Interleukin-6 Attenuates Serotonin 2A Receptor Signaling by Activating the JAK-STAT Pathway

Jennifer J. Donegan, Michael S. Patton, Teresa S. Chavera, Kelly A. Berg, David A. Morilak, and Milena Girotti

Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, Texas

Received October 7, 2014; accepted December 30, 2014

ABSTRACT

The serotonin 2A (5-HT2A) receptor and the proinflammatory cytokine, interleukin-6 (IL-6), have both been implicated in psychiatric disorders. Previously, we demonstrated that these molecules both facilitate cognitive flexibility, a prefrontal cortex-mediated executive function impaired in multiple mental illnesses. In this study, we tested the hypothesis that IL-6 influences 5-HT2A receptor signaling, providing a potential mechanism by which this cytokine may influence behavior. We first demonstrated that 5-HT2A receptors and IL-6–mediated STAT3 phosphorylation colocalize in cells of the prefrontal cortex, providing the neuroanatomical substrate for a potential interaction. In the neurally derived A1A1 cell line, which expresses both IL-6 and 5-HT2A receptors, we found that IL-6 attenuates inositol phosphate (IP) accumulation in response to the 5-HT2 agonist, 2,5-dimethoxy-4-iodoamphetamine (DOI), suggesting that IL-6 can regulate 5-HT2A receptor function. To identify the signaling pathway(s) that mediate this effect, we measured DOI-mediated IP accumulation in the presence of IL-6 and either the JAK-STAT inhibitor 124 [(9β,10α,16α,23E)-2,16,20,25-tetrahydroxy-9-methyl-19-norlanosta-1,5,23-triene-3,11,22-trione], JSI-124, or the extracellular signal-regulated kinase inhibitor, 2-(2-amino-3-methoxyphenyl)-4H-1-benzopyran-4-one (PD-98059). The IL-6 effect was blocked by JSI-124 but not PD-98059. Furthermore, silencing RNA knockdown of either JAK or STAT blocked the IL-6 effect, suggesting that IL-6–induced JAK-STAT activation can regulate 5-HT2A receptor signaling. Finally, to determine if IL-6 specifically regulates the 5-HT2A receptor system, we measured IP production mediated by another Gq-coupled receptor, bradykinin B2. IL-6 had no effect on bradykinin-mediated IP accumulation, suggesting that regulation may occur at the 5-HT2A receptor. These results may provide clues to the pathologic mechanisms underlying certain psychiatric disorders and may suggest novel therapeutic strategies for their treatment.

Introduction

The serotonin 2A (5-HT2A) receptor is a G-protein–coupled receptor that is widely distributed throughout the cortex (Pompeiano et al., 1994; Willins et al., 1997). 5-HT2A receptors couple to multiple intracellular signaling cascades (Berg et al., 1998; Urban et al., 2007); however, Gq/11 protein–mediated activation of phospholipase C is perhaps the best characterized pathway (Lysen, 2004; Nichols and Nichols, 2008). The 5-HT2A receptor is thought to play an important role in regulating mood and cognition and has been implicated in the pathology of several psychiatric disorders (Gray and Roth, 2001; Carr and Lucki, 2011). In humans, depression and schizophrenia have been associated with increased expression of 5-HT2A receptors in the brain (Gurevich and Joyce, 1997; Shelton et al., 2009), and effective treatment strategies have been shown to decrease 5-HT2A receptor expression and/or function (Gray and Roth, 2001). For example, atypical antipsychotics are thought to exert their therapeutic benefit, in part, by acting as inverse agonists that reduce 5-HT2A receptor constitutive activity (Meltzer, 2012). Thus, understanding the functional regulation of this receptor could have important implications for improved treatment of schizophrenia and other psychiatric disorders.

Recently, the pleiotropic cytokine, interleukin-6 (IL-6), has also received attention for its potential role in cognitive function and mental illness (Gimeno et al., 2009; Dowlati et al., 2010). IL-6 signaling is initiated by the formation of a hexameric complex comprised of two molecules of IL-6 each bound to a nonsignaling IL-6 receptor α and the transmembrane signal-transducing glycoprotein (gp130) receptor. This receptor complex primarily activates the janus activated kinase/signal transducer and activator of transcription (JAK-STAT) pathway. JAK proteins associated with the gp130 receptor phosphorylate STATs, which then dimerize and move to the nucleus where they can activate transcription. Alternatively, IL-6 receptor activation can also initiate the extracellular signal-regulated kinase (ERK) cascade through Ras/Raf activation (Heinrich et al., 2003).

Cognitive flexibility, the adaptive ability to modify behavior in the face of environmental change, is impaired in a variety of psychiatric disorders, including schizophrenia and depression. The serotonin 2A (5-HT2A) receptor and the proinflammatory cytokine, interleukin-6 (IL-6), have both been implicated in psychiatric disorders. To date, much of the research has focused on the role of IL-6 in promoting inflammation and its potential to cause cell death. However, other studies have shown that IL-6 may also have beneficial effects. For example, IL-6 has been shown to increase the number of neurons in the prefrontal cortex, a region implicated in cognitive flexibility. In the present study, we investigated the role of IL-6 in regulating 5-HT2A receptor signaling. We found that IL-6 attenuates 5-HT2A receptor signaling, suggesting a potential mechanism by which this cytokine may influence cognitive flexibility. These findings have important implications for understanding the role of IL-6 in psychiatric disorders and suggest novel therapeutic strategies for their treatment.
psychiatric disorders, including depression and schizophrenia (Kehagia et al., 2010). Cognitive inflexibility may also underlie other symptoms, including alterations in mood, and targeting this deficit is the basis for cognitive behavioral therapy, one of the most effective and enduring treatment strategies for mood and anxiety disorders (Beck, 2008). We have demonstrated that both serotonin, acting specifically at the 5-HT2A receptor, and IL-6 can facilitate reversal learning, a form of cognitive flexibility, in the orbitofrontal cortex (OFC) (Furr et al., 2012; Donegan et al., 2014). However, it is unknown whether these signaling molecules act independently in the OFC or interact with each other, either sequentially or convergently, to regulate behavior. To address this question here, we first determined whether IL-6–induced JAK-STAT activation in the OFC of rats occurred in cells that also coexpress 5-HT2A receptors, providing a neuroanatomical substrate for potential interaction. Then, with each other, either sequentially or convergently, to regulate and IL-6 can facilitate reversal learning, a form of cognitive

Materials and Methods

Drugs and Reagents. The JAK/STAT inhibitor 124, JSI-124 ([9β,10α,16α,23E]-2,16,20,25-tetrahydroxy-9-methyl-19-norlanosta-1,5,23-triene-3,11,22-trione) (Indofine Chemical, Hillborough, NJ), was prepared as a 19.4 μM stock in 100% EtOH. The ERK inhibitor, PD-98059 [2-(2-amino-3-methylphenyl)-4H-1-benzopyran-4-one] (Tocris Biosciences, Bristol, UK), was dissolved in 100% EtOH at a concentration of 5 mM. IL-6 (R&D Systems, Minneapolis, MN) was received in a stock concentration of 0.25 μg/mL in sodium acetate. DOI-HCl (= 1-2,5-dimethoxy-4-isobutynyl)-2-amino propanoic acid HCI; Sigma-Aldrich, St. Louis, MO) and bradykinin (Sigma-Aldrich) were dissolved in water at 0.1 M concentration. ON-TARGETplus silencing constructs (GE Dharmaco, Lafayette, CO; Table 1) arrived in dried pellet form and were resuspended with 1× silencing RNA (siRNA) buffer to a 20 μM stock. Stock solutions were stored in aliquots at −20°C. Experimental working solutions were diluted from stocks using 200 mM LiCl as the vehicle.

Immunohistochemistry. Male Sprague–Dawley rats were infected by local bilateral microinjection into the OFC of an adenov-associated viral vector, serotype 2/5, containing a constitutively expressed functional IL-6 construct (AAV-IL6), to produce stable overexpression of IL-6 selectively in neurons in the OFC. We have shown previously that this method of IL-6 overexpression results in elevated STAT3 phosphorylation (Donegan et al., 2014). Three weeks after infection, rats were anesthetized and perfused transcardially with 4% paraformaldehyde. Dual-fluorescence immunohistochemistry was performed sequentially on free-floating 40-μm coronal sections through the OFC. Sections were first incubated for 30 minutes in 3% H2O2 in phosphate-buffered saline (PBS), washed (PBS containing 0.3% Triton X-100), and blocked for 1 hour in PBS containing 0.3% Triton X-100, 5% normal goat serum, and 1% bovine serum albumin. Sections were incubated with a rabbit anti-5-HT2A receptor antibody (1:20,000, AbCam, Cambridge, UK) at 4°C overnight. After incubation with biotinylated anti-rabbit secondary antibody (GE Healthcare, Little Chalfont, UK), sections were incubated with an avidin-peroxidase conjugate (Vectastain ABC, Vector Laboratories, Burlingame, CA) then Tyramide Signal Amplification Cy3 reagent (PerkinElmer, Waltham, MA). For subsequent antigen retrieval and peroxidase quenching, sections were incubated in 3% H2O2 in methanol for 10 minutes at −20°C, then boiled in 10 mM citric acid (pH 6.0) for 5 minutes. Sections were then blocked in PBS containing 0.3% Triton X-100, 5% normal sheep serum, and 1% bovine serum albumin before incubating with the second primary antibody, mouse anti–phospho-STAT3-Tyr705 (Tyr705; 1,500, Cell Signaling, Danvers, MA) at 4°C overnight. Sections were washed, then incubated with a biotinylated anti-mouse secondary antibody (Sigma-Aldrich), avidin-peroxidase conjugate, and Tyramide Signal Amplification fluorescein reagent. Sections were mounted on gelatin-coated slides, coverslipped with Vectashield mounting media (Vector Laboratories), then imaged using an Olympus IX81 (Tokyo, Japan) motorized inverted confocal microscope. Digital images were acquired using FV10-ASW software (Olympus) and enhanced using ImageJ (National Institute of Health, Bethesda, MD). To quantify the number of cells expressing each label, 3 OFC sections from each of 3 rats were imaged for a total of 9 measurements. For each section, the OFC was defined as a triangular area with its vertices at the rhinal sulcus, the medial boundary of the forceps minor, and lateral edge of the forceps minor. A standard field of view (200 × 200 μm) was positioned within the center of this area. The total number of cells labeled by each marker was counted within this field, and the percentages exhibiting coexpression were calculated.

Cell Culture. A1A1 cells were originally derived from cortical cells cultured from embryonic day 16 rats and express nestin, a marker for neuronal precursor cells (Berg et al., 1994). Cells were maintained in 5% CO2 at 37°C in Dulbecco’s modified Eagle’s medium (DMEM; Invitrogen, Grand Island, NY) with 10% fetal bovine serum (Atlanta Biologicals, Flowery Branch, GA). For each experiment, cells were seeded on poly-l-ornithine–coated plates. Twenty-four hours before each experiment, the DMEM was replaced with serum-free medium (DMEM/F12; Invitrogen) as described previously (Berg et al., 1994).

Western Blots. Cell lysates were prepared in RIPA buffer (50 mM Tris, 150 mM NaCl, 0.5% Na-deoxycholate, 0.1% SDS, 1% Nonidet-P40) containing protease and phosphatase inhibitors. Protein content was determined using the Bradford assay, and equal amounts of protein were subjected to SDS-PAGE then transferred to polyvinylidene membrane (Immobilon P, Millipore, Billerica, MA). Primary antibodies (Cell Signaling) were rabbit anti–phospho-STAT3 (Tyr705; 1,100,000) and mouse anti–phospho-ERK1/2 (Thr202/Tyr204; 1,100,000). After incubation with a horseradish peroxidase–linked secondary antibody (Cell Signaling) and Prime ECL detection reagent (GE Healthcare), blots were stripped and reprobed with a mouse anti-STAT3 antibody (1,500,000, Santa Cruz, Dallas, TX) or rabbit anti-ERK1/2 antibody (1,500,000, Santa Cruz) to normalize the corresponding phosphoprotein signals.

Inositol Phosphate Accumulation. Measurement of inositol phosphate (IP) accumulation was used as an index of phospholipase C activity as described previously (Berg et al., 1994). Briefly, A1A1 cells, seeded at a density of 70,000 cells per well in a 24-well dish, were incubated with 1 μCi/mL [3H]myo-inositol (PerkinElmer) in serum free medium for 24 hours before the experiment. In the silencing RNA experiments, ON-TARGETplus siRNA constructs (25–50 nM) were added 24 hours before the [3H]myo-inositol, amounting to 48 hours total transfection time. Before the assay, cells were washed 3 times in

TABLE 1

<table>
<thead>
<tr>
<th>siRNA Constructs</th>
<th>NCBI Gene ID</th>
<th>Target Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>JAK1</td>
<td>84598</td>
<td>GCAUAUGGAGCCGAUA</td>
</tr>
<tr>
<td>JAK2</td>
<td>24514</td>
<td>CGGAAGCGAUAAGGUA</td>
</tr>
<tr>
<td>STAT3</td>
<td>25125</td>
<td>CAUCAUCCUGGUAUA</td>
</tr>
<tr>
<td>Nontargeting pool</td>
<td>N/A</td>
<td>UGGUUUACAUUGGACUAA, UGGUUUACAUUGGUGUGU, UGGUUUACAUUGGUGUCCU</td>
</tr>
</tbody>
</table>

Note: This table represents a summary of the siRNA constructs used in the study.
Hanks’ balanced salt solution with 20 mM HEPES. Cells were incubated with varied concentrations of DOI [2,5-dimethoxy-4-iodoamphetamine] or bradykinin (100 nM) along with 20 mM LiCl at 37°C for 25 minutes. IL-6 (50 ng/ml) was added to the cells 15 minutes before either DOI or bradykinin incubation. When inhibitors of JAK/STAT or ERK were used, they were added 1 hour before IL-6. To terminate IP production, media were aspirated and cells were incubated on ice with 1 ml 10 mM formic acid for at least 20 minutes. Total IP (inositol monophosphate, inositol bisphosphate, inositol trisphosphate) in the formic acid extracts were isolated by ion exchange chromatography. The tritium content of eluted column fractions was measured by liquid scintillation counting (Beckman Coulter, Indianapolis, IN).

Analyses. In all figures, data are shown as mean ± S.E.M., and n is indicated in the figure legend. In the Western blot experiments, protein phosphorylation was analyzed by one-way analysis of variance. When main effects were significant, Dunnett’s post hoc test was used. Concentration-response data for DOI-mediated IP accumulation were fit to a logistic equation using nonlinear regression analysis to provide estimates of maximal response (E_{max}), and potency (EC50) using Prism software (GraphPad Software, Inc, San Diego, CA). Statistical differences in the EC50 or E_{max} parameters between groups were analyzed with Student’s paired t test or by two-way analysis of variance and Bonferroni post hoc test when interactions were significant. In the siRNA and bradykinin experiments, results were analyzed by paired Bonferroni post hoc test when interactions were significant. In the Western blot experiments, we treated cells with IL-6 for 15 minutes. All tests were two-tailed, and significance was determined at $P < 0.05$.

Results

5-HT2A Receptors and IL-6-Induced Phospho-STAT3 Are Colocalized in the Rat OFC. We showed previously that both 5-HT2A receptor- and IL-6–mediated signaling in the orbitofrontal cortex (OFC) can facilitate reversal learning (Furr et al., 2012; Donegan et al., 2014). To determine if these signaling mechanisms exist in the same cells of the OFC, we used dual fluorescence immunohistochemistry to label 5-HT2A receptors and IL-6–induced STAT3 phosphorylation in rat OFC tissue. To induce STAT3 phosphorylation, we used an adeno-associated viral vector to produce stable IL-6 overexpression (Donegan et al., 2014). We found that essentially 100% of 5-HT2A receptor-positive cells in the OFC also showed STAT3 phosphorylation in response to overexpressed IL-6 (Fig. 1). By contrast, only a subset of phospho-STAT3–positive cells, approximately 20%, also expressed 5-HT2A receptors.

IL-6 Induces STAT3 and ERK1/2 Phosphorylation in a Time- and Concentration-Dependent Manner in A1A1 Cells. The A1A1 neuronal cell line expresses the 5-HT2A receptor (Berg et al., 1994), providing an excellent model to examine the potential interaction between 5-HT2A and IL-6 signaling. To characterize IL-6 signaling in A1A1 cells, we first established the time course for IL-6–mediated responses. Cells were treated with a concentration of IL-6 (100 ng/ml), which has been shown to produce robust JAK-STAT activation (Yasukawa et al., 2003), for 5, 15, 30, 60, or 120 minutes before Western blot analysis to determine phosphorylation of STAT3 and ERK1/2 as an index of activation. IL-6 significantly increased phosphorylation of both STAT3 [$F(5,15) = 48.58, \ P < 0.0001$] and ERK1/2 [$F(5,17) = 6.28, \ P < 0.01$], indicating activation of both kinases. However, the effect of IL-6 on STAT3 and ERK1/2 phosphorylation was time dependent. STAT3 phosphorylation (Fig. 2A) was significantly increased over basal levels after 5, 15, or 20 minutes, whereas ERK1/2 phosphorylation (Fig. 3A) was only elevated after a 15-minute incubation period with IL-6. Therefore, in subsequent experiments we treated cells with IL-6 for 15 minutes.

We next evaluated the concentration dependence for IL-6 to activate either STAT3 or ERK1/2. As shown in Figs. 2B and 3B, we found that phosphorylation of both STAT3 and ERK1/2 was increased with increasing concentrations of IL-6, and maximal activation of both kinases occurred with 50 ng/ml IL-6 [for STAT3: $F(7,23) = 12.49, \ P < 0.0001$; for ERK1/2: $F(7,15) = 8.25, \ P < 0.01$]. The pEC50 for IL-6 was 8.25 ± 0.19 (5.6 nM) for phospho-STAT3 and 8.49 ± 0.20 (3.2 nM) for phospho-ERK1/2, and the E_{max} was 1 ± 0.08% and 12 ± 0.7% above basal for phospho-STAT3 and phospho-ERK1/2, respectively.

IL-6-Induced JAK-STAT Activity Attenuates DOI-Induced IP Accumulation in A1A1 Cells. To determine if IL-6 modulates 5-HT2A receptor signaling in A1A1 cells, we measured inositol phosphate (IP) accumulation in response to DOI. DOI is a well characterized, highly selective 5-HT2 receptor agonist. In most cell lines expressing 5-HT2 receptors, DOI has been found to have partial agonist activity relative to 5-HT6 (Berg et al., 1998). DOI produced a concentration-dependent increase in IP accumulation that was attenuated in the presence of a maximal concentration (50 ng/ml) of IL-6 (Fig. 4A). The E_{max} for DOI was 46 ± 3% above basal, and the DOI pEC50 was 7.43 ± 0.17 (230 nM; n = 32) in cells pretreated with vehicle. In the presence of IL-6, the maximal response to DOI was reduced to 25 ± 4% above basal [for E_{max} t(30)=4.653, $P < 0.0001$; n = 31]. In these experiments basal IP accumulation was not significantly affected by IL-6 (500 ± 21 dpm without IL-6 and 541 ± 24 dpm in the presence of IL-6). Importantly, the EC50 for DOI was unchanged after incubation with IL-6, suggesting that IL-6 may regulate the efficacy, but not the affinity, of agonists acting at 5-HT2A receptors. DOI alone did not activate JAK/STAT in our experiments (data not shown).

In the next set of experiments, we identified the signaling pathway responsible for the IL-6 effect on 5-HT2A signaling using the JAK-STAT inhibitor JSI-124, JAK, and STAT siRNA constructs or the mitogen activated protein kinase kinase inhibitor PD-98059. First, we tested the ability of the inhibitors to block IL-6–induced signaling. We found that 50 µM JSI-124 was sufficient to prevent IL-6–induced STAT3 phosphorylation [50 ng/ml IL-6; $F(2,6) = 23.25, \ P < 0.01$; Fig. 5A]. As shown in...
Fig. 5B, this concentration of JSI-124 completely abolished the effect of IL-6 on DOI-induced IP accumulation. As shown before, the maximal response to DOI was reduced from 43 ± 4% under control conditions to 22 ± 5% above basal in cells incubated with IL-6. However, after pretreatment with JSI-124, IL-6 had no effect on the maximal response to DOI (45 ± 6% above basal versus 46 ± 5% above basal; JSI-124: $F_{(1,43)} = 7.418, P < 0.01$; IL-6: $F_{(1,43)} = 4.051, P = 0.0503$; interaction: $F_{(1,43)} = 4.657, P < 0.05; n = 12$). In these experiments basal IP accumulation was 492 ± 29 dpm for vehicle-treated cells and 534 ± 34 dpm for IL-6–treated cells. The presence of JSI-124 had no significant effect on basal IP accumulation in cells treated with or without IL-6. Pretreatment with JSI-124 alone did not alter either the E_{max} or EC50 for DOI-mediated IP accumulation.

Next, we used siRNA (Table 1) to determine the role of specific JAK and STAT isoforms in IL-6–mediated regulation of the 5-HT2A receptor. JAK1, JAK2, and STAT3 are all expressed in the brain and preferentially respond to IL-6 (Stahl et al., 1995; De-Fraja et al., 1998). Using siRNA targeting these isoforms, we demonstrated a robust knockdown of the target proteins. JAK1 siRNA (25 nM) produced a 97% knockdown, JAK2 siRNA (50 nM) produced a 77% knockdown, and STAT3
siRNA (25 nM) produced a 93% knockdown of protein compared with cells treated with a nontargeting siRNA pool (25 nM; Fig. 6A). As demonstrated previously, in the presence of non-targeting siRNA, IL-6 attenuated DOI-mediated IP production, reducing the maximal response from 37 ± 2 to 25 ± 5% over basal. Consistent with the JSI-124 results, the effect of IL-6 was completely abolished in the presence of all three siRNA constructs (for JAK1, effect of DOI without IL-6: 60 ± 13%; effect in the presence of IL-6: 70 ± 13%; for JAK2, effect of DOI without IL-6: 27 ± 3%, effect with IL-6: 20 ± 5%; and for STAT3, DOI without IL-6: 33 ± 10%, with IL-6: 47 ± 12%; Fig. 6B). In these experiments, basal IP levels under control conditions were 944 ± 129 dpm and were not significantly altered by either IL-6 or any of the siRNA constructs tested.

We also tested the effect of the ERK1/2 inhibitor PD-98059 on both IL-6–mediated activation of ERK and the reduction in DOI-mediated IP accumulation. We found that although 50 μM PD-98059 was sufficient to block IL-6–induced ERK activation [50 ng/ml IL-6; F(2,6) = 15.14, P < 0.05; Fig. 7A], this concentration of PD-98059 had no effect on the IL-6–mediated reduction of DOI-induced IP accumulation (Fig. 7B). The E_{max} for DOI was reduced from 51 ± 12% above basal to 29 ± 9% above basal after IL-6 pretreatment alone and from 54 ± 7% above basal to 34 ± 8% in the presence of IL-6 and the ERK inhibitor PD-98059 [IL-6: F(1,27) = 5.3, P < 0.05; n = 8]. In these experiments basal IP accumulation was 550 ± 22 dpm for vehicle-treated cells and was not significantly altered by IL-6 treatment with or without pretreatment with PD-98059. Furthermore, the EC_{50} for DOI was not altered by IL-6 in either the presence or absence of PD-98059. Together, these results suggest that IL-6 acts through the JAK-STAT pathway to modulate 5-HT_{2A} receptor signaling.
IL-6 Does Not Affect Bradykinin-Induced IP Accumulation. To determine if the effect of IL-6 is specific to the 5-HT2A receptor system or if it generalizes to other Gq-coupled receptor systems in A1A1 cells, bradykinin (BK) B2 receptor-mediated IP accumulation was measured in the presence or absence of IL-6. There was no difference in BK-mediated IP accumulation after incubation with IL-6 (Fig. 8). BK produced a 188 ± 7% above basal increase in IP accumulation in the absence of IL-6 and a 180 ± 11% increase above basal IP accumulation when IL-6 was present [t(7) = 0.5197, P > 0.05; n = 8], suggesting that IL-6 specifically modulates signaling by the 5-HT2A receptor system. In these experiments basal IP accumulation was 658 ± dpm and 629 ± 16 dpm in the absence or presence of IL-6, respectively.

Discussion

Both IL-6 and the 5-HT2A receptor have been implicated in the pathology of mental illness (Gray and Roth, 2001; Dowlati et al., 2010). We previously found that both molecules can facilitate reversal learning, a form of orbitofrontal cortex (OFC)-mediated cognitive flexibility that is impaired across psychiatric disorders (Furr et al., 2012; Donegan et al., 2014). In the current study, we found that IL-6 overexpression induced endogenous JAK-STAT activation in OFC cells that also express 5-HT2A receptors, providing a neuroanatomical substrate for a potential interaction between these signaling systems. Using an in vitro model, we then demonstrated that IL-6 reduced 5-HT2A agonist-mediated IP accumulation, suggesting that this cytokine can...
Fig. 8. IL-6 does not affect bradykinin (BK) B2 receptor–mediated IP accumulation. A1A1 cells were pretreated with IL-6 (50 ng/ml) 15 minutes before incubation with BK (100 nM). In these experiments basal IP accumulation was 658 ± 15 and 629 ± 16 dpm in the absence or presence of IL-6, respectively. Data are expressed as mean ± S.E.M. from 8 individual experiments.

regulate 5-HT2A receptor signaling. Although IL-6 attenuated the maximal response to DOI, it had no effect on the EC50, suggesting that this cytokine may alter 5-HT2A receptor agonist efficacy without influencing ligand affinity. Furthermore, we showed that this regulation was mediated by activation of the JAK-STAT pathway. IL-6 had no effect on BK-induced IP accumulation, suggesting that IL-6 may specifically modulate 5-HT2A receptor signaling.

Although IL-6 and the 5-HT2A receptor have been implicated in psychiatric disorders, little is known regarding the potential interaction of these two signaling pathways, especially in the brain. Current evidence suggests that JAK-STAT may be a downstream target of the 5-HT2A receptor. In smooth muscle cells, JAK2 can associate with the 5-HT2A receptor (Guillet-Deniau et al., 1997), and 5-HT2A agonists increase JAK1 and JAK2 phosphorylation (Banes et al., 2005). Perhaps paradoxically, three well characterized antagonists/inverse agonists at the 5-HT2A receptor, olanzapine, clozapine, and MDL-100,907 [(R)-(+)-a-(2,3-dimethoxyphenyl)-1-[2-(4-fluorophenyl)ethyl]-4-piperinemethanol], have also been shown to activate the JAK2-STAT3 pathway in both the neuronally derived A1A1 cell line (Singh et al., 2007, 2009) and in the frontal cortex (Singh et al., 2010). Interestingly, in these systems, JAK-STAT activation was shown to mediate 5-HT2A receptor desensitization (Singh et al., 2007, 2009, 2010). These previous observations coincide with our demonstration that directly activating the JAK/STAT pathway, through the IL-6 receptor system, attenuates DOI-induced 5-HT2A receptor-mediated IP accumulation, substantiating the possibility of crosstalk between these receptor systems.

The mechanism(s) by which IL-6 and JAK-STAT regulate 5-HT2A receptor signaling is still unknown; however, our results indicate that the regulation is specific to this Gα-protein–coupled receptor, because IL-6 did not influence BK B2 receptor–mediated IP accumulation. One explanation for this specificity is that IL-6–activated JAK acts directly on the 5-HT2A receptor rather than on the downstream Gq/11 cascade, inducing phosphorylation-mediated conformational changes to the receptor complex. These changes could ultimately affect ligand binding to the receptor, receptor trafficking, and/or coupling with downstream signaling molecules. Indeed, JAK2 has been shown to associate with the 5-HT2A receptor (Guillet-Deniau et al., 1997). Therefore, IL-6–induced activation of this pathway may lead to a physical association of JAK with the 5-HT2A receptor, which in turn leads to a reduction in Gq11–mediated activation of PLC. In support of this idea, we demonstrated that the JAK1 and JAK2 isoforms are required for IL-6 regulation of 5-HT2A receptor signaling. Future experiments will identify the mechanism(s) by which IL-6 and JAK-STAT activation reduce the efficacy of the 5-HT2A receptor agonist DOI, including measurement of potential changes in receptor expression on the cell surface.

In both our previous behavioral studies and the current in vitro experiments, the effect of IL-6 is rapid (within 15 minutes), possibly suggesting a nontranscriptional mechanism. However, the transcription factor STAT is the primary downstream target of JAK, and we demonstrated that downregulation of STAT3 by siRNA, which presumably will have prolonged transcriptional consequences, can block the effect of IL-6 on 5-HT2A receptor signaling. Therefore, STAT molecules can also influence 5-HT2A receptor signaling. These observations also imply that long-term activation of the JAK-STAT pathway, which occurs under chronic inflammatory conditions, such as obesity and cardiovascular disease, may have different or more permanent effects on the 5-HT2A receptor system. There is evidence to suggest that STAT proteins can influence expression of the 5-HT2A receptor itself (Singh et al., 2009). However, it is also possible that STAT proteins may affect the transcription of other components of this signaling cascade. For example, long-term treatment with olanzapine, which caused prolonged activation of the JAK-STAT pathway, increased expression of regulator of G-protein signaling proteins, which have been shown to desensitize multiple G-protein–coupled receptor systems (Singh et al., 2007, 2009, 2010). Therefore, long-term interactions between the IL-6 and 5-HT2A receptor systems may have lasting effects through STAT-dependent changes in gene transcription that may influence behavior and mental health.

In addition to the duration of JAK-STAT activation, the effect of IL-6 on 5-HT2A receptor signaling and cognitive function may depend on the concentration of this cytokine. In preliminary experiments in A1A1 cells, we found that concentrations of IL-6 ranging from 1 pg/ml to 1 ng/ml, which are close to levels measured in healthy rat brains, did not influence STAT3 phosphorylation, possibly reflecting a lower concentration of IL-6 receptors in A1A1 cells compared with the intact brain (data not shown). It is possible that the concentration of IL-6 used in the current experiments (50 ng/ml), may result in more robust or even differential effects on 5-HT2A receptor function than physiologic concentrations. However, in pilot studies in A1A1 cells, we found that lower concentrations of IL-6 (5 ng/ml), which produced a nonsignificant increase in STAT3 phosphorylation (Fig. 2B) and may represent noninflammatory conditions in vivo, also reduce IP accumulation in response to DOI, although to a lesser extent than higher concentrations (data not shown). Although still speculative, our preliminary findings suggest that IL-6 may regulate 5-HT2A receptor signaling similarly, regardless of absolute concentration. It is still possible, however, that IL-6 may have differential effects on 5-HT2A receptor signaling in the more complex context of inflammation. Indeed, IL-6 has been shown to have differential effects, impairing learning and memory under inflammatory conditions (Sparkman et al., 2006; Dugan et al., 2009) but proving beneficial for cognitive function under physiologic conditions (Matsuda et al., 1996; Baier et al., 2009; Donegan et al., 2014). Understanding the differences in IL-6 and JAK-STAT signaling in the
brain under basal versus inflammatory conditions will be important and may provide additional insight into the regulation of 5-HT2A receptor signaling.

In previous studies, we demonstrated that blockade of either IL-6 or 5-HT2A receptor signaling in the OFC impairs cognitive function (Furr et al., 2012; Donegan et al., 2014). Because these molecules seem to have similar effects on behavior, we hypothesized that in our in vivo system, IL-6 would augment 5-HT2A signaling, yet we found the opposite result. One explanation for this could be the cell types involved in the in vivo interaction. Using immunohistochemistry, we demonstrated that IL-6–induced STAT3 phosphorylation occurs in all 5-HT2A–positive cells in the OFC. Activation of 5-HT2A receptors is thought to be excitatory at the cellular level (Gellman and Aghajanian, 1994; Puig et al., 2003), but these receptors have been localized to both excitatory pyramidal cells and inhibitory interneurons in the prefrontal cortex (Santana et al., 2004; De Almeida and Mengod, 2007). This suggests that 5-HT2A–mediated cellular excitation can have opposing effects on circuit function. Interestingly, 5-HT2A receptors have also been shown to have differential effects on behaviors relevant to prefrontal cortical function [e.g., facilitating cognitive flexibility but impairing attention and increasing impulsivity (Winstanley et al., 2003; Fletcher et al., 2007)]. Activation of 5-HT2A receptors may facilitate reversal learning by directly exciting pyramidal cells and causing OFC activation, which has been associated with improved cognitive flexibility (Remijnse et al., 2006). By contrast, if IL-6 attenuates excitatory 5-HT2A receptor signaling specifically in inhibitory interneurons during reversal learning, the net result would also be an increase in OFC activation. Indeed, there is some evidence that IL-6 may have unique functional consequences in interneurons. For example, in the hippocampus, IL-6 selectively decreased the number of parvalbumin-positive interneurons (Dugan et al., 2009), and although cortical IL-6 had no effect on pyramidal cell excitability, it reduced inhibitory postsynaptic currents mediated by interneurons (Garcia-Oscos et al., 2012). Furthermore, we demonstrated that IL-6–induced STAT3 phosphorylation does occur in interneurons of the OFC (data not shown). Therefore, it is possible that IL-6 and JAK-STAT modulation of 5-HT2A receptor signaling occurs specifically in interneurons to release inhibitory control over the OFC, resulting in improved cognitive function.

Atypical antipsychotic drugs can act as inverse agonists at 5-HT2A receptors, leading to a reduction in constitutive (ligand-independent) receptor signaling. Furthermore, the therapeutic benefit of antidepressant drugs has been attributed in part to their ability to downregulate 5-HT2A receptors. Therefore, understanding the regulation of this receptor may allow for more finely tuned treatment strategies. Our results suggest that IL-6 and JAK-STAT signaling, which we have shown to be beneficial for cognitive function, attenuate 5-HT2A receptor signaling. It is possible that other molecules that activate the JAK-STAT cascade and are less likely to stimulate an inflammatory response, such as leukemia inhibitory factor and ciliary neurotrophic factor, can also influence 5-HT2A receptor signaling. Our results provide insight into the role of JAK-STAT signaling in an unmedicated state and suggest that IL-6 and potentially other compounds that activate JAK-STAT signaling may have clinical utility in psychiatric disorders such as depression and schizophrenia as 5-HT3 receptor desensitizing agents.

Address correspondence to: Dr. Milena Girotti, Department of Pharmacology, Mail Code 7764, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900. E-mail: Girotti@uthscsa.edu