37°C under 5% CO₂. Cells were incubated with Fluo4 solution, 25 µL/well, for 90 min at room temperature in the dark; cells was washed once by HBSS buffer (Hanks balanced salt solution containing 5.8 mM potassium; Catalog No. 14065; Invitrogen) with 10 mM HEPES, 50 µL/well and incubated with assay buffer ; 6X test compounds and controls in assay buffer (2 mM potassium) were then added to cells, 4 µL/well; 20 minutes later, cell plates were loaded to Hamamatsu FDSS 6000 kinetic imaging plate reader (Hamamatsu Photonics, amamatsu, Japan); after establishing fluorescence baseline by 1 Hz scanning for 10s, membrane potential were hyperpolarized by addition of 10 µg/mL gramicidin (Sigma) and fluorescence measurement was continued at 1 Hz for another 109 s; then calcium influx were evoked by addition of 8 µL/well stimulus buffer and fluorescence measurement was continued at 1 Hz for another 160 s. Peak fluorescence was compared among different treatments to identify optimal assay conditions.

Compound Handling
LOPAC and validation set compounds were diluted to the test concentration on
the day of the experiments and examined at 10µM in both calcium flux and automated
electrophysiological assays. Control compounds, 3-(5,6-dihydrodibenzo[2,1-b:2',1'-
f][7]annulen-11-ylidene)-N,N-dimethylpropanamine (Amitriptyline), 1-butyl-N-(2,6-
dimethylphenyl)piperidine-2-carboxamide (Bupivacaine), N-(piperidin-2-ylmethyl)-2,5-
bis(2,2,2-trifluoroethoxy)benzamide (Flecainide), 2-(diethylamino)-N-(2,6-
dimethylphenyl)acetamide (Lidocaine), (S)-[(2R,4S,5R)-5-ethenyl-1-
aza-bicyclo[2.2.2]octan-2-yl]-(6-methoxyquinolin-4-yl)methanol (Quinidine), 1-[2-2-
hydroxy-3-(propylamino)propoxy]phenyl]-3-phenylpropanone (Propafenone), 1-(4-tert-
butylphenyl)-4-[4-[hydroxy(diphenyl)methyl]piperidin-1-yl]butanol (Terfenadine) and 2-
(dimethylamino)ethyl 4-(butylamino)benzoate (Tetracaine) were obtained from Sigma.
Except for Lidocaine which was dissolved in the assay solution, the others were
dissolved in DMSO.
Supplementary Table 1. The comparison between results from SoCal fluorescent assay and literature reported WT Nav1.5 electrophysiology assay

<table>
<thead>
<tr>
<th>Compound</th>
<th>Reported IC\textsubscript{50} in patch clamp (µM)*</th>
<th>Activity in SoCal assay (%) **</th>
<th>Compound</th>
<th>Reported IC\textsubscript{50} in patch clamp (µM)*</th>
<th>Activity in SoCal assay (%) **</th>
</tr>
</thead>
<tbody>
<tr>
<td>cinnarizine</td>
<td>1.0</td>
<td>2.08</td>
<td>clozapine</td>
<td>11.6</td>
<td>55.82</td>
</tr>
<tr>
<td>oxatomide</td>
<td>1.0</td>
<td>32.81</td>
<td>diltiazem</td>
<td>14.2</td>
<td>68.54</td>
</tr>
<tr>
<td>propafenone</td>
<td>1.2</td>
<td>10.7</td>
<td>citalopram</td>
<td>14.7</td>
<td>55.25</td>
</tr>
<tr>
<td>amitriptyline</td>
<td>1.6</td>
<td>6.1</td>
<td>diphenhydramine</td>
<td>16.4</td>
<td>85</td>
</tr>
<tr>
<td>pimozide</td>
<td>1.7</td>
<td>6.15</td>
<td>riluzole</td>
<td>17.6</td>
<td>67.7</td>
</tr>
<tr>
<td>bepridil</td>
<td>1.9</td>
<td>10.06</td>
<td>quinidine</td>
<td>17.8</td>
<td>87.85</td>
</tr>
<tr>
<td>nortriptyline</td>
<td>2.0</td>
<td>22.54</td>
<td>dipyridamole</td>
<td>19.3</td>
<td>77.13</td>
</tr>
<tr>
<td>terfenadine</td>
<td>2.0</td>
<td>-0.09</td>
<td>risperidone</td>
<td>20.2</td>
<td>75.96</td>
</tr>
<tr>
<td>haloperidol</td>
<td>2.3</td>
<td>16.12</td>
<td>quinacrine</td>
<td>20.2</td>
<td>79.91</td>
</tr>
<tr>
<td>desipramine</td>
<td>2.4</td>
<td>29.64</td>
<td>mexiletine</td>
<td>25.7</td>
<td>77.24</td>
</tr>
<tr>
<td>clomipramine</td>
<td>2.6</td>
<td>5.94</td>
<td>mifepristone</td>
<td>25.8</td>
<td>48.55</td>
</tr>
<tr>
<td>flunarizine</td>
<td>2.6</td>
<td>6.69</td>
<td>lidocaine</td>
<td>30.9</td>
<td>83.14</td>
</tr>
<tr>
<td>trimipramine</td>
<td>2.7</td>
<td>3.7</td>
<td>nifedipine</td>
<td>33.5</td>
<td>91.97</td>
</tr>
<tr>
<td>maprotiline</td>
<td>2.8</td>
<td>29.86</td>
<td>loratadine</td>
<td>33.6</td>
<td>100.46</td>
</tr>
<tr>
<td>chlorpromazine</td>
<td>2.8</td>
<td>17.34</td>
<td>chloroquine</td>
<td>36.5</td>
<td>102.6</td>
</tr>
<tr>
<td>loperamide</td>
<td>2.9</td>
<td>4.46</td>
<td>ketoconazole</td>
<td>44.9</td>
<td>76.29</td>
</tr>
<tr>
<td>protriptyline</td>
<td>3.1</td>
<td>29.95</td>
<td>lamotrigine</td>
<td>63.4</td>
<td>78.67</td>
</tr>
<tr>
<td>thioridazine</td>
<td>3.5</td>
<td>1.1</td>
<td>prilocaine</td>
<td>72.6</td>
<td>80.65</td>
</tr>
<tr>
<td>imipramine</td>
<td>3.6</td>
<td>10.82</td>
<td>bupropion</td>
<td>76.2</td>
<td>62.24</td>
</tr>
<tr>
<td>clemastine</td>
<td>4.0</td>
<td>22.01</td>
<td>procaine</td>
<td>84.6</td>
<td>84.76</td>
</tr>
<tr>
<td>nicardipine</td>
<td>4.3</td>
<td>5.63</td>
<td>memantine</td>
<td>92.6</td>
<td>96.46</td>
</tr>
<tr>
<td>amiodarone</td>
<td>4.8</td>
<td>5.08</td>
<td>phenytoin</td>
<td>120.6</td>
<td>88.9</td>
</tr>
<tr>
<td>fluoxetine</td>
<td>4.9</td>
<td>18.52</td>
<td>buspirone</td>
<td>125.4</td>
<td>81.66</td>
</tr>
<tr>
<td>domperidone</td>
<td>5.6</td>
<td>21.04</td>
<td>carbamazepine</td>
<td>152</td>
<td>76.52</td>
</tr>
<tr>
<td>flecanide</td>
<td>5.8</td>
<td>39.05</td>
<td>disopyramide</td>
<td>302.3</td>
<td>72.34</td>
</tr>
<tr>
<td>amoxapine</td>
<td>5.8</td>
<td>25.96</td>
<td>procainamide</td>
<td>2050</td>
<td>87.6</td>
</tr>
<tr>
<td>cyproheptadine</td>
<td>6.1</td>
<td>18.91</td>
<td>amantadine</td>
<td>inactive</td>
<td>80.94</td>
</tr>
<tr>
<td>salmeterol</td>
<td>7.2</td>
<td>28.74</td>
<td>amiloride</td>
<td>inactive</td>
<td>100.26</td>
</tr>
<tr>
<td>trifluoperazine</td>
<td>7.4</td>
<td>8.8</td>
<td>atenolol</td>
<td>inactive</td>
<td>67.75</td>
</tr>
<tr>
<td>propranolol</td>
<td>7.5</td>
<td>41.6</td>
<td>fenoterol</td>
<td>inactive</td>
<td>61.31</td>
</tr>
<tr>
<td>fluphenazine</td>
<td>8.0</td>
<td>26.45</td>
<td>gabapentin</td>
<td>inactive</td>
<td>66.89</td>
</tr>
<tr>
<td>verapamil</td>
<td>9.3</td>
<td>47.04</td>
<td>d-sotalol</td>
<td>inactive</td>
<td>70.56</td>
</tr>
<tr>
<td>quinidine</td>
<td>9.7</td>
<td>45.4</td>
<td>tiapride</td>
<td>inactive</td>
<td>57.38</td>
</tr>
<tr>
<td>reserpine</td>
<td>10.5</td>
<td>26.62</td>
<td>zonisamide</td>
<td>inactive</td>
<td>108.76</td>
</tr>
</tbody>
</table>

* The IC\textsubscript{50}s for use-dependent inhibition are from a published literature (Harmer et al., 2011)

** drug testing concentration: 10 µM
Supplementary Figures and Figure Legends

Figure S1. A gramicidin based membrane potential control system. A. Representative traces for Socal5 sodium conductance under test protocols shown in Figure 3A to examine voltage dependent activation (left) and voltage dependent slow inactivation (right). Left, Tail current was recorded at -100 mV after 40 ms step depolarization to various voltages. Right, Step current at -40 mV was recorded after 10 s long depolarization and a brief recovery at -100 mV. B. Recording of membrane potential changes after addition of 10 μg/mL gramicidin in the bath solution. Current clamp recordings were performed in cells stably expressing Socal5 channels under 0 mM [Na+]o and different [K+]o. C. Calculated E_K, based on the Nernst equation under different [K+]o were plotted against the experimentally recorded membrane potential in gramicidin based sodium free system. [K+]i = 140 mM. D. Steady state inactivation curves for Nav1.5, Socal5 sodium and calcium conductance, respectively. The holding potential was -100 mV for all the testing. The Fast inactivation of WT Nav1.5 was determined by normalized peak step current at -40 mV after a 500 ms pulse at voltages ranging from -130 mV to
+10 mV in 10 mV increments. The slow inactivation of SoCal5 was determined by normalized peak step current at -40 mV after a 10 s long pulse at voltages ranging from -120 mV to +10 mV in 10 mV increments and a 100ms pulse at -100mV aimed at removing residual fast inactivation in SoCal5.
Supplementary Figure 2

A

i) External K⁺

ii) Stimulus With Various K⁺

- 0Ca²⁺, 0K⁺
- 0Ca²⁺, 2K⁺
- 0Ca²⁺, 8K⁺
- 0Ca²⁺, 16K⁺
- 0Ca²⁺, 32K⁺

iii) Stimulus With Various Ca²⁺

- 16K⁺, 0Ca²⁺
- 16K⁺, 2Ca²⁺
- 16K⁺, 8Ca²⁺
- 16K⁺, 16Ca²⁺
- 16K⁺, 32Ca²⁺

iv) Lidocaine-Sensitive Signal

- Buffer
- Lidocaine

B

<table>
<thead>
<tr>
<th>ΔF/F₀</th>
<th>ΔF/F₀ Buffer</th>
<th>ΔF/F₀ Lidocaine</th>
<th>Δₜ ΔF/F₀</th>
<th>Decay Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>K⁺</td>
<td>0mM K basal</td>
<td>2mM K basal</td>
<td>4mM K basal</td>
<td>8mM K basal</td>
</tr>
<tr>
<td>Ca²⁺</td>
<td>Ca²⁺</td>
<td>Ca²⁺</td>
<td>Ca²⁺</td>
<td>Ca²⁺</td>
</tr>
</tbody>
</table>

Supplementary Figure 2
Figure S2. Optimization for a GECO-calcium assay of SoCal5 channels.

A. Representative traces in the GECO-calcium assay. Traces for cells exposed to various $[K^+]_o$ (i) or stimulated with various potassium concentrations (ii) or stimulated with various calcium concentrations (iii) in stimulus buffer or in the absence or presence of a channel inhibitor, lidocaine (iv) are shown in A. B. K^+/Ca^{2+} matrix in stimulus buffer. Cells were incubated with 10 μg/mL gramicidin in sodium free basal saline with 0 mM, 2 mM, 4 mM or 8 mM K$^+$. Fluorescence signals were then triggered by a stimulus matrix with a series of K^+/Ca^{2+} combinations. In each matrix, K$^+$ (from top to bottom) and Ca$^{2+}$ (from left to right) were both titrated to 0mM, 2mM, 4mM, 8 mM, 16mM and 32 mM. For each K^+/Ca^{2+} combination, $\Delta F/F_0$ was measured in the absence and presence of Lidocaine at 10 mM. Signal window was evaluated by the difference between the two populations ($\Delta F/F_0$). To assess whether GECO is saturated in testing conditions, decay index was calculated based on the ratio of fluorescence ratio at peak and at 200 second (dash line in A). Decay index= $(1-\Delta F_{200s}/\Delta F_{peak})*4$. Combinations with bigger signal windows (>2.0) and higher decay index (>2.0) are optimal conditions.
Supplementary Figure 3

A

B

Y=X+0.24
R=0.99

C

Y=X+0.03
R=0.99
Figure S3. Comparisons of IC_{50}s for tool compounds in calcium-based and electrophysiological assays. A. A histogram of LOG(IC_{50}s) for eight tool compounds obtained in automated electrophysiology (TP1-Close state and TP12-Inactivated State) and GECO-Calcium assays. B. Linear correlation of IC_{50}s obtained in Fluo4 and Green GECO-Calcium assays. R=0.99. C. Linear correlation of IC_{50}s obtained in Green and Red GECO-calcium assays. R=0.99.
Supplementary Figure 4

Figure S4. Effects of the Phe residue on channel biophysical properties and compound pharmacology of SoCa5. A. Steady-state activation and slow inactivation curves of SoCa5-WT and SoCa5-F1760A. Curves are fitted by the Boltzmann equation. B. Comparisons of IC\textsubscript{50}s for tool compounds on SoCa5-WT and SoCa5-F1760A in GECO-based calcium assays. Light Green: Amitriptyline; Orange: Bupivacaine; Purple: Flecaïnide; Black: Lidocaine; Blue: Propafenone; Green: Quinidine; Red: Terfenadine; Light Blue: Tetracaine. Dash line: identical; Solid line: 6.9 fold.
Supplementary Figure 5

Figure S5. Linear correlation of compound effects in a dual-color screen of SoCal5 channels. Compounds in the validations set were tested at 10 μM in duplicate on SoCal5-WT and SoCal5-F1760A. A. Linear correlation between SoCal5-WT duplicates. R=0.94. B. Linear correlation between SoCal5-F1760A duplicates. R=0.94 Black circle: Buffer, grey circle: Compounds in validation set, red circle: 10 μM Terfenadine.
Figure S6. A site dependence analysis of the SoCal4 hits. A. Effects of 640 compounds in two plates from the validation set were tested on SoCal4-WT and SoCal4-F1759A using the fluo-4 based calcium assay. Compounds were tested at 10 μM. B. Hit rate comparison between SoCal4-WT and SoCal4-F1759A. Hits are defined as the compounds with more than 50% inhibition at 10 μM.
Supplementary Figure 7

Figure S7. SoCal assay shows desired specificity and sensitivity. In total, 68 known drugs in the LOPAC library with literature reported IC$_{50}$ values determined by electrophysiology are unbiased selected to evaluate SoCal assay quality. Effects of the drugs on SoCal5-WT were plotted against their log (IC$_{50}$) values. False positive compounds are defined as those with IC$_{50}$ values larger than 10 µM but show more than 50% inhibition in the SoCal assay, while the false negative compounds are defined as these with IC$_{50}$ values smaller than 10 µM but show less than 50% inhibition. Overall, the false negative rate and false positive rate are very low, indicating that the SoCal assay has desired specificity and sensitivity.
Supplementary Figure 8

Figure S8. Kinetic modeling analysis for propafenone inhibitory effect. A. The definition of peak current, sustained current and total ionic influx ($\int I \, dt$) of an inactivation deficient sodium channel. The total ionic flux equals to the area of the blue region under the curve. B. Simulation result showing the inhibitory effect of different concentrations of propafenone on Nav1.5-CW peak current and sustained current. C. Dose response curve of propafenone on total ionic influx, sustained current and peak current, respectively.
References