Sodium Ion Binding Pocket Mutations and Adenosine A2A Receptor Function

Arnault Massink, Hugo Gutiérrez-de-Terán, Eelke B. Lenselink, Natalia V. Ortiz Zacarías, Lizi Xia, Laura H. Heitman, Vsevolod Katritch, Raymond C. Stevens, and Adriaan P. IJzerman

Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands (A.M., E.B.L., N.V.O.Z., L.X., L.H.H., A.P.IJ.); Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden (H.G.T.); and Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California (V.K., R.C.S.)

Received September 8, 2014; accepted December 3, 2014

ABSTRACT
Recently we identified a sodium ion binding pocket in a high-resolution structure of the human adenosine A2A receptor. In the present study we explored this binding site through site-directed mutagenesis and molecular dynamics simulations. Amino acids in the pocket were mutated to alanine, and their influence on agonist and antagonist affinity, allosterism by sodium ions and amilorides, and receptor functionality was explored. Mutation of the polar residues in the Na+ pocket were shown to either abrogate (D52A2.50 and N284A7.49) or reduce (S91A3.39, W246A6.48 and N280A7.45) the negative allosteric effect of sodium ions on agonist binding. Mutations D52A2.50 and N284A7.49 completely abolished receptor signaling, whereas mutations S91A3.39 and N280A7.45 elevated basal activity and mutations S91A3.39, W246A6.48, and N280A7.45 decreased agonist-stimulated receptor signaling. In molecular dynamics simulations D52A2.50 directly affected the mobility of sodium ions, which readily migrated to another pocket formed by Glu131.39 and His2787.43. The D52A2.50 mutation also decreased the potency of amiloride with respect to ligand displacement but did not change orthosteric ligand affinity. In contrast, W246A6.48 increased some of the allosteric effects of sodium ions and amiloride, whereas orthosteric ligand binding was decreased. These new findings suggest that the sodium ion in the allosteric binding pocket not only impacts ligand affinity but also plays a vital role in receptor signaling. Because the sodium ion binding pocket is highly conserved in other class A G protein–coupled receptors, our findings may have a general relevance for these receptors and may guide the design of novel synthetic allosteric modulators or bitopic ligands.

Introduction

G protein–coupled receptors (GPCRs) are seven transmembrane helical proteins, which regulate a multitude of physiologic processes and therefore are targeted by 30–40% of the drugs currently on the market (Rask-Andersen et al., 2011). GPCR crystal structures are becoming increasingly available, together with a network of structural water molecules, computed from a conserved Asp522.50, as previously hypothesized for other GPCRs (Parker et al., 2008; Selent et al., 2010) [numbering in superscript according to Ballesteros and Weinstein (1995)]. Residues Ser913.39, Trp2466.48, Asn2807.45, and Asn2847.49, together with a network of structural water molecules, completed the coordination of the ion in the hA2AAR. The fact that this site changes dramatically its conformation between inactive and active-like structures of the hA2AAR (Xu et al., 2011; Liu et al., 2012) inspired us to further explore the nature of this allosteric binding site.

In a recent report we used a combination of molecular dynamics (MD) simulations and biophysical and biochemical experiments (Gutiérrez-de-Terán et al., 2013b) to conclude that sodium ions selectively stabilize the inactive conformation of the wild-type receptor and that a physiologic concentration of NaCl was sufficient to achieve this effect. This mechanism...
was further corroborated with radioligand binding data, indicative of a competitive interaction between the sodium ion in this allosteric pocket and an agonist in the orthosteric pocket. Furthermore, we proposed that the diuretic drug amiloride and analogs compete for the same site and exert an allosteric control on the hA2AAR quite similar to that of sodium ions, albeit with pharmaceutical differences in modulation of orthosteric ligand binding (Gutiérrez-de-Terán et al., 2013b).

In the present study we mutated the residues in the first and second coordination shell around the sodium ion to define the role of individual amino acids in the modulation by sodium ions, amiloride, and its derivative 5-(N,N-hexamethylene)amiloride (HMA). In this way we were able to analyze the effects of these manipulations on orthosteric ligand binding and receptor activation, employing a combination of biochemical and computational techniques.

Materials and Methods

Cell Growth and Transfection. HER293 cells were grown in culture medium consisting of Dulbecco’s modified Eagle’s medium supplemented with 10% newborn calf serum, 50 µg/ml streptomycin, and 50 IU/ml penicillin at 37°C and 7% CO₂. Cells were subcultured twice a week at a ratio of 1:2.0 to 10 cm diameter plates. Single point mutations were introduced in the wild-type hA2AAR-plasmid DNA (FLAG-tag at N-terminus, in pcDNA3.1) by BaseClear (Leiden, The Netherlands). Cells were transfected with the indicated plasmids (1 µg each) using the calcium phosphate precipitation method (Sambrook et al., 1989). All experiments were performed 48 hours after transfection. HER293 cells stably expressing the wild-type receptor were grown in culture medium supplemented with 10% newborn calf serum, 50 µg/ml streptomycin, and 50 IU/ml penicillin at 37°C. The cells were then washed with Dulbecco’s modified Eagle’s medium supplemented with 25 mM HEPES and then incubated for another 30 minutes at 37°C in culture medium supplemented with horse-radish peroxidase-conjugated anti-mouse IgG produced in goat (Brunschwig, Amsterdam, The Netherlands; 1:1000) in culture medium for 30 minutes at 37°C.

Enzyme-Linked Immunosorbent Assay. Twenty-four hours after transfection, cells were brought into 96-well poly-d-lysine–coated plates at a density of 10⁵ cells per well. After an additional 24 hours, the monolayers were washed with phosphate-buffered saline (PBS) and fixed for 10 minutes with 3.7% formaldehyde. Subsequently, cells were washed two times with PBS, and cell-surface receptors were labeled with mouse anti-FLAG (M2) primary antibody (Sigma-Aldrich, Zwijndrecht, The Netherlands; 1:1000) in culture medium for 30 minutes at 37°C. The cells were then washed once with Dulbecco’s modified Eagle’s medium supplemented with 25 mM HEPES and then incubated for another 30 minutes at 37°C in culture medium supplemented with horseradish peroxidase-conjugated anti-mouse IgG produced in goat (Brunschwig, Amsterdam, The Netherlands; 1:5000) as the secondary antibody. The cells were washed twice with PBS. Finally, the cells were incubated with 3.3′,5′-tetramethylbenzidine for 5 minutes in the dark at room temperature. The reaction was stopped with 1 M H₃PO₄ and after 5 minutes the absorbance was read at 450 nm in the dark at room temperature. The reaction was stopped with another 30 minutes at 37°C in culture medium supplemented with horse-radish peroxidase-conjugated anti-mouse IgG produced in goat (Brunschwig, Amsterdam, The Netherlands; 1:5000) as the secondary antibody. The cells were washed twice with PBS. Finally, the cells were incubated with 3.3′,5′-tetramethylbenzidine for 5 minutes in the dark at room temperature. The reaction was stopped with 1 M H₃PO₄ and after 5 minutes the absorbance was read at 450 nm using a VICTOR 2 plate reader (PerkinElmer Life Sciences, Groningen, The Netherlands).

Competition Binding Assays. [3H]ZM241385 (46.6 Ci/mmol) and [3H]5′-N-ethylcarboxamidoadenosine (NECA) (16.3 Ci/mmol) were obtained from ARC Inc. (St. Louis, MO) and PerkinElmer, respectively. ZM241385 was obtained from Ascent Scientific (Bristol, UK). Amiloride and HMA were obtained from Sigma-Aldrich. All other materials were purchased from commercial sources and were of the highest available purity.

HER293 cells were grown and transfected as described above. Experiments were performed 48 hours after transfection. The amount of cAMP produced was determined with the membrane preparations was less than 10% of the total radioactivity added to prevent radioligand depletion. For [3H]NECA competition binding experiments, 30, 15, 10, 45, 50, and 100 µM of expressed A2AAR-WT, D52A2.50, S91A3.39, W246A6.48, N280A7.45, and N284A7.49 receptors were used, respectively. Membrane aliquots were incubated in a total volume of 100 µl of assay buffer at 25°C for 2 hours. For homologous competition curves, radioligand displacement experiments were performed in the presence of nine concentrations of NECA (0.1 nM–100 µM) and ZM241385 (0.01 nM–10 µM). For concentration-effect curves, radioligand displacement experiments were performed in the presence of six concentrations of NaCl (10 µM–1 M) and five concentrations of amiloride (100 nM–1 mM) and HMA (10 nM–1 mM). [3H]ZM241385 and [3H]NECA were used at concentrations of 2.5 nM and 20 nM, respectively. Non-specific binding was determined in the presence of 10 µM ZM241385 ([3H]NECA) or 100 µM NECA ([3H]ZM241385) and represented less than 10% of the total binding. Incubations were terminated by rapid vacuum filtration to separate the bound from free radioligand through 96-well GF/B filter plates using a Filtermate-harvester (PerkinElmer Life Sciences). Filters were subsequently washed three times with ice-cold assay buffer. The filter-bound radioactivity was determined by scintillation spectrometry using a PE 1450 Microbeta Wallac scintillation counter (PerkinElmer Life Sciences).

Functional cAMP Assays. HER293 cells were grown and transfected as described above. Experiments were performed 48 hours after transfection. The amount of cAMP produced was determined with the LANCE cAMP 384 kit (PerkinElmer). In short, 5000 cells per well were preincubated for 30 minutes at 37°C and subsequently at room temperature for 1 hour with a range of CGS21680 concentrations (0.1 nM–10 µM), one concentration of ZM241385 (10 µM), or without addition of ligand. cAMP generation was performed in the medium containing cilostamide (50 µM), rolipram (50 µM), and adenosine deaminase (0.8 IU/ml⁻¹). The incubation was stopped by adding detection mix and antibody solution, according to the instructions of the manufacturer. The generated fluorescence intensity was quantified on an EnVision MultiLabel Reader (PerkinElmer). cAMP production by 10 µM CGS21680 on the parental HER293 cell line represented less than 5% of cAMP production generated in cells expressing the hA2AAR receptor.

Molecular Dynamics Simulations. Molecular dynamics (MD) simulations of wild-type (WT) and mutant forms of the hA2AAR were performed following the computational protocol published recently (Gutiérrez-de-Terán et al., 2013b). Briefly, the inactive structure of the hA2AAR in complex with ZM241385 and a sodium ion [PDB code 4EY] (Liu et al., 2012) was used as a basis for our simulations, after a refinement process that consisted in modeling the missing ICL3 segment and proton addition, assessing the protonation state of titratable residues (i.e., all charged) and histidine residues, which were protonated on Nδ, except for His155ECL2 (protonated on Nε) and His264ICL3 (positively charged). The sodium ion and coordinating water molecules were explicitly considered except in the simulations with amiloride or HMA, which occupied the allosteric sodium ion site (Data Supplements 1–3). Further details are summarized in our recent publication (Gutiérrez-de-Terán et al., 2013b). Building mutant2
variants of the A2A receptor explored in this work was achieved by means of the “protein mutation tool” in Maestro (version 9.3; Schrödinger, New York, NY).

MD simulations were performed with the GROMACS software (Hess et al., 2008), using our original protocol for the MD simulations of GPCRs (Rodriguez et al., 2011). Our PyMemDyn program was used for membrane insertion, soaking with bulk water and inserting the resulting system, consisting of approximately 50,000 atoms (~74% belong to solvent molecules, ~15% to lipids and ~11% to protein and ligand atoms), into a hexagonal prism-shaped box, which was then energy-minimized and carefully equilibrated in the framework of periodic boundary conditions for 5 nanoseconds. (Gutiérrez-de-Terán et al., 2013a). Three replicate production simulations (i.e., changing the initial velocities of the system) were followed for 100-nanosecond simulation time each, thus accounting for a total of 300 nanoseconds MD sampling of each system. The OPLSAA force field was adopted throughout the simulations (Kaminski et al., 2001), with ligand parameters obtained from Macromodel (Macromodel, version 9.7; Schrödinger) and lipid parameters adapted from Berger (Berger et al., 1997) together with the use of the half-c double-pairlist method (Chakrabarti et al., 2010) and the SPC water model (Berendsen et al., 1981). A Nose-Hoover thermostat (Nose and Klein, 1983) with a target temperature of 310 K was used. Electrostatic interactions beyond a cutoff of 12 Å were estimated with the particle mesh Ewald method.

Temperature of 310 K was used. Electrostatic interactions beyond a cutoff of 12 Å were estimated with the particle mesh Ewald method. A Nose-Hoover thermostat (Nose and Klein, 1983) with a target temperature of 310 K was used. Electrostatic interactions beyond a cutoff of 12 Å were estimated with the particle mesh Ewald method. All MD analyses were conducted with several GROMACS and VMD (Humphrey et al., 1996) utilities. Molecular superimpositions, trajectory visualizations, and molecular images were performed with PyMOL (The PyMOL Molecular Graphics System, version 1.5.0; Schrödinger).

Results

Design of Mutations in the Sodium Ion Binding Pocket. We mutated the residues important for the sodium ion coordination (Fig. 1) to alanine, i.e., D52A2.50, S91A3.39, W246A6.48, N280A7.45, and N284A7.49. This approach thus yielded a total of five mutant receptors, which were studied further and compared with wild-type receptor with respect to their expression levels and pharmacology.

Cell Surface Receptor Expression of Mutated Receptors. Enzyme-linked immunosorbent assay was performed on HEK293 cells transiently expressing FLAG-tagged wild-type and mutant hA2AAR (Fig. 2). Wild-type and mutant receptors were expressed efficiently at similar levels.

Homologous Competition Assays. We first analyzed the effect of mutation of these residues on the affinity of radioligands [3H]NECA (agonist) and [3H]ZM241385 (antagonist) in the absence of NaCl (Table 1). The affinity of [3H]NECA and [3H]ZM241385 for the wild-type hA2AAR was 81 and 4.6 nM, respectively. D52A2.50 showed the same affinity as the wild-type receptor for both radioligands (77 and 3.5 nM, respectively). The other mutations caused some decrease in affinity for both radioligands, with a more pronounced effect on the agonist. An approximately 3-fold decrease of [3H]NECA affinity was observed for receptors with mutations S91A3.39 and N284A7.49, whereas [3H]ZM241385 affinity did not change significantly by these mutations. Radioligand agonist affinity decreased approximately 9-fold on N280A7.45 whereas a 1.8-fold decrease was observed for the antagonist. The W246A6.48 mutation affected affinities most, i.e., a 24-fold decrease in [3H]NECA affinity and a 5-fold decrease in [3H]ZM241385 affinity.

Concentration-Effect Curves in Radioligand Displacement Studies. Displacement curves of [3H]ZM241385 and [3H]NECA binding were recorded with different concentrations of NaCl, amiloride, and its more lipophilic derivative HMA for the wild-type and mutant receptors (Fig. 3). Whenever possible, IC50 values were derived for the inhibitory modulation of agonist [3H]NECA and antagonist [3H]ZM241385 binding by NaCl, amiloride, and HMA (Tables 2 and 3). NaCl inhibited binding of NaCl, amiloride, and its more lipophilic derivative HMA for the wild-type and mutant receptors (Fig. 3). Whenever possible, IC50 values were derived for the inhibitory modulation of agonist [3H]NECA and antagonist [3H]ZM241385 binding by NaCl, amiloride, and HMA (Tables 2 and 3). NaCl inhibited

![Fig. 1.](image1)

Fig. 1. Residues in or close to the sodium ion binding site that we subjected to an alanine scan in the hA2AAR and mapped on the crystal structure of the hA2AAR in the inactive ZM241385 and sodium ion bound conformation (PDB code 4EIY (Liu et al., 2012)). Residues Asp522.50, Ser913.39, Trp2466.48, Asn2807.45, and Asn2847.49 (represented by sticks, of which red and blue sticks are oxygen and nitrogen atoms, respectively) coordinate the sodium ion (purple sphere). Numbering of the residues follows Ballesteros-Weinstein system for comparison of positions between GPCRs (Ballesteros and Weinstein, 1995). Water molecules interacting with the sodium ion are represented by red spheres; hydrogen bonds are represented by black dotted lines; receptor backbone is represented by ribbons. Purple stick structure on top represents (part of) cocrystallized ZM241385.

![Fig. 2.](image2)

Fig. 2. Receptor expression levels on the cell surface of HEK293 cells transiently transfected with wild-type hA2AAR and single point mutations D52A2.50, S91A3.39, W246A6.48, N280A7.45, and N284A7.49, represented as fold-over-mock transfected human embryonic kidney cells (HEK293T) cells. The figure represents data combined from at least two separate experiments performed in quadruplicate.
TABLE 1
Homologous competition displacement studies yielding K_I values (nanomolar) for $[^3H]$NECA and $[^3H]$ZM241385 binding to wild-type human A$_2$AR and single point mutants D52A, S91A, W246A, N280A, and N284A transiently expressed on HEK293 cell membranes.

<table>
<thead>
<tr>
<th></th>
<th>$[^3H]$NECA</th>
<th>$[^3H]$ZM241385</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_I (nM)</td>
<td>Changea</td>
<td>K_I (nM)</td>
</tr>
<tr>
<td>Wild type</td>
<td>81 ± 5</td>
<td>4.6 ± 0.5</td>
</tr>
<tr>
<td>D52A</td>
<td>87 ± 8</td>
<td>3.5 ± 0.5</td>
</tr>
<tr>
<td>S91A</td>
<td>258 ± 24***</td>
<td>7.0 ± 0.2</td>
</tr>
<tr>
<td>W246A</td>
<td>1942 ± 122***</td>
<td>22.2 ± 4.3***</td>
</tr>
<tr>
<td>N280A</td>
<td>752 ± 147***</td>
<td>9.3 ± 1.3***</td>
</tr>
<tr>
<td>N284A</td>
<td>237 ± 27***</td>
<td>7.0 ± 0.7</td>
</tr>
</tbody>
</table>

aChange in fold over wild type.

Significantly different from wild type with $^P < 0.05$ or *P < 0.001 (one-way analysis of variance with Dunnett’s posttest performed on corresponding p_{K_I} values).

$[^3H]$NECA binding to the wild-type receptor with an IC$_{50}$ value of 44 ± 6 mM. At the highest concentration tested (1 M) NaCl had modest effects, with 59 ± 3, 89 ± 2, and 52 ± 11% of $[^3H]$NECA binding remaining on mutants S91A, W246A, and N284A, respectively (Fig. 3A). $[^3H]$NECA binding was not inhibited by NaCl on mutant N284A (Fig. 3A). Increasing concentrations of NaCl showed a tendency to enhance $[^3H]$ZM241385 binding to the wild-type receptor as well as to the mutants tested, with W246A showing the biggest enhancement (Fig. 3B). At the highest concentration of NaCl (1 M), $[^3H]$NECA agonist binding was also enhanced in the mutant receptor D52A (172 ± 9%), which suggests that at such extreme concentrations NaCl can exert allosteric effects that are different from the specific effect of sodium ion binding at Asp52A.

Amloride and HMA were capable of displacing $[^3H]$NECA and $[^3H]$ZM241385 binding on the point mutant receptors (Fig. 3, C–F), although with different IC$_{50}$ values with respect to the wild-type receptor (Tables 2 and 3). D52A was particularly insensitive to amloride: the inhibitory potency of amloride and HMA on $[^3H]$NECA binding was decreased by 11- and 14-fold and on $[^3H]$ZM241385 binding by 17- and 18-fold, respectively. Conversely, W246A showed an increased inhibitory potency of amloride and HMA, both on $[^3H]$NECA (6-fold for both amlorides) and on $[^3H]$ZM241385 (24- and 25-fold, respectively) binding. For N280A we observed a smaller but also significant increase (3.6-fold) of the negative modulation of $[^3H]$ZM241385 binding by HMA and for N284A a similar increase (2.6-fold) of the modulation of both $[^3H]$NECA and $[^3H]$ZM241385 binding by HMA. For N284A, the potency of amloride increased significantly only in case of $[^3H]$ZM241385 displacement. Mutant S91A exhibited similar potencies as the wild-type receptor for displacement of both radioligands by amloride and HMA (Tables 2 and 3). These observations suggest that although polar interactions with W246A, N280A, and N284A are important for binding of the sodium ion and coordinating water molecules, the interactions of amlorides with these three side chains are somewhat suboptimal.

Concentration-Effect Curves for cAMP Production.

Functional assays were performed to further characterize the effect of the single point mutations on hA$_2$AR signaling. As an agonist CGS21680 was used to activate the receptor, yielding an increase in cAMP production through G$_s$ protein activation (Fig. 4; Table 4). The use of the selective agonist CGS21680 for the hA$_2$AR rather than the nonselective NECA ensured that no endogenously expressed hA$_3$AR was activated in the HEK293 cells. The absence of activation by 10 μM CGS21680 in the untransfected parental cell line confirmed that indeed no endogenously expressed receptor was activated in this experimental setup. Mutations of the residues involved in the sodium ion binding site affected basal activity and efficacy of cAMP signaling by the hA$_2$AR. D52A and N284A mutants showed neither basal activity nor any activation by CGS21680. In all other cases, the mutant receptor showed a dramatically decreased receptor signaling response to CGS21680 binding (E$_{max}$–E$_{basal}$), ranging from only 27 to 46% of the wild-type response. The basal activity significantly increased over wild type in mutation S91A. The N280A mutant also showed a tendency to increased basal activity, but this was not significantly different from wild type. This constitutive activity was inhibited by addition of 10 μM ZM241385, confirming that the elevated basal cAMP production in the transiently transfected cells was caused by these mutant receptors (Supplemental Fig. 1). CGS21680 activated both the wild-type and mutant N280A with an EC$_{50}$ value of 17 nM. The potency of CGS21680 was somewhat decreased on mutant W246A (approximately 5-fold). In the case of S91A the difference between basal and maximum activity was judged too small to derive an accurate EC$_{50}$ value.

Molecular Dynamics Simulations. The dynamic behaviors of the wild-type receptor and the receptors with mutated residues important for sodium ion coordination D52A, S91A, W246A, N280A, and N284A were simulated with either only antagonist ZM241385 present or with both ZM241385 in the orthosteric pocket and the sodium ion in its allosteric binding site (Supplemental Table 1). In addition, the wild-type receptor and mutated receptors D52A and W246A were simulated with ZM241385 in the orthosteric pocket and amloride or HMA in the sodium ion binding site. Analysis of the root mean squared deviation revealed equilibrated trajectories typically after 20–30 nanoseconds, with an average value of 1.8 Å in all simulations, and analysis of the root mean squared fluctuation confirmed no major conformational changes in the receptor due to any of the mutations.

The effect of each single point mutation on the sodium ion mobility and coordination was assessed (Table 5). During the simulation in the WT model, the sodium ion alternated between two resonance positions, in which the sodium ion had a direct interaction with either Ser91 or Asn280 (22% occurrence of direct interaction during the simulations) or Asn280 (29%), while maintaining a continuous direct interaction with Asp52 (90%) (Gutiérrez-de- Terán et al., 2013b). In mutation D52A, however, sodium ion mobility increased by 5-fold and almost no direct interactions with residues Ser91 (1%) and Asn280 (0%) occurred. In the first 10 nanoseconds of the simulation with the D52A mutant receptor, the sodium ion migrated from its starting position in the sodium ion binding site near Ala52 to a vestibular pocket formed by residues Glu13 and His27 (43), where the sodium ion remained stable for the remaining 90 nanoseconds of the simulation (Fig. 5). In contrast, mutants S91A, W246A, N280A, or N284A did not show major deviations as compared with the wild-type situation with regards to either the ion mobility or the average number of oxygen atoms coordinating it (Supplemental Table 2; Harding...
due to the replacement of the mutated side chain by an additional water molecule. However, the occurrence of direct interactions with the three coordinating residues appeared lowered to some extent, indicative of a nonoptimal ion coordination for these mutants. This was true in particular for the interaction with Asp522.50 (51–76%; see Table 5).

Mobility and interactions with the receptor of amiloride and HMA, as docked in the sodium ion binding site, were assessed in simulations of the wild-type receptor and mutant receptors D52A2.50 and W246A6.48 (Fig. 6). In these relatively short MD runs amiloride was equally stable in the proposed binding site upon both mutations, with a root mean square fluctuation value of ∼2 Å. The mobility of the amiloride derivative HMA was increased 3-fold by mutation D52A2.50, and in one out of three simulations it left the putative binding pocket following the same pathway as depicted in Fig. 5B. Mutation W246A6.48, on the contrary, did not affect HMA stability in the same way. However, it is worth noting that specific contacts changed for the two ligands with both mutants. In the wild-type receptor, both ligands achieved an average number of four simultaneous hydrogen bonds, mainly with residues Asp522.50 and Trp2466.48 (Supplemental Fig. 2; Gutiérrez-de-Terán et al. (2013b)). For amiloride, the number of hydrogen bonds dropped to approximately two in the two mutants examined, as well as for HMA with mutant W246A6.48, whereas mutation D52A2.50 had a more dramatic effect on HMA with only one hydrogen bond left on average (Supplemental Fig. 2). Note that in this analysis, interactions between amino (amilorides) and carbonyl (Asp522.50) groups were approximated as hydrogen bonds, instead of the stronger salt bridge interactions that occur in reality, the loss of which is expected to have a large effect on the affinities of amilorides. This analysis did not reveal stable hydrogen bonds of amilorides with either of the asparagines close by (Asn2807.45 and Asn2847.49).

Fig. 3. Displacement/enhancement of specific [3H]NECA (A, C, and E) and [3H]ZM241385 (B, D, and F) binding by NaCl (A and B), amiloride (C and D), and HMA (E and F) on wild-type human A2AR and point mutants D52A2.50, S91A3.39, W246A6.48, N280A7.45, and N284A7.49 transiently expressed on HEK293T cell membranes. Representative graphs from one experiment performed in duplicate are shown.
will discuss our findings in the light of available mutation data in literature by examining the mutated amino acids individually. For the search we made use of data available in the GPCRDB (Isberg et al., 2014).

Asp^{2.50}. The pronounced effects of mutation of the conserved Asp^{2.50} are in agreement with previous studies. Mutation of Asp^{2.50} abolished the effect of NaCl on agonist binding in studies on a multitude of GPCRs, for example in the α₂-adrenergic receptor (Horstman et al., 1990), dopamine D₂ (Neve et al., 1991), adenosine A₁ (Barbhaiya et al., 1996), adenosine A₃ (Gao et al., 2003), and δ-opioid receptors (Fenalti et al., 2014). In MD simulations of the wild-type hA_{2A}AR, Asp52^{2.50} dominated coordination of the sodium ion (Gutiérrez-de-Terán et al., 2013b). Mutation of Asp^{2.50} is known to silence signaling in many GPCRs (Parker et al., 2008). The migration of the sodium ion to Glu131^{3.39} and His278^{7.43} agrees with their involvement in sodium ion allosterism observed previously by Gao et al. (2000). From a reversed perspective, this simulation could envisage a pathway for the entrance of the sodium ion, which should occur from the extracellular side according to the physiologic gradient (Selent et al., 2010; Shang et al., 2014), and where residue Glu131^{3.39} conserved in all adenosine receptors, could stabilize such a pathway. The enhancement of agonist binding to the D52A^{2.50} mutant at high (1 M) concentrations of NaCl suggests that binding of the ion to alternative sites may produce further allosteric effects, different from the effects on wild-type Asp52^{2.50}. The affinities of amiloride and HMA were 10- to 20-fold decreased on the D52A^{2.50} mutant receptor (Tables 2 and 3), strongly suggesting that the positively charged guanidinium moiety of the compounds interacts with the negatively charged aspartic acid. A more modest 4-fold decrease in affinity for an amiloride derivative was reported for the D4 dopamine receptor with D^{2.50}N (Schetz and Sibley, 2001). In the adenosine A₃ and α₂-adrenergic receptors, affinities of amiloride and its derivatives were largely undisturbed by mutation D^{2.50}N (Horstman et al., 1990; Gao et al., 2003), suggesting that the more drastic mutation to Ala in the current study more precisely revealed the importance of this residue for amiloride binding.

Trp^{6.48}. It appeared that sodium ions and agonist NECA can bind simultaneously to the W246A^{6.48} receptor (Fig. 3A), in contrast with the wild-type receptor where NECA and

Discussion

The sodium ion binding site appears conserved among class A GPCRs (Katritch et al., 2014). Subsequent to the hA_{2A}AR, the crystal structures of the human pro tease-activated receptor 1 (Zhang et al., 2012), the β₁-adrenergic receptor (Christopher et al., 2013; Miller-Gallacher et al., 2014), and the human δ-opioid receptor (Fenalti et al., 2014) further confirmed the common role of this site in the inactive conformation of GPCRs. A sequence comparison of the sodium ion binding site between more distant class A GPCRs shows that individual amino acids may differ, but collectively they apparently maintain the properties to coordinate a sodium ion.

These observations made us examine the residues involved in the hA_{2A}AR sodium ion binding site in more detail, through a combined approach of mutational and computational studies. Most importantly, we learned that all mutations in the sodium ion binding pocket impact A_{2A} receptor signaling significantly, including both constitutive and agonist-stimulated activity. Although all mutant data in the present study are novel, we have shown a number of similar findings on the wild-type receptor before (Lane et al., 2012; Gutiérrez-de-Terán et al., 2013b), indicative of the robustness of the assay system. We

TABLE 2

Displacement of specific [³H]NECA binding by amiloride and HMA from wild-type human A_{2A}AR and point mutants D52A^{2.50}, S91A^{3.39}, W246A^{6.48}, N280A^{7.45}, N284A^{7.49} transiently expressed on HEK293 cell membranes

<table>
<thead>
<tr>
<th></th>
<th>Amiloride</th>
<th>HMA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IC<sub>50</sub></td>
<td>Change<sup>a</sup></td>
</tr>
<tr>
<td>Wild type</td>
<td>16 ± 3</td>
<td>1.0</td>
</tr>
<tr>
<td>D52A<sup>2.50</sup></td>
<td>175 ± 75***</td>
<td>11</td>
</tr>
<tr>
<td>S91A<sup>3.39</sup></td>
<td>13 ± 1.8</td>
<td>0.81</td>
</tr>
<tr>
<td>W246A<sup>6.48</sup></td>
<td>2.7 ± 0.9***</td>
<td>0.17</td>
</tr>
<tr>
<td>N280A<sup>7.45</sup></td>
<td>10 ± 2</td>
<td>0.63</td>
</tr>
<tr>
<td>N284A<sup>7.49</sup></td>
<td>5.9 ± 1.4</td>
<td>0.37</td>
</tr>
</tbody>
</table>

^aChange in fold over wild-type.

Significantly different from wild type with *P < 0.05 or ***P < 0.001 (one-way analysis of variance with Dunnett’s posttest performed on corresponding pIC₅₀ values).

TABLE 3

Displacement of specific [³H]ZM241385 binding by amiloride and HMA from wild-type human A_{2A}AR and point mutants D52A^{2.50}, S91A^{3.39}, W246A^{6.48}, N280A^{7.45}, N284A^{7.49} transiently expressed on HEK293 cell membranes

<table>
<thead>
<tr>
<th></th>
<th>Amiloride</th>
<th>HMA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IC<sub>50</sub></td>
<td>Change<sup>a</sup></td>
</tr>
<tr>
<td>Wild type</td>
<td>63 ± 16</td>
<td>1.0</td>
</tr>
<tr>
<td>D52A<sup>2.50</sup></td>
<td>1065 ± 274***</td>
<td>17</td>
</tr>
<tr>
<td>S91A<sup>3.39</sup></td>
<td>82 ± 8</td>
<td>8.2</td>
</tr>
<tr>
<td>W246A<sup>6.48</sup></td>
<td>2.6 ± 0.4***</td>
<td>0.04</td>
</tr>
<tr>
<td>N280A<sup>7.45</sup></td>
<td>20 ± 4</td>
<td>0.32</td>
</tr>
<tr>
<td>N284A<sup>7.49</sup></td>
<td>16 ± 4</td>
<td>0.25</td>
</tr>
</tbody>
</table>

^aChange in fold over wild-type.

Significantly different from wild type with *P < 0.05 or ***P < 0.001 (one-way analysis of variance with Dunnett’s posttest performed on corresponding pIC₅₀ values).
sodium binding are mutually exclusive (Gutiérrez-de-Terán et al., 2013b). Conversely, mutant W246A augmented the positive effect of sodium ions on antagonist ZM241385 binding (Fig. 3B). It seems that Trp2466.48 may clash with both agonists and antagonists in the orthosteric pocket, because the absence of this residue has a positive effect on binding of both agonists and antagonists in presence of the sodium ion. Trp6.48 conserved in many GPCRs, has long been suggested to act as a “toggle switch” in receptor activation (Nygaard et al., 2009) but has never been studied in the context of allosteric modulation by sodium ions. It has been mutated to both Phe and Ala in the human adenosine A3 receptor, being the closest homolog to the A2A receptor (Gao et al., 2002, 2003). Interestingly, agonist binding was hardly affected by these mutations, whereas antagonists showed a modest decrease in affinity. Receptor activation, however, was largely impaired, seemingly more than our current findings on the A2A receptor (e.g., see Fig. 4). Remarkably, the affinities for amiloride and HMA were strongly increased on this mutant (Tables 2 and 3), suggesting that the wild-type tryptophan creates a substantial steric strain for the binding of amilorides. In the adenosine A3 receptor the W6.48A mutation increased HMA potency on agonist binding as well (Gao et al., 2003). The mobility of amiloride and HMA was unaffected by the W246A mutation (Fig. 5). (Fig. 2). The bulkier hexamethyl group of HMA collides with Ser913.39, Asn7.45, and Asn7.49.

TABLE 5

<table>
<thead>
<tr>
<th>Na⁺ Mobility</th>
<th>Na⁺ Interactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMSF in Å</td>
<td>% Occurrence with Indicated Residue</td>
</tr>
<tr>
<td></td>
<td>Asp222.50</td>
</tr>
<tr>
<td>Wild type</td>
<td>2.5 ± 0.3</td>
</tr>
<tr>
<td>D52A2.50</td>
<td>11.2 ± 3*</td>
</tr>
<tr>
<td>S91A3.39</td>
<td>1.8 ± 0.2</td>
</tr>
<tr>
<td>W246A6.48</td>
<td>2.5 ± 0.3</td>
</tr>
<tr>
<td>N280A7.45</td>
<td>2.6 ± 0.2</td>
</tr>
<tr>
<td>N284A7.49</td>
<td>2.6 ± 0.1</td>
</tr>
</tbody>
</table>

Significantly different from control with *P < 0.05 (Student’s t test).

Fig. 5. (A) Average distance in angstroms of sodium ion from Glu131.39 (O), Ala522.50 (C), and His2787.43 (N) as a function of the simulation time for the D52A2.50 mutant. Graphs represent means from three independent simulations. (B) Three-dimensional representation of the migration pathway of the sodium ion (cyan sphere, with labels indicating the occupancy at averaged MD simulation windows) from its putative binding site toward the vestibular pocket formed by Glu131.39 and His2787.43. The residues and water molecules interacting with the sodium ion are represented in sticks, with hydrogen bonds represented by green dotted lines.
while maintaining contact with Asp522.50. This is in agreement with the observation that sodium ion modulation of agonist binding is not completely abolished in mutant receptors S91A3.39 and N280A7.45 (Fig. 3A) and that the two remaining residues in mutants S91A3.39 and N280A7.45 (Asp522.50 and Asn2807.45, respectively) still interact directly with the sodium ion, although less than in the wild-type receptor (Table 5). Jiang et al. (1996) found that the same S91A mutation did not affect orthosteric ligand binding very much, even less so than the slight decrease in affinity in our experiments (Table 1). In the adenosine A\textsubscript{1} receptor, however, orthosteric ligand binding could not be detected for this mutation, maybe due to lack of expression (Barbhaiya et al., 1996).

In mutant N284A7.49, sodium ion modulation of agonist binding was completely abolished (Fig. 3A). In the antagonist-bound inactive conformation of the receptor, Asn2847.49 might improve sodium ion coordination through stabilization of the side chain of Asp522.50, explaining the disruption of sodium ion binding by mutation N284A7.49. The same role of Asn7.49 in stabilization of Asp2.50 was proposed previously in, e.g., the histamine H\textsubscript{1} and thyrotropin receptors (Urizar et al., 2005; Bakker et al., 2008). At the same time, in the agonist-bound structure of the A\textsubscript{2A}AR residues Asn2807.45 and Asn2847.49 form a hydrogen bond, possibly stabilizing the collapsed state of the pocket that excludes sodium ion binding (Lebon et al., 2011; Xu et al., 2011). Consequently, mutations N280A7.45 and N284A7.49 might facilitate the formation of the uncollapsed state of the sodium ion pocket and shift the receptor away from the active state, even when the sodium ion is not present in its binding site. Our results support this hypothesis, because mutation of either residue decreases agonist affinity drastically, whereas antagonist affinity is only slightly decreased (Table 1) and sodium ions inhibit agonist binding only weakly (N280A7.45 or not at all (N284A7.49, Fig. 3A). In the adenosine A\textsubscript{1} receptor mutation, N7.49C increased antagonist binding slightly, which could point to a similar mechanism (Dawson and Wells, 2001). Moreover, mutation N284A7.49 abolished agonist activation completely (Table 4). Correspondingly, Asn2847.49 is part of the highly conserved NPXXX motif involved in GPCR activation (Nygaard et al., 2009; Rosenbaum et al., 2009).

Mutants N280A7.45 and N284A7.49 generally affected the potencies of amilorides in a positive way, in particular for HMA (Fig. 3, E and F; Tables 2 and 3). According to the binding mode proposed (Gutiérrez-de-Terán et al., 2013b), the nitrogen atoms in the amide moiety of both amiloragines lie close to the guanidinium group of both anilides coordinated by Asp522.50, yet they only make sporadic H-bond contacts (Supplemental Fig. 2). Thus alanine substitutions might indeed facilitate binding of amilorides by avoiding unfavorable polar interactions (Asn2807.45 or by allowing more conformational freedom to Asp522.50 (Asn2847.49, accommodating in particular the bulky HMA and enhancing its binding.

The MD simulations showed only minor effects on the capacity of mutants S91A3.39, W246A6.48, N280A7.45, and N284A7.49 to bind the sodium ion in the inactive conformation of the receptor. This seems in contrast to the greatly reduced sensitivity of these mutants to physiologic concentrations of NaCl (Fig. 3A). In addition to the explanations discussed above, an alternative explanation arises from the observation that each of these four side chain annihilations creates additional room for an extra water molecule, thus fulfilling the coordination number of the ion (Supplemental Table 2). This might allow that, in contrast to the wild-type receptor, the mutants also bind the sodium ion in an active receptor conformation, resulting in the observed loss of modulatory effect on agonist binding.

In conclusion, our results show the importance of the sodium ion binding site in orthosteric ligand binding and receptor activity. Mutation D52A2.50 caused an immediate displacement of the sodium ion to a distant pocket in MD simulations, in agreement with the loss of the modulatory effect in our molecular pharmacology experiments. The effects of the other mutations were varied, but they significantly affected sodium ion modulation of agonist binding and modulation by amilorides of both agonist and antagonist binding. In addition, all mutations influenced receptor activation, particularly by affecting the levels of constitutive and agonist-stimulated activity, emphasizing the importance of the sodium ion binding pocket for the receptor’s active conformation(s). These findings imply that because of allosterism by sodium ions and amilorides, the sodium ion binding pocket is a prominent player in receptor functionality and ligand affinity. Our study also opens the door to the design of novel synthetic allosteric modulators or bitopic ligands connecting the sodium ion binding site and the orthosteric binding pocket.

Authorship Contributions

Participated in research design: Massink, Gutiérrez-de-Terán, Lenselink, Heitman, Katritch, Stevens, IJzerman.

Conducted experiments: Massink, Gutiérrez-de-Terán, Lenselink, Ortiz Zacarías, Xia.

Performed data analysis: Massink, Gutiérrez-de-Terán, Lenselink, Ortiz Zacarías, Xia.

Wrote or contributed to the writing of the manuscript: Massink, Gutiérrez-de-Terán, Lenselink, Katritch, Stevens, IJzerman.

References

Gao ZG, Chen A, Barak D, Kim SK, Müller CE, and Jacobson KA (2002) Identifi-
I s b e r gV ,V r o l i n gB ,v a nd e rK a n tR ,L iK ,V r i e n dG ,a n dG l o r i a mD(2 0 1 4)G P C R D B :a n
Horstman DA, Brandon S, Wilson AL, Guyer CA, Cragoe EJ, Jr, and Limbird LE
Ballesteros JA and Weinstein H (1995) Integrated methods for the construction of
Gao ZG, Kim SK, Gross AS, Chen A, Blaustein JB, and Jacobson KA (2003) Identi-
Rich RL, Tate CG, Tehan B, et al. (2013) Biophysical fragment screening of the