Targeted Inhibition of Phosphoinositide 3-Kinase/Mammalian Target of Rapamycin Sensitizes Pancreatic Cancer Cells to Doxorubicin without Exacerbating Cardiac Toxicity

David E. Durrant, Anindita Das, Samya Dyer, Seyedmehrad Tavallai, Paul Dent, and Rakesh C. Kukreja

Department of Biochemistry and Molecular Biology (D.E.D., S.T., P.D.), Department of Internal Medicine, Division of Cardiology, Pauley Heart Center (A.D., S.D., R.C.K.), and Department of Physiology and Biophysics (R.C.K.), Virginia Commonwealth University Medical Center, Richmond, Virginia

Received March 23, 2015; accepted June 16, 2015

ABSTRACT
Pancreatic cancer has the lowest 5-year survival rate of all major cancers despite decades of effort to design and implement novel, more effective treatment options. In this study, we tested whether the dual phosphoinositide 3-kinase/mechanistic target of rapamycin inhibitor BEZ235 (BEZ) potentiates the antitumor effects of doxorubicin (DOX) against pancreatic cancer. Cotreatment of BEZ235 with DOX resulted in dose-dependent inhibition of the phosphoinositide 3-kinase/mechanistic target of rapamycin survival pathway, which corresponded with an increase in poly ADP ribose polymerase cleavage. Moreover, BEZ cotreatment significantly improved the effects of DOX toward both cell viability and cell death in part through reduced Bcl-2 expression and increased expression of the shorter, more cytotoxic forms of BIM. BEZ also facilitated intracellular accumulation of DOX, which led to enhanced DNA damage and reactive oxygen species generation. Furthermore, BEZ in combination with gemcitabine reduced MiaPaca2 cell proliferation but failed to increase reactive oxygen species generation or BIM expression, resulting in reduced necrosis and apoptosis. Treatment with BEZ and DOX in mice bearing tumor xenographs significantly repressed tumor growth as compared with BEZ, DOX, or gemcitabine. Additionally, in contrast to the enhanced expression seen in MiaPaca2 cells, BEZ and DOX cotreatment reduced BIM expression in H9C2 cardiomyocytes. Also, the Bcl-2/Bax ratio was increased, which was associated with a reduction in cell death. In vivo echocardiography showed decreased cardiac function with DOX treatment, which was not improved by combination treatment with BEZ. Thus, we propose that combining BEZ with DOX would be a better option for patients than current standard of care by providing a more effective tumor response without the associated increase in toxicity.

Introduction
Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer death in the United States and has the lowest 5-year survival rate of the major cancers at less than 6% (Hidalgo, 2010; Muniraj et al., 2013; Siegel et al., 2015). It is a complex and heterogeneous disease that overwhelmingly harbors Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations (>95%) that initiate oncogenesis, usually followed by successive mutations of the tumor suppressor genes cyclin-dependent kinase inhibitor 2A, tumor protein 53, and SMAD family member 4 (Hidalgo, 2010; Bryant et al., 2014). Symptoms are generally mild and often mistaken for other less severe maladies, thus allowing for continued growth and infiltration of the surrounding tissue, leading to a more advanced stage at the time of diagnosis. Surgical resection is the best option for a cure; however, only 15% of patients are eligible because of the late stage of diagnosis, and even with resection, overall survival remains poor (~20% 5-year survival), with many patients relapsing (Hidalgo, 2010; Neesse et al., 2013; Wormann and Algul, 2013). If surgical resection is not an option, chemotherapy using gemcitabine (Gem), given either alone or in combination with other agents, including nab-paclitaxel, remains the standard of care for PDAC (Neesse et al., 2013; Von Hoff et al., 2013). Alternatively, newer, presumably more active regimens like 5-fluorouracil, leucovorin, irinotecan, and oxaliplatin are increasingly being incorporated into adjuvant treatment using gemcitabine (Gem), given either alone or in combination with other agents, including nab-paclitaxel, remains the standard of care for PDAC (Neesse et al., 2013; Von Hoff et al., 2013). Alternatively, newer, presumably more active regimens like 5-fluorouracil, leucovorin, irinotecan, and oxaliplatin are increasingly being incorporated into adjuvant treatment.
trials (Conroy et al., 2011; Gourgou-Bourgade et al., 2013; Tempero, 2015). Unfortunately, these measures provide only a minor benefit for patients as survival is increased by a paltry few months in large part because of associated resistance to the drugs given. Therefore, newer and better treatment options that evade this resistance are greatly needed to combat this deadly disease.

The anthracycline antibiotic doxorubicin (DOX) remains a first-line antineoplastic drug for the treatment of a wide variety of cancers (Outomuro et al., 2007; Moretti et al., 2009). Its mechanism involves poisoning of topoisomerase II, intercalation into DNA, and generation of reactive oxygen species (ROS), all of which lead to DNA and/or cellular damage (Wang et al., 2004; Hanušová et al., 2011; Thorn et al., 2011). However, DOX has low response rates in PDAC when it is used as a single agent and there is a minimal survival advantage when DOX is used in combination with other chemotherapeutics like 5-fluorouracil (Schwartz and Casper, 1995). Moreover, many cancers, including PDAC, acquire resistance to DOX due to increased survival signaling through the RAS and phosphoinositide 3-kinase (PI3K) pathways. Increased expression of the ATP-binding cassette transporters is another means of resistance, leading to drug concentrations below the therapeutic threshold and treatment failure (Schwartz and Casper, 1995; Gottesman et al., 2002). However, the use of higher concentrations of DOX is limited due to systemic toxicity, including cardiotoxicity (Hanušová et al., 2011), which is widely believed to arise from iron-mediated ROS production, leading to myocyte damage and loss (Ichikawa et al., 2014). Therefore, combination therapy targeting one or more of these mechanisms of resistance is used to sensitize cancer cells and increase the effectiveness of DOX. This allows for better control of cancer in patients without increasing its cumulative dose (Slamon et al., 2001; Myers and Cantley, 2010).

Materials and Methods

Cell Lines. MiaPaCa2 pancreatic cancer cells were obtained from the American Type Culture Collection (Manassas, VA). Upon receiving the cells, they were thawed and expanded, after which several stocks were frozen in liquid nitrogen. For experimental use, cells were

NVP-BEZ235 (BEZ; 2-methyl-2-[4-[3-methyl-2-oxo-8-(quinolin-3-yl)-2,3-dihydro-1H-imidazo[4,5-c]quinolin-1-yl] phenyl]propanenitrile) is a reversible dual PI3K/mechanistic target of rapamycin (mTOR) inhibitor that is active against the four PI3K paralogs as well as the most common PI3K mutants and mTOR (Maira et al., 2008; Serra et al., 2008). Inhibition with BEZ has effects on several downstream effectors, including AKT, ribosomal protein S6 (S6), and the translation initiation factor 4E binding protein 1. It has previously been tested for use in hepatocellular carcinoma, multiple myeloma, and other cancers that commonly have mutations or increased gene expression that lead to over-activation of the PI3K pathway (Baumann et al., 2009; McMillin et al., 2009; Kirstein et al., 2013; Cebulla et al., 2015). BEZ has also been shown to have beneficial effects in combination with cytotoxic agents, including DOX (Manara et al., 2010; Schult et al., 2012; Westhoff et al., 2013). However, the effect of combination therapy in pancreatic cancer and on cardiotoxicity has not been reported.

In the present study, we tested the hypothesis of whether BEZ could enhance the efficacy of DOX in KRAS mutant PDAC and whether this combination would potentiate the cardiotoxic effects of DOX. Our results show that BEZ has a potent and selective sensitizing effect on DOX, but not Gem, in PDAC through the enhancement of drug accumulation and increased expression of the smaller forms of BIM. Importantly, the increase in cancer chemotherapeutic efficacy did not result in a deterioration of DOX-induced cardiac dysfunction.

Fig. 1. BEZ235 decreases PI3K/mTOR signaling and sensitizes cancer cells to doxorubicin. MiaPaca2 cells were treated for 24 hours with increasing doses of BEZ (0, 50, 150, 300, and 600 nM) alone or in combination with DOX (0.5 μM). (A) PI3K pathway signal transduction was assessed using western blot analysis to determine the inhibitory effects of BEZ. (B) siRNA knockdown of PDK1 and (C) Rictor was used to determine if feedback activation of AKT affected combination efficacy.
thawed from a stock frozen in liquid nitrogen, starting with passage number 4, and discarded before passage number 20. Capan-1 and CD18 were obtained from Dr. Surinder Batra from the University of Nebraska Medical Center (Omaha, NE). HCT 116 and H1299 cells were obtained from Dr. Steven Grossman from the Virginia Commonwealth University Medical Center. All cells were grown in Dulbecco's modified Eagle's medium supplemented with 10% fetal bovine serum, 100 units/ml penicillin, and 100 μg/ml streptomycin.

Compounds and Reagents. BEZ235 and gemcitabine were purchased from Thermo Fisher Scientific (Pittsburgh, PA), and doxorubicin was purchased from Sigma-Aldrich (St. Louis, MO). Antibody for actin–horseradish peroxidase was purchased from Santa Cruz Biotechnology (Dallas, TX). Phospho-S6 ribosomal protein, S6 ribosomal protein, Phospho-AKT 473, Phospho-AKT308, AKT, Phospho-ATM, Phospho-chk2, Bcl-2, Bax, BIM, and cleaved poly ADP ribose polymerase (PARP) were purchased from Cell Signaling Technology (Danvers, MA). Secondary antibody was purchased from VWR (Radnor, PA). Trypan blue dye was purchased from Sigma-Aldrich. Terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay was purchased from Thermo Fisher Scientific. Carboxy-2,7'-dichlorodihydrofluorescein diacetate was purchased from Life Technologies (Carlsbad, CA).

Cell Viability. Cell viability was measured using the CellTiter 96 AQueous One assay from Promega (Madison, WI). Cells were plated at a density of 5000 cells/well in a 96-well plate for 48 hours in nontreated growth medium in an incubator set at 37°C and 5% CO2. Cells were then treated with drugs at the indicated concentrations for an additional 48 hours in the incubator. After treatment, the medium was replaced with 100 μl of AQueous One. One solution according to Promega’s protocol and incubated at 37°C for 1 hour. Viability was assessed by measuring the absorbance of each well using a 96-well plate spectrophotometer.

Trypan Blue Cell Death Assay. Cells were plated into six-well tissue culture plates at a density that would result in confluence of

Fig. 2. PI3K/mTOR inhibition enhances doxorubicin efficacy. (A) Cell viability was measured using the CellTiter 96 AQueous One Solution Cell Proliferation assay after 48 hours of treatment of MiaPaca2, Capan-1, and CD18 cells (n = 4). (B) Cell death (necrosis) was measured using the Trypan blue exclusion assay after 48 hours of treatment of MiaPaca2, Capan-1, and CD18 cells (n = 5). (C) Immunoblot of the cleaved form of PARP and actin in MiaPaca2 cell lysates after treatment of 24 hours. (D) Densitometry analysis was used to get the ratio of the cleaved form of PARP to actin (n = 3; *P < 0.01 versus DOX). (E) Confocal microscopy of MiaPaca2 cells after treatment of 24 hours showing morphologic changes between groups. Cleaved form of PARP (red), actin (green), and nuclei (blue). (F) Apoptosis was quantified using the TUNEL assay after treatment for 24 hours (n ≥ 4). (G) Representative images of the TUNEL assay. (H) ROS production was assessed by measuring fluorescence (excitation: 485 nm; emission: 538 nm) of oxidized 5-(and-6)-carboxy-2,7'-dichlorofluorescein diacetate after 6 hours of treatment using a 96-well plate reader (n = 6). *P < 0.001 versus DOX; #P < 0.05 versus DOX. DAPI, 2-(4-amidinophenyl)-1H-indole-6-carboxamidine; RFU, relative fluorescence units.
Cells were then treated in triplicate for the indicated time. Media was removed and placed into a centrifuge tube. One milliliter of 1× phosphate-buffered saline (PBS) was then added to the plates to remove any residual media, after which it was placed into the corresponding centrifuge tube. Attached cells were trypsinized, collected, and then added to their corresponding tube containing the media and PBS wash. Cells were pelleted by centrifugation and supernatant was discarded. The cell pellet was resuspended in normal media, and 100 μl of cell suspension was mixed with 100 μl of Trypan Blue dye and placed onto a hemocytometer. Live (unstained) and dead (stained) cells were quantified under a microscope.

TUNEL Assay. DNA fragmentation was measured using the ApoAlert DNA fragmentation assay from Clontech (Mountain View, CA) and purchased from Thermo Fisher Scientific. Slides were prepared using the protocol from Clontech. In short, cells were plated on four-chamber microscope slides and allowed to attach for 48 hours. They were then treated for an additional 24 hours with the indicated concentrations of the drug and fixed in 4% paraformaldehyde for 15 minutes at room temperature. After fixation, they were washed with 1× PBS and incubated in 100% methanol for 10 minutes in −20°C. The slides were then washed with PBS and stored at −20°C in 70% ethanol. Cells were permeabilized with 0.2% Triton X-100 for 5 minutes on ice, after which they were washed in PBS. Slides were then incubated in equilibration buffer for 10 minutes, after which they were incubated with terminal deoxynucleotidyl transferase incubation buffer for 60 minutes at 37°C. The reaction was then terminated in standard saline citrate and washed and cover slips were added. TUNEL-positive cells were visualized using the Nikon Eclipse Ti confocal microscope (Tokyo, Japan).

Immunoblot Analysis. After treatment, cells were washed twice with 1× PBS and then pelleted. Pellets were lysed with 1× lysis buffer (Cell Signaling Technology) plus 1–100 dilution protease inhibitor cocktail (Thermo Fisher Scientific) and incubated on ice for 30 minutes, after which samples were centrifuged at 12,000g for 10 minutes at 4°C to remove insoluble debris (a debris pellet was used for DOX accumulation measurements, as described below). Supernatant was collected, and protein was measured using the manufacturer’s protocol (Bio-Rad, Hercules, CA). Samples were combined with 2× Laemmli sample buffer (Bio-Rad) and boiled for 5 minutes, after which proteins were separated using SDS-PAGE on 4–20% TGX gradient gel (Bio-Rad) and transferred to nitrocellulose paper (Bio-Rad). After blocking nonspecific binding sites with 5% milk in 1× Tris-buffered saline (TBS-T) with 0.05% Tween, membranes were incubated with the primary antibodies at 4°C overnight, washed 4× for 10 minutes each with TBS-T, and incubated an additional 1 hour with a secondary antibody. Membranes were then washed four times with TBS-T for 10 minutes each, visualized using Western Lighting ECL.

![Fig. 3](https://molpharm.aspetjournals.org)
plus (PerkinElmer, Waltham, MA), and exposed on BioMax light film (Kodak, Rochester, NY). Densitometry was measured using Image J (National Institutes of Health, Bethesda, MD).

Colony Forming Assay. Cells were plated into six-well tissue culture plates at a density that would result in a confluence of 70–80% after incubation for 48 hours. Plates were then treated with the indicated concentrations for 4 hours, after which cells were washed, collected, and replated in triplicate at a density of 500 cells/well in six-well tissue culture plates. Plates were incubated for approximately 2 weeks to allow colony formation. Colonies were fixed in a 1:7 mixture of acetic acid/methanol for 5 minutes and then stained with 0.5% crystal violet for 20 minutes. After washing with water, plates were allowed to air dry and colonies were counted. Colonies of 50 cells or more were counted.

DOX Accumulation Studies. DOX was measured using the debris pellet from the protein lysate preparation. After centrifugation, the pellet was resuspended in 400 μl of acidified alcohol (50 ml of 70% ethanol and 375 ml of 12 N HCl) and then incubated at −20°C overnight, followed by centrifugation at 20,000g for 10 minutes. Supernatant was aliquoted in triplicate into black 96-well polystyrene microplates (VWR), and fluorescence was measured at an excitation of 485 nm and an emission of 595 nm using the Molecular Devices Spectramax M5 plate reader (Sunnyvale, CA).

Immunofluorescence Staining. Cells were plated on four-well glass chamber slides (World Wide Medical Products, Bristol, PA) at a density of 10,000 cells/well and allowed to grow for 48 hours. Cells were then fixed in 4% paraformaldehyde for 15 minutes at room temperature and washed three times with 1× PBS for 5 minutes each. Slides were then blocked for 1 hour in blocking buffer (5% normal goat serum and 0.3% Triton X-100 in 1× PBS) and then incubated with primary antibody in blocking buffer overnight at 4°C. After incubation, slides were washed three times in 1× PBS for 5 minutes each and then incubated with secondary antibody in blocking buffer in blocking buffer for an additional 1 hour. Three additional washings in 1× PBS were performed, after which a hard set mounting medium (Vectashield; Vector Laboratories, Burlingame, CA) and cover slips were added. Proteins were visualized using the Nikon Eclipse Ti confocal microscope.

ROS Measurement. MiaPaca2 cells were seeded into a 96-well tissue culture plate at a density of 15,000 cells/well in phenol-free medium. After 24 hours, 5-(and-6)-carboxy-2′,7′-dichlorofluorescein diacetate (Life Technologies) was added at a concentration of 20 μM in phenol-free medium and incubated at 37°C for 30 minutes. The wells were then washed one time with 1× PBS, after which the drugs (diluted in phenol-free medium) were added at a volume of 100 μl.

Fig. 4. Enhancement of DOX efficacy with BEZ is not specific to PDAC. (A) Immunoblots of the cleaved form of PARP, phosphorylation of AKT on serine 473, AKT, p-S6, S6, and actin were visualized after treatment of 24 hours in HCT-116 and (C) H1299 cells. Cell death was measured using the Trypan blue exclusion assay after 48 hours of treatment in (B) HCT-116 and (D) H1299 cells (n = 3). *P < 0.001 versus DOX.
5-(and-6)-Carboxy-2′,7′-dichlorofluorescein diacetate fluorescence was measured at 6 hours using the setting for excitation at 485 nm and emission at 535 nm using the Molecular Devices Spectramax M5 plate reader.

Animal Studies. All mice were maintained in the vivarium at the Virginia Commonwealth University and kept in accordance to a protocol approved by the Institutional Animal Care and Use Committee of Virginia Commonwealth University. Female 8–10 week old Athymic NCr nu/nu mice were inoculated with 1 × 10⁶ MiaPaca2 cells in a 1:1 ratio of cells to Matrigel (BD, Franklin Lakes, NJ) subcutaneously into the right rear flank. Tumors were allowed to grow for 2 weeks prior to initiation of treatment. DOX was dissolved in saline and injected intravenously into the tail vein twice, 2 weeks apart, at a concentration of 10 mg/kg. BEZ was dissolved in 1-methyl-2-pyrrolidinone and then 0.5% sodium-carboxymethylcellulose was added so that the final volume was composed of 10% 1-methyl-2-pyrrolidinone and 90% of 0.5% sodium-carboxymethylcellulose. BEZ was fed by oral gavage daily for 28 days at a concentration of 40 mg/kg in a volume of 0.2 ml/mouse. Gem was dissolved in saline and injected intraperitoneally once a week for 3 weeks. The control, DOX, and Gem groups were fed daily with solvent of the same mixture as for the BEZ group. Tumors were measured twice weekly by calipers using the formula $(L \times W^2)/2$ to get the tumor volume. Weight was measured twice weekly to monitor weight loss. Heart function was assessed.

Fig. 5. BEZ235 does not enhance gemcitabine toxicity in MiaPaca2 cells. (A) Cell viability/proliferation was measured using the CellTiter 96 AQueous One Solution Cell Proliferation assay after treatment for 48 hours ($n = 6$). (B) Cell death (necrosis) was measured using the Trypan blue exclusion assay after treatment for 48 hours ($n = 3$). (C) ROS production was assessed by measuring fluorescence (excitation: 485 nm; emission: 538 nm) of oxidized 5-(and-6)-carboxy-2′,7′-dichlorofluorescein diacetate after 6 hours of treatment using a 96-well plate reader ($n = 6$). (D) Immunoblot of the cleaved form of PARP and actin in MiaPaca2 cell lysates after treatment of 24 hours. (E) Densitometry analysis using Image J was used to get the ratio of the cleaved form of PARP to actin ($n = 3$). *P < 0.001 versus Gem alone; †P < 0.05 versus Gem; ‡P < 0.01 versus BEZ+DOX.
using the Vevo770 imaging system (Visualsonics, Inc., Toronto, ON, Canada), as previously reported (Das et al., 2012), 4 weeks after the start of treatment. Pentobarbital (30 mg/kg i.p.) was used for anesthesia.

Statistical Analysis. Statistical analysis was performed with GraphPad Prism 4.0 (Graphpad Software Inc., La Jolla, CA). Data are presented as mean ± S.E.M. Statistical comparisons between two groups were performed with the unpaired Student’s t test. One-way analysis of variance was used when comparing more than two groups, followed by the Newman-Keuls post hoc test for pairwise comparison. $P < 0.05$ was considered to be statistically significant.

Results

Effect of Doxorubicin and BEZ235 on PI3K/mTOR Signaling and Cell Apoptosis. MiaPaca2 cells were challenged with increasing concentrations of BEZ (50–600 nM) alone or in combination with 0.5 μM DOX for 24 hours. An increase in phosphorylation of AKT on serine 473 and threonine 308 was observed at low concentrations of BEZ, with the maximum effect occurring at 50 nM (Fig. 1A). At higher concentrations (150–600 nM), phosphorylation was sequentially reduced with increasing concentrations of BEZ. Treatment with DOX alone increased phosphorylation of AKT on serine 473 but not phosphorylation of AKT on threonine 308, indicating a difference in the stress response to DOX between PI3K and mTORC2. However, at both sites, the inhibitory effect of BEZ was amplified in combination with DOX, resulting in significant inhibition at higher doses. Phosphorylation of S6, a downstream marker of mTORC1 activity, was sensitive to all concentrations of BEZ treatment. This was observed even at the lowest concentration (50 nM) and remained inhibited in all treatment groups utilizing BEZ.

Apoptosis was assessed using western blot analysis of the cleaved form of PARP, a terminal step in the process involving the activation of caspase-3. BEZ alone had no effect on PARP cleavage at any of the combinations tested in MiaPaca2 cells; however, the combination of BEZ with DOX induced a dose-dependent increase in apoptosis (Fig. 1A). The increase in the cleaved form of PARP corresponded to the level of AKT inhibition, which was maximally inhibited at higher concentrations. In subsequent experiments, 300 nM BEZ was used to achieve maximal inhibition of signaling while staying within the achievable mouse plasma concentrations (Maira et al., 2008). The results showed that the increased phosphorylation of AKT on T308 and S473 after treatment with BEZ (300 nM) did not reduce the effectiveness when combined with DOX. To prevent reactivation of AKT, we used small interfering RNA (siRNA) to knockdown Rictor (mTORC2 activity) or pyruvate dehydrogenase kinase, isozyme 1 (PDK1) (PI3K activity). The results showed that there was little change in PARP cleavage in the siRNA target knockdown cells compared with the scrambled siRNA cells (Fig. 1, B and C).

Inhibition of PI3K and mTOR with BEZ235 Improves Doxorubicin-Induced Cell Killing. We further examined the effect of BEZ in potentiating the cell killing effects of DOX in MiaPaca2, Capan-1, and CD18 cells. Cells were treated for 48 hours with 300 nM BEZ and 0.5 μM DOX alone or in combination. BEZ increased DOX-induced cell killing in a dose-dependent manner in MiaPaca2 and Capan-1 cells, with the highest cell killing observed at 300 nM BEZ. In CD18 cells, BEZ alone did not significantly affect cell viability, while the combination of BEZ and DOX resulted in increased cell killing compared to DOX alone.

Fig. 6. BEZ235 enhanced doxorubicin accumulation, leading to increased DNA damage. (A) DOX accumulation was measured after treatment for 48 hours, showing increased accumulation in the combination group compared with DOX alone in MiaPaca2, (B) HCT 116, (C) and H1299 ($n = 3$). *$P < 0.001$ versus control. (D) Activation of the DNA damage proteins ATM and chk2 were visualized by immunoblot analysis and showed an increase in phosphorylation with the combination treatment over treatment with DOX alone. (E) Densitometry analysis using Image J was used to get the ratio of p-ATM to actin. *$P < 0.001$ versus control (E) and p-chk2 to actin. *$P < 0.001$ versus control; *$P < 0.01$ versus DOX.
combination to measure proliferation/viability and cell death. Cell growth was reduced by more than 40% after treatment with DOX and nearly 70% following treatment with BEZ as compared with the control (Fig. 2A). The combination had an additive effect on proliferation, with reduction in growth by 80% or more in all cell lines. Cell death (necrosis), as measured by the Trypan blue exclusion assay, was significantly increased after treatment with DOX in all PDAC cell lines tested (Fig. 2B).

BEZ caused a marginal but significant increase in necrosis compared with control in MiaPaca2 cells, whereas there was no significant increase in necrosis compared with control in Capan-1 or CD18 (Fig. 2B). However, BEZ significantly increased the percentage of cell death in all cell lines when combined with DOX (Fig. 2B).

BEZ had little effect on apoptosis, as assessed by PARP cleavage (Fig. 2, C–E) and DNA fragmentation in MiaPaca2 cells (Fig. 2, F and G). Apoptosis was modest in cells treated with DOX alone but greatly enhanced when combined with BEZ (Fig. 2, C–G), which was associated with a significant increase in ROS generation (Fig. 2H).

We further assessed the modulation of mitochondrial associated proapoptotic protein expression and caspase activation following treatment with DOX and BEZ. The Bel-2/Bax ratio was increased compared with control in cells treated with DOX, indicating a prosurvival response. This was normalized to control levels when DOX was cotreated with BEZ (Fig. 3, A and D). BIM, an activator of Bax, has three splice variants (EL, L, and S), with the shortest form being the most cytotoxic. Expression of the longest form of BIM (EL) was slightly enhanced with DOX treatment either alone or in combination; however, treatment with BEZ, either alone or in combination, resulted in robust expression of the smaller and more cytotoxic forms of BIM (Fig. 3, B and E). The enhanced expression of BIM and activation of Bax leads to caspase-dependent cell death (Wagner, 2005). The caspase inhibitor Z-VAD drastically reduced PARP cleavage after 24 hours of treatment, with only a minor band remaining in the combination treated cells (Fig. 3C). Caspase inhibition also resulted in a significant decrease in cell death in both the DOX as well as the combination groups (Fig. 3F), suggesting that increased expression of BIM and activation of proapoptotic proteins, including Bax, are required for enhanced killing of pancreatic cancer cells with the combination treatment. Furthermore, the increase in caspase-dependent cell death observed in cells cotreated with BEZ and DOX corresponded with a significant reduction in colony formation as compared with cells treated with DOX alone (Fig. 3, G and H).

BEZ235 Sensitizes Doxorubicin Killing of Colon and Lung Cancer Cells. PDAC is known for its unusual properties, including altered metabolism and powerful drug resistance, which makes this cancer very difficult to treat. However, it shares the predisposition for activation mutations in KRAS and inactivation or loss of P53 with other tumor types. Therefore, we tested whether BEZ could sensitize lung and colon cancer cells to DOX in the same way as PDAC cells. Colon (HCT 116) and lung (H1299) cancer cells were treated for 24 hours with BEZ and DOX either alone or in combination. Similar to PDAC cells, the combination of BEZ and DOX also enhanced both PARP cleavage (apoptosis) (Fig. 4, A and C) and cell death (Fig. 4, B and D) in these cells.

BEZ235 Does Not Enhance Gemcitabine-Induced Cell Killing. Gem is the standard of care for pancreatic cancer patients. We tested whether the combination of Gem with BEZ was also effective in MiaPaca2 cells similar to DOX and BEZ. Cell proliferation was assessed after 48 hours of treatment with BEZ either alone or in combination with 1 or 10 µM Gem. At both concentrations, Gem alone reduced proliferation compared with the control. Similar to DOX, the reduction in cell proliferation was enhanced in the Gem and BEZ combination (Fig. 5A). However, BEZ did not enhance the cytotoxic effects of Gem. In fact, reduced Trypan blue–positive cells (Fig. 5B) and PARP cleavage (Fig. 5, D and E) were observed with the combination treatment compared with Gem alone (Fig. 5, B, D, and E), whereas ROS generation was not significantly different in any of the treatment groups (Fig. 5C).

BEZ235 Increases Intracellular DOX Accumulation. To understand the mechanism of enhanced cell killing with BEZ and DOX, we considered the role of DOX-induced DNA damage. BEZ treatment caused a 1.5- to 2-fold increase in the intracellular concentration of DOX, as compared with DOX alone, in MiaPaca2, HCT 116, and H1299 cells (Fig. 6, A–C), which was associated with a significant increase in activation of the DNA damage response protein chk2 in MiaPaca2 cells (Fig. 6, D–F). Conversely, ATM activation in the combination group was not significantly different from the DOX-treated cells. This finding is consistent with reports demonstrating that BEZ also inhibits ATM and DNA-dependent protein kinase (Mukherjee et al., 2012; Gil del Alcazar et al., 2014).

BEZ235 Potentiates DOX-Induced Inhibition of Pancreatic Tumor Growth. We evaluated the effects of BEZ,
DOX, and Gem in a mouse tumor model by implanting MiaPaca2 cells in female Athymic nude mice. Treatment with BEZ, DOX, or Gem alone reduced tumor growth as compared with the control. However, the combination of BEZ and DOX resulted in a significant reduction of growth, as shown by a depressed tumor volume to below the beginning levels until day 35. Overall, growth of the tumors remained significantly lower in the BEZ and DOX group as compared with DOX alone (Fig. 7A). There was no significant difference in body weights between the DOX and combination groups, although there was some treatment-related weight loss associated with DOX either individually or in combination with BEZ (Fig. 7B).

DOX Cytotoxicity Is Not Enhanced with BEZ235 in Cardiomyocytes. An undifferentiated rat myoblast cell line (H9C2) was used to evaluate the in vitro effects of DOX and BEZ in causing cardiotoxicity. Cells were treated for 48 hours with DOX and BEZ either alone or in combination, after which expression of apoptotic proteins and cell death were assessed. DOX treatment resulted in a substantial increase in dead cells compared with control. However, in contrast to the observed effects in various cancer cells, combination treatment resulted in a reduced amount of cell death (Fig. 8A). The Bcl-2/Bax ratio was largely unaffected after treatment, as shown by nonsignificant increases observed in all treatment groups (Fig. 8, B and C). Interestingly, the shorter forms of BIM had an increased expression with DOX treatment, whereas all splice variants were dramatically reduced after combination treatment (Fig. 8, B and D).

BEZ235 Does Not Influence DOX-Induced Cardiac Dysfunction. The major dose-limiting factor for the clinical use of DOX is cardiotoxicity leading to heart failure (Volkova and Russell, 2011; Vejpongsa and Yeh, 2014). We therefore evaluated the effects of combination therapy on cardiac function by echocardiography after completion of the treatment schedule (28 days) in the tumor-bearing mice. DOX treatment caused a significant decrease in systolic function, as assessed by measuring fractional shortening, whereas BEZ did not potentiate the effect (Fig. 9, A and C). Diastolic function of the left ventricle, as assessed by the E/A ratio (represents passive filling of the ventricle [early [E] wave) and active filling with atrial systole [A] wave), also remained unaffected in the BEZ and DOX combination group (Fig. 9).

Discussion

Pancreatic cancer is a devastating disease, which has a death rate nearly as high as the incidence rate (Siegel et al., 2015). Current treatment options for PDAC, which is the most common form of pancreatic cancer as well as the most deadly, have limited benefit for patients. Here, we show that inhibition of the PI3K/mTOR pathway with BEZ sensitizes pancreatic cancer cells to DOX. The enhanced sensitivity is in part due to downregulation of translational and survival signaling downstream of PI3K, including AKT. In addition, we observed increased intracellular accumulation of DOX in combination with BEZ. This resulted in enhanced ROS formation, activation of DNA damage response proteins, and modulation of proapoptotic and antiapoptotic protein expression. Interestingly, a similar enhancement in killing is observed in lung and colon cancer cell lines, suggesting that this combination could be beneficial to multiple solid tumor types in addition to the pancreatic cancer. Also, our results

Fig. 8. Cell death is reduced in H9C2 cells through loss of proapoptotic protein expression. (A) Cell death (necrosis) was measured using the Trypan blue exclusion assay after treatment for 48 hours in H9C2 cells \((n = 3)\). *P < 0.05 versus DOX. (B) Immunoblots of H9C2 cell lysate after treatment for 24 hours looking at Bcl-2, Bax, and BIM EL, L, and S. (C) Densitometry quantification measuring Bcl-2/Bax ratio \((n = 3)\). (D) Densitometry quantification measuring BIM EL/actin ratio and BIM L and S/actin ratio. *P < 0.05 versus control.
demonstrate that BEZ does not enhance the cell killing effect of Gem, which is the standard of care for pancreatic cancer patients. These results suggest new possibilities for combining PI3K/mTOR inhibitors with traditional cytotoxic agents, including DOX, to achieve better control of PDAC.

Cardiac dysfunction is the major dose-limiting factor for the use of DOX in patients with cancer. Our results show that treatment of DOX along with BEZ does not increase the cardiotoxic effects of DOX, as demonstrated by reduced cell death in H9C2 cells (Fig. 8A), despite inhibition of the PI3K pathway, which is critical in protecting the heart from stress (Lin et al., 2010).

The classic RAS pathway, which transmits signals through RAS to the extracellular-signal related kinase (ERK), demonstrates an important target for treatment of PDAC; however, there have been few successes to date (Neuzillet et al., 2013). Due to the high degree of cross-talk as well as overexpression of one or more receptor tyrosine kinases, there is also a high prevalence of enhanced activation of the PI3K/mTOR pathway (Edling et al., 2010). Likewise, AKT2 amplification, which occurs in 10–20% of PDAC, can lead to constitutive activation of AKT and its downstream targets (Ruggeri et al., 1998; Ying et al., 2011; Pettazzoni et al., 2015).

In addition, activation of AKT has been associated with poor outcomes of PDAC patients (Yamamoto et al., 2004), and there is also evidence that RAS mediates its oncogenic initiation and maintenance through PI3K/PDK1 (Eser et al., 2013). Therefore, targeting the PI3K/mTOR pathway also represents a potential treatment strategy in PDAC.

Supporting the evidence that RAS drives tumorigenesis in PDAC through PI3K, a previous report has shown that dual inhibition of PI3K and mTOR with BEZ is equally sensitive in both KrasG12D and PI3K (p110αH1047R) driven PDAC cells (Diersch et al., 2013). However, our current results and other studies demonstrate that BEZ reduces proliferation, but does not induce a significant amount of cell death (Awasthi et al., 2012; Venkannagari et al., 2012), which may lead to earlier progression of tumors in patients. Therefore, combination therapy utilizing a cytotoxic agent like DOX would greatly enhance the clinical utilization of BEZ and possibly other PI3K pathway inhibitors. Along those lines, previous reports have shown that inhibiting the PI3K pathway significantly enhances DOX-induced cell killing in breast and ovarian cancer (Wallin et al., 2010; Bezler et al., 2012).

Although there have been other reports demonstrating the benefits of combining BEZ with DOX and other cytotoxic agents...
we show for the first time that there are secondary effects of BEZ that can sensitize PDAC to DOX treatment. Our results demonstrate that BEZ cotreatment enhances DOX accumulation, leading to increased ROS formation and DNA damage. We speculate that the increase in accumulation is due to inhibition of one or more ATP-binding cassette-type transporters, an effect that has been demonstrated with other PI3K pathway inhibitors, including LY294002 (2-[4-(morpholinyl)-8-phenyl-1(4H)-benzopyran-4-one hydrochloride] (PI3K) and rapamycin (mTORC1) (Arceci et al., 1992; Hegedus et al., 2012). In addition, BEZ has been shown to inhibit both ATM- and DNA-dependent protein kinase–mediated DNA damage responses, an effect shown to radiosensitize glioblastoma (Mukherjee et al., 2012; Gil del Alcazar et al., 2014). Therefore, it is likely that along with BEZ’s ability to increase DOX accumulation, it also induces a sensitizing effect toward DOX through inhibition of the DNA damage response.

BEZ treatment of extended periods in MiaPaCa2 cells leads to reactivation of the PI3K pathway and phosphorylation of AKT, suggesting an enhancement of survival signaling that could result in treatment failure. Using siRNA targeted toward PDK1 and Rictor to specifically prevent respective phosphorylation of AKT downstream of PI3K and mTORC2, we demonstrate that PI3K pathway reactivation does not reduce the effectiveness of using BEZ in combination with DOX. These results suggest that the transient inhibition of AKT survival signaling, which occurs at earlier time points (Manara et al., 2010; Fokas et al., 2012), is enough to sensitize the cancer cells to DOX before loss of feedback inhibition through mTORC1 results in reactivation of the pathway. Similarly, others have shown that BEZ induces p53-independent apoptosis, despite reactivation of AKT in MYC-driven lymphoma cells (Shortt et al., 2013).

Our results demonstrate that PI3K/mTOR inhibition does not affect the cell killing effect of Gem. Other reports have shown that BEZ and Gem have antiproliferative effects, which are enhanced with combination treatment; however, high concentrations of BEZ (10 μM) failed to improve apoptosis (Awasthi et al., 2012; Yi et al., 2013). We also observe inhibition of proliferation with either BEZ or Gem in MiaPaCa2 cells, which is further reduced with combination treatment. Surprisingly, these results do not translate into increased cell death and the combination is even less effective as compared with Gem alone. These results suggest that the type of cytotoxic agent employed can play a major role in its effectiveness when combined with PI3K pathway inhibitors. It is also likely that not all PI3K or dual PI3K/mTOR inhibitors will have similar effects on DOX enhancement in PDAC and other cells due to the unique properties of BEZ.

In mouse tumor studies, combination treatments with BEZ and DOX have a significantly smaller tumor size compared with all other groups. This increase in efficacy could be due to a combination of reduced proliferation and survival signaling concomitant with increased DOX accumulation, ROS formation, and BIM expression. However, the increased antitumor efficacy of DOX and BEZ is not associated with a significant change in diastolic heart function in any group. Systolic function after DOX treatment is decreased, but combination with BEZ does not cause further deterioration of contractile dysfunction. This unexpected finding could be because, unlike the increase in expression seen in MiaPaca2 cells, there is a profound loss of BIM expression and subsequent reduction of apoptosis in H9C2 cells. Likewise, the Bcl-2/Bax ratio, which is normalized in MiaPaca2 cells when BEZ is combined with DOX, remains elevated in H9C2 cells, indicating a prosurvival response. Alternatively, the reduction in cell death could be a product of increased signaling through separate cell survival pathways. The ERK pathway parallels the PI3K/mTOR pathway, which is important in cardiomyocyte survival during stress (Das et al., 2009). ERK signaling is enhanced after treatment with BEZ (Moon et al., 2014), which essentially redirects signaling away from PI3K into RAS, leading to cardiomyocyte survival. In addition, inhibition of mTORC1 with rapamycin protects the heart against ischemia-reperfusion injury through activation of JAK2/STAT3 (Das et al., 2012). Likewise, inhibition of mTORC1 with BEZ could mediate a cardioprotective effect against DOX.

In summary, we provide compelling evidence that combining BEZ with DOX is highly effective in killing pancreatic cancer cells and reducing tumor size in vivo. In contrast, BEZ does not enhance the effects of Gem, which is the standard of care for PDAC, suggesting that combinations with DOX would offer better efficacy than the current standard of care used clinically. Moreover, BEZ treatment does not exacerbate DOX-induced cell death in vitro or contractile dysfunction in tumor-bearing mice, signifying there would be a minimal increase in the cardiotoxic effects with combination therapy. Mechanistic investigations reveal that BEZ enhances the effects of DOX in cancer cells through downregulation of PI3K signaling, increased ROS generation, altered expression of BIM, and improved DOX accumulation. Based on these results, we propose that combining BEZ with DOX could be an attractive new clinical option for patients suffering from PDAC.

References

