Identification of a Highly Conserved Allosteric Binding Site on Mnk1 and Mnk2

Sunita K.C. Basnet, Sarah Diab, Raffaella Schmid, Mingfeng Yu, Yuchao Yang, Todd Alexander Gillam, Theodosia Teo, Peng Li, Tom Peat, Hugo Albrecht, and Shudong Wang

Centre for Drug Discovery and Development, Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia (S.K.C.B., S.D., R.S., M.Y., Y.Y., T.A.G., T.T., P.L., H.A., S.W.); and CSIRO Biosciences Program, Parkville, Victoria, Australia (T.P.)

Received May 27, 2015; accepted August 11, 2015

ABSTRACT

Elevated levels of phosphorylated eukaryotic initiation factor 4E (eIF4E) have been implicated in many tumor types, and mitogen activated protein kinase-interacting kinases (Mnks) are the only known kinases that phosphorylate eIF4E at Ser209. The phosphorylation of eIF4E is essential for oncogenic transformation but is of no significance to normal growth and development. Pharmacological inhibition of Mnks therefore provides a nontoxic and effective strategy for cancer therapy. However, a lack of specific Mnk inhibitors has confounded pharmacological target validation and clinical development. Herein, we report the identification of a novel series of Mnk inhibitors and their binding modes. A systematic workflow has been established to distinguish between type III and type I/II inhibitors. A selection of 66 compounds was tested for Mnk1 and Mnk2 inhibition, and 9 out of 20 active compounds showed type III interaction with an allosteric site of the proteins. Most of the type III inhibitors exhibited dual Mnk1 and Mnk2 activities and demonstrated potent antiproliferative properties against the MV4-11 acute myeloid leukemia cell line. Interestingly, ATP-/substrate-competitive inhibitors were found to be highly selective for Mnk2, with little or no activity for Mnk1. Our study suggests that Mnk1 and Mnk2 share a common structure of the allosteric inhibitory binding site but possess different structural features of the ATP catalytic domain. The findings will assist in the future design and development of Mnk targeted anticancer therapeutics.

Introduction

The eukaryotic translation initiation factor 4E (eIF4E) is phosphorylated by mitogen activated protein kinase-interacting kinases (Mnks), and elevated phosphorylation levels are associated with cell proliferation and malignancy. There is growing interest in targeting Mnks as anticancer targets (Altman et al., 2013; Hou et al., 2012; Diab et al., 2014a). Specifically, it has been shown in animal models that phosphorylation of eIF4E at Ser209 is crucial for tumor formation (Furic et al., 2010; Ueda et al., 2010), whereas mice with a Ser209Ala mutation are resistant to tumor development (Furic et al., 2010). Furthermore, mutated and constitutively active Mnk1 is known to drive tumor formation, and this corresponds with enhanced eIF4E phosphorylation (Wendel et al., 2007). Finally, phosphatase and tensin homolog−/− mice crossed with Mnk 1/2 double knockout mice show reduced tumor burden compared with phosphatase and tensin homolog−/− mice (Ueda et al., 2010). Both rat sarcoma/rapidly accelerated fibrosarcoma/extracellular signal-regulated kinase and phospatidylinositol 3-kinase/Akt/mammalian target of rapamycin signaling pathways play important roles in oncogenesis, and they are known to synergistically activate the oncogenic eIF4E (Konicek et al., 2011; Hou et al., 2012; Diab et al., 2014a). Therefore, inhibiting eIF4E phosphorylation presents an opportunity to concurrently target two signaling pathways. Several studies have suggested that eIF4E phosphorylation is of no importance for normal cell growth and development (Ueda et al., 2004; Konicek et al., 2011). Despite the fact that Mnks could potentially be effective targets for cancer therapy with better outcomes and fewer side effects, only limited advancement has been made in developing pharmacological inhibitors. For example, CGP57380 has been described as Mnk inhibitor and exhibited activity in cancer cells at micromolar concentrations (Diab et al., 2014b; Teo et al., 2015b; Yu et al., 2015), but it also inhibited several other kinases with similar potency (Bain et al., 2007). Another Mnk inhibitor, cercosporamide (Sussman et al., 2004), was...
recently shown to have antitumor activity in human tumor xenografts (Konicck et al., 2011). However, it also exerted nonspecific effects against other kinases. Such off-target effects compromise the pharmacological proof of concept for Mnk as anticancer targets.

Kinase inhibitors have been categorized according to distinct mechanisms. Type I inhibitors typically form one to three hydrogen bonds with the hinge region of the kinase (Liu and Gray, 2006), bind to active and inactive conformations (Nagar et al., 2002; Tokarski et al., 2006; Vogtherr et al., 2006; Wodicka et al., 2010), are ATP competitive, and often have limited selectivity (Zhang et al., 2009; Blanc et al., 2013) due to interaction with the highly conserved ATP binding pocket. In most cases, type II inhibitors not only form one to three reversible hydrogen bonds at the hinge region of the ATP active site but also interact with the adjacent DFG/D pocket. It has been shown that some type II compounds display stronger binding affinity for kinases when the activation loop adopts the inactive DFG/D-out conformation (Nagar et al., 2002; Tokarski et al., 2006; Vogtherr et al., 2006; Wodicka et al., 2010). Type III inhibitors (colloquially known as allosteric inhibitors) bind exclusively outside of the ATP binding pocket, presumably to nonconserved structural motifs, giving rise to a potentially higher degree of selectivity. These binding modalities are non-ATP-competitive and reversible (Eglen and Reisine, 2011; Blanc et al., 2013).

The aim of the current study was to identify compounds that would potentially be used for the pharmacological validation of Mnks as anticancer targets. Our particular interests were 1) discovery of dual and subtype specific Mnk1/2 inhibitors; 2) identification of type III inhibitors lacking substrate competition with ATP and an eIF4E-derived peptide; and 3) selection of Mnk inhibitors with antiproliferative effects on leukemia cells. We report the systematic profiling of compounds that were derived from three distinct series. We established a screening cascade that consists of a nonradio metric fluorescence resonance energy transfer (FRET)-based immobilized metal ion affinity particle (IMAP) assay for primary testing, followed by an ADP-Glo assay for dose-response and substrate competition analysis. A total of 20 compounds showed inhibitory activities against Mnk2 with IC$_{50}$ < 2 µM. Among of them, 13 compounds are dual inhibitors against Mnk1 and Mnk2 and 7 compounds are subtype specific, being > 10-fold more potent for Mnk2 over Mnk1. No Mnk1 specific inhibitors were identified. All Mnk inhibitors with IC$_{50}$ values < 2 µM were investigated for substrate competition. In total, nine inhibitors were found to be non-competitive with both substrates and most of them exerted antiproliferative activities on MV4-11 acute myeloid leukemia cells. Interestingly, eight of the nonsubstrate-competitive compounds were dual inhibitors, suggesting a common allosteric site between Mnk1 and Mnk2.

Materials and Methods

Kinase Assays

The IMAP screening kit (Molecular Devices, Sunnyvale, CA) was used for primary Mnk inhibitor screening with a specially designed eIF4E-derived peptide substrate. Hit compound characterization (e.g., IC$_{50}$ determination and substrate competition testing) was conducted with the ADP-Glo kit for ATP concentrations up to 1 mM and the ADP-Glo max kit for higher ATP concentrations up to 6 mM (Promega Corporation, Madison, WI).

Peptide Substrates

The peptide substrate eIF4E$_{202-214}$ comprised the 13 C-terminal amino acids of human eIF4E (D$_{202}$TATKSGSTTKK$^N_{214}$). Custom synthesis was carried out by Mimotopes Pty. Ltd. (Victoria, Australia), and this peptide was used for the ADP-Glo assays. The peptide substrate TAMRA-eIF4E$_{202-214}$ was used for the IMAP technology. For this purpose eIF4E$_{202-214}$ was N-terminally linked with tetramethylrhodamine (TAMRA).

Mnk1/2 Proteins

Recombinant glutathione s-transferase Mnk1/2 and His-Mnk2 were purchased from Life Technologies (Grand Island, NY) and Merck Millipore (Dundee, UK), respectively.

Compounds

Cersoporamide and CGP57380 (N$_2$-(4-fluorophenyl)-IH-pyrazolo[3,4-d]pyrimidine-3,4-diamine) were supplied by BioAustralis (Smithfield, NSW, Australia) and Sigma (Castle Hill, NSW, Australia), respectively. These compounds were used as references for kinase assays. Compounds of series 1 (N-phenylthieno[2,3-d]pyrimidin-4-amines), series 2 (3,4-dimethyl-5-2-[phenylamino]pyrimidin-4-ylthiazol-2/3H)-ones), and series 3 (N-phenyl-IH-pyrazolo[3,4-d]pyrimidin-3-amine) were synthesized in our laboratory as reported previously (Diab et al., 2014b; Teo et al., 2015a,b; Yu et al., 2015) and were dissolved in dimethylsulfoxide at 10 mM concentration and stored at −20°C.

IMAP TR-FRET Kinase Assay

The kinase reaction was performed in 1× IMAP reaction buffer with Tween-20, dithiothreitol, and distilled H$_2$O according to manufacturer's protocol using the TAMRA-eIF4E$_{202-214}$ peptide substrate. The test compounds were added to the above kinase reaction mixture at 1 and 10 µM final concentrations with DMSO content of 0.5%. Then each Mnk kinase was diluted with 1× IMAP reaction buffer containing Tween-20 (see manufacturer’s protocol) and added to the reaction mixture. The kinase reaction was started by final addition of ATP and incubated at 30°C for 90 minutes in a total assay volume of 20 µl. The reaction was stopped by adding 60 µl of progressive binding solution [30% binding buffer A, 70% binding buffer B, progressive binding reagent 1:600 and terbium (Tb)-donor (1:400), and the plate was then read in an EnVision Multilabel plate reader (PerkinElmer, Buckinghamshire, UK) after 5 hours of incubation in the dark. The excitation wavelength for the Tb-donor was set at 330 nm, and the emissions of the Tb-donor and the TAMRA-eIF4E$_{202-214}$ substrate (TR-FRET signal) were recorded at 545 and 572 nm, respectively. The emission was measured in a time resolved mode with a delay of 200 µs. Positive and negative controls were carried out in 0.5% DMSO in the presence and absence of Mnk kinases, respectively. For dose-response experiments with control Mnk inhibitors (CGP57380 and cersoporamide), the kinase reaction was run in a similar way with an inhibitor dilution factor of 1:3 for eight concentrations ranging from 10 µM to 4.5 nM in 0.5% DMSO.

ADP-Glo Kinase Assay

Assay kits from Promega Corporation were used according to instructions and adapted as outlined in the Results. Test compounds were generally prepared with 1:3 serial dilutions for 8 concentrations (from 10 µM to 4.5 nM; 10 concentrations were used (15 µM to 0.7 nM) for substrate competition experiments. The kinase reaction was performed with 1× kinase reaction buffer (40 nM Tris base pH 7.5, 20 mM MgCl$_2$, 0.4 mM dithiothreitol), 0.1 mg/ml bovine serum albumin, distilled H$_2$O, eIF4E$_{202-214}$ substrate, and Mnk kinases in a total assay volume of 15 µl after the manufacturer’s protocol. In brief, the kinase reactions were started by addition of ATP, incubated...
for 45 minutes at 30°C, and then stopped by adding 15 μl of ADP Glo reagent. After incubation at room temperature in the dark for 40 minutes, 30 μl of kinase detection reagent was added per well and incubated for 30-60 minutes depending on the ATP concentration used in the kinase reaction (10-100 μM). For higher concentrations of ATP (up to 6 mM), the ADP-Glo max kit was used, which is similar to ADP-Glo kinase assay but adapted for high ATP concentrations as used in ATP competition experiments. The incubation time after addition of the detection reagent was 60 minutes for this assay. Luminescence was measured using an EnVision multilabel plate reader (PerkinElmer) with an integration time of 1 second per well. Positive and negative controls were performed in 0.5% DMSO in the presence and absence of Mnk kinases, respectively. Standard curves with defined ATP/ATP ratios were routinely performed and used to convert relative absence of Mnk kinases, respectively. Standard curves with defined negative controls; (PerkinElmer) with an integration time of 1 second per well. Positive and negative controls were performed in 0.5% DMSO in the presence and absence of Mnk kinases, respectively. Standard curves with defined negative controls; positive and negative controls were performed in 0.5% DMSO in the presence and absence of Mnk kinases, respectively. Standard curves with defined

Data Analysis

Microsoft Excel (Redmond, WA) or Graphpad Prism software (version 6.0; San Diego, CA) was used for data analysis. The normalized TR-FRET signal was calculated by dividing the relative fluorescence units (RFU) measured from the TR-FRET emission (572 nm) by the Tb emission (545 nm) and multiplied by 10,000:

\[
\text{TR-FRET} = \frac{\text{TR-FRET RFU}}{\text{Tb RFU}} \times 10,000
\]

Determination of the maximal velocity (V_max) and Michaelis-Menten constant (K_m) was carried out using Michaelis-Menten curve fitting. Dose-response curves (IC50 and GI50) were calculated using a four-parameter logistic nonlinear regression model.

The Z’-factor (Zhang et al., 1999) was routinely calculated to quantify the assay performance according to the following equation:

\[
Z' = 1 - 3 \times \left(\frac{\sigma_p + \sigma_n}{\mu_p - \mu_n} \right) \left(\frac{n}{n-1} \right)
\]

Where \(\sigma_p \) = standard deviation (S.D.) of positive controls; \(\sigma_n \) = S.D. of negative controls; \(\mu_p \) = mean of positive controls; \(\mu_n \) = mean of negative controls.

The Pearson correlation was calculated with the following formula:

\[
\text{Correl}(X, Y) = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sqrt{\sum (x - \bar{x})^2 \sum (y - \bar{y})^2}}
\]

Where \(x \) and \(y \) represent the mean of IC50 and GI50, respectively.

Kinase Profiling

Inhibition of CDK2 and CDK9 were measured using a radiometric assay by Eurofins Pharma Discovery Services (Dundee, UK) using ATP concentration within 15 μM of K_m for each kinase. The half-maximal inhibitory concentration (IC50) values were determined from 10 data point dose-response experiments, and the inhibitory constants (K_i) were calculated from IC50 values and K_m (ATP) values for each kinase.

Cell Culture

MV4-11 cells were kindly provided by Prof. Richard D’Andrea (University of South Australia) and maintained in RPMI 1640 with 10% fetal bovine serum.

Proliferation Assay

Resazurin (Sigma) assay was carried out in MV4-11 cells as previously reported (Diab et al., 2014b). The compound concentration required to inhibit cell proliferation by 50% (GI50) was calculated using nonlinear regression analysis.

Western Blotting

MV4-11 cells were seeded at 8 x 10^5 cells/10 ml of medium. After 24 hours cells were treated with eight different concentrations of inhibitors for 1 hour. Protein concentration was determined by DC assay (BioRad, Hercules, CA), and a total of 20 μg protein was separated by SDS-PAGE and transferred onto nitrocellulose membranes. Primary antibodies against Ser209 phosphorylated eIF4E (p-eIF4E_{Ser209}), eIF4E, or β-actin were used (Cell Signaling Technologies, Danvers, MA). A secondary anti-rabbit immunoglobulin G (IgG) horseradish peroxidase-conjugated antibody was used (Dako, Glostrup, Denmark) to develop the Western blot with enhanced chemiluminescence reagents (GE Life Sciences, Piscataway, NJ).

Results

Identification of Dual Mnk1/2 and Mono-specific Mnk2 Inhibitors

The initial step to establish the compound profiling workflow (Scheme 1) required developing nonradioactive kinase assays based on the IMAP technology. To achieve this, a 13-amino acid peptide, i.e., DTATKSGS₂₀₂TTKNR (eIF4E₂₀₂₋₂₁₄),

![Scheme 1. Screening cascade of Mnk inhibitor profiling. All compounds were tested with the IMAP assays at 1 and 10 μM concentrations. Compounds that showed Mnk1 or Mnk2 inhibition >25% at 1 μM and/or >90% inhibition at 10 μM were further evaluated with the ADP-Glo assay to determine their IC₅₀ values. Dual and Mnk2-specific inhibitors with an IC₅₀ value <2 μM were tested for substrate competition with increasing ATP and eIF4E peptide-concentrated protein using the ADP-Glo assay. Competition effects were indicated as positive when the IC₅₀ values increased by more than fivefold at elevated ATP or eIF4E peptide concentrations (see IC₅₀ ratios in Table 2).](molpharm.aspetjournals.org)
which contains the Mnk1/2 phosphorylating residue Ser209 and is a fragment based on the C-terminal sequence of human eIF4E, was custom synthesized. The peptide was N-terminally linked to the fluorescent FRET acceptor TAMRA, leading to the IMAP kinase substrate TAMRA-eIF4E202-214 (Fig. 1A). The fluorescently labeled peptide is phosphorylated by the MnkS, and the IMAP binding reagent stops the kinase reaction and binds the phosphorylated substrate through high-affinity interaction of trivalent metal-containing (MIII) nanoparticles. The phosphorylated and bound substrate can be detected by TR-FRET between the Tb-donor and the TAMRA acceptor on the peptide. Optimization of assay conditions started with incubation of the peptide substrate TAMRA-eIF4E202-214 at 5 μM with different amounts of Mnk1 or Mnk2 in a standard kinase reaction using 100 μM ATP (Fig. 1B). To obtain a sufficient signal-to-background ratio (S/B) and to minimize enzyme consumption, 100 ng of Mnk1 (S/B = 2.3) and 50 ng of Mnk2 (S/B = 2.5) were used in all subsequent experiments. The second step for optimization was to test the TAMRA-eIF4E202-214 substrate at three concentrations, and sufficient S/B ratios were detected at 5 μM (S/B = 2.4 for Mnk1 and S/B = 2.6 for Mnk2) (Fig. 1C). Assay conditions were further optimized by testing ATP at various concentrations in the presence of Mnk1 or Mnk2, and increasing signals were detected with both kinases to approximately 200 μM ATP, followed by a rapid decrease of the signal (Fig. 1D). The first five data points were used to determine suitable ATP concentrations for the primary compound profiling. Iterative fitting to the Michaelis-Menten model was carried out with the Prism software, and we estimated that half-maximal signals will be reached at 165 and 80 μM for Mnk1 and Mnk2, respectively. These ATP concentrations were applied to perform dose-response experiments with two known inhibitor compounds CGP57380 and cercosporamide using 100 ng of Mnk1 or 50 ng of Mnk2 and 5 μM TAMRA-peptide substrate. CGP57380 and cercosporamide showed an IC50 value of 1.51 and 0.67 μM with Mnk1. The corresponding values for Mnk2 were 1.87 and 0.16 μM (Fig. 1E).

A collection of 66 compounds was generated for pharmacological target validation of Mnk1 and Mnk2. 29 compounds (series 1, Supplemental Table 1) were derived from patented N-phenylthieno[2,3-d]pyrimidin-4-amines (WO2010/023181).

Fig. 1. Optimization of the IMAP assay conditions. (A) IMAP assay principle (adapted from Molecular Devices, LLC; www.moleculardevices.com). The TAMRA labeled peptide substrate is depicted as a chain of circles with residue Ser209 marked in black. The Mnk-phosphorylated peptide will specifically bind to trivalent metal ions of the IMAP binding reagent. This will bring the TAMRA acceptor into close proximity of the Tb-donor (Tb-sensitizer complex). (B) Different quantities of recombinant Mnk1 or Mnk2 were incubated with 100 μM ATP and 5 μM TAMRA-eIF4E202-214 to determine optimal assay conditions. Control reactions were run without the substrate. (C) Determination of TAMRA-eIF4E202-214 substrate concentration in the IMAP assay. 100 ng of Mnk1 or 50 ng of Mnk2 were incubated with 100 μM ATP and TAMRA-eIF4E202-214 substrate concentration in the IMAP assay. 100 ng of Mnk1 or 50 ng of Mnk2 were incubated with 100 μM ATP and TAMRA-eIF4E202-214 substrate concentration in the IMAP assay. One hundred nanograms of Mnk1 or 50 ng of Mnk2 were incubated with 5 μM TAMRA-eIF4E202-214 substrate concentration at different ATP concentrations. Control reactions without Mnk1 or Mnk2 were performed at the same time and used for background correction. (E) The control inhibitors CGP57380 and cercosporamide were tested in the IMAP assay using optimal parameters obtained from (B), (C), and (D) in 20 μl assay volume. Dose-response curves were calculated by applying a four-parameter logistic nonlinear regression model.
(Teo et al., 2015a,b), 31 compounds (series 2, Supplemental Table 1) were developed based on our privileged structures of 5-(2-(phenylamino)pyrimidin-4-yl)thiazol-2(3H)-one (Diab et al., 2014b), and 6 compounds were the derivatives of N-phenyl-1H-pyrazolo[3,4-d]pyrimidin-3-amine (series 3, Supplemental Table 1). All compounds were tested with the IMAP assays at two concentrations (1 and 10 μM) in duplicate, and the averages of relative activities were calculated for both concentrations (Fig. 2, A and B). Altogether, 31 compounds caused a reduction of Mnk1 and/or Mnk2 kinase activity to less than 75% at 1 μM or 10% at 10 μM. Under these criteria, 18 actives were considered as Mnk2 specific, 11 were dual inhibitors, and only 2 were identified as Mnk1 specific (Scheme 1); the latter showed only weak efficacy with residual activities >65% and >70% at 10 and 1 μM, respectively. Assay robustness was routinely checked by monitoring the correlation of duplicate data points (Fig. 2, C and D) and by calculating Z’-factors from four positive and negative controls, which were included in all experiments (Fig. 2E). The calculated Z’-factors were all larger than 0.5, which indicated both assays to be sufficiently robust.

Mnk1 and Mnk2 Show Different Kinetic Properties and Ligand-binding Profiles

The IMAP assays can be run at relatively low cost and are very robust; however, they are not suitable for kinetic characterization of the interactions between kinases and ligands. This is due to the limited compatibility with ATP concentrations (Fig. 1D). Therefore, we established the ADP-Glo assay, which measures ATP depletion during the kinase reaction (Fig. 3A). With this assay format, the kinase reaction is conducted with Mnk and eIF4E202-214 peptide and stopped after the optimized incubation time. Addition of the ADP-Glo reagent stops the reaction and drives the enzymatic removal of the leftover ATP. In the next step, the kinase detection reagent is used to enzymatically convert ADP back into ATP, which then is used to drive a luciferase reaction. The
Fig. 3. ADP-Glo assay validation with Mnks. (A) ADP-Glo assay principle (adapted from Promega Corporation). ATP is converted into ADP when exposed to Mnk and eIF4E202-214. The ADP-Glo reagent is used to stop the reaction and enzymatically remove remaining ATP. Subsequently, the kinase detection reagent is applied to convert ADP into ATP, which then will drive a luciferase reaction turning over beetle luciferin to generate light. (B) Different amounts of Mnk1 or Mnk2 as indicated in (B) were used in kinase reactions with fixed substrate concentrations of 100 μM ATP and 100 μM of eIF4E202-214 peptide substrate. The obtained luminescence signals were compared with control reactions without the peptide substrate. The S/B ratios with 100 ng Mnk1 and 30 ng Mnk2 were 6.3 and 3.4, respectively. For all further experiments 100 ng Mnk1 and 30 ng Mnk2 were applied. (C) The V\textsubscript{max} and K\textsubscript{m} values were determined for the eIF4E202-214 peptide substrate. The ATP concentration was adjusted to 2 mM and 100 ng Mnk1 or 30 ng Mnk2 was used in all reactions that were tested at different eIF4E202-214 peptide substrate concentrations. All data were baseline corrected, with signals obtained from kinase control reactions (without peptide substrate) before curve fitting using the Michaelis-Menten model. (D) The determination of V\textsubscript{max} and K\textsubscript{m} values for ATP was carried out under identical conditions as described for (C), with the difference that the eIF4E202-214 peptide substrate concentration was fixed at 1.2 mM while different ATP concentrations were used. Control reactions without kinase were performed at the same time and used for background correction before fitting with the Michaelis-Menten model. (E) The control inhibitors CGP57380 and cercosporamide were used for final validation of the ADP-Glo assays using above parameters in a final assay volume of 15 μl. The ATP and eIF4E202-214 peptide substrate concentrations were adjusted to 0.5 × K\textsubscript{m} and K\textsubscript{m} for Mnk1 and Mnk2, respectively. Dose-response curves were calculated by iterative fitting to a four-parameter logistic nonlinear regression model. For all further experiments 0.5 × K\textsubscript{m} values for ATP and peptide were used for Mnk1 and K\textsubscript{m} values were used for Mnk2. (F)
luminescence signal is directly proportional to the amount of ADP generated during the kinase reaction. The assays can generally be used with ATP concentrations up to 6 mM and therefore are suitable for determination of K_m and V_{max} values. Additionally, the assays are appropriate to distinguish between ATP competitive and non-ATP-competitive inhibitors by varying concentrations of ATP in the kinase reaction. In the first step of the assay development, we explored suitable Mnk concentrations. Various amounts of activated recombinant Mnk1 or Mnk2 were incubated with 100 μM ATP and 100 μM eIF4E_{202-214} substrate. The kinase reactions were performed without the substrate as controls. Sufficiently robust signals were achieved with 100 ng Mnk1 and 30 ng Mnk2, which resulted in S/B ratios of 6.2 and 3.4, respectively (Fig. 3B). These amounts of enzyme were applied for all further experiments. In the next step, K_m and V_{max} values were determined for the eIF4E_{202-214} substrate (Table 1). For this purpose, the ATP concentration was fixed at 2 mM and tested against eIF4E_{202-214} substrate at a range of concentrations (Fig. 3C). Michaelis-Menten curve fit with baseline corrected data (obtained from the kinase reaction without eIF4E_{202-214}) revealed a K_m value of 1.272 mM, and the determined V_{max} value was used to calculate the maximal specific activity (eIF4E-derived peptide turn over per minute) of 2172 n mole/min/mg for Mnk1. The respective values for Mnk2 were 608.5 μM for K_m and 1846 n mole/min/mg for the specific activity. Subsequently we determined K_m and V_{max} values for ATP using 100 ng Mnk1 or 30 ng Mnk2 with the eIF4E-derived peptide substrate at a fixed concentration of 1.2 mM (Fig. 3D). Control reactions were run without kinase and used for background correction. Michaelis-Menten curve fit resulted in a K_m value of 2.094 mM and a specific activity of 1852 n mole/min/mg for Mnk1 under V_{max} conditions. The corresponding values for Mnk2 were significantly lower with 215.8 μM for K_m and 1075 n mole/min/mg for the specific activity (Table 1). Dose-response testing with enzyme inhibitors is often carried out using substrate concentrations that correspond to the K_m value. Mnk1 showed very high K_m values for ATP and the peptide substrate; therefore, we reduced ATP and peptide concentrations corresponding to 50% of the K_m values to cut consumable costs. The S/B ratio under these conditions was 14.2 and seemed sufficient for dose-response experiments (data not shown). For all further tests, the ATP and peptide concentrations were adjusted to 50% of the K_m values for Mnk1 and K_m values were used for Mnk2. Finally, we investigated the dose-response of the control inhibitors CGP57380 and cercosporamide with the optimized ADP-Glo assay on both Mnks by using the aforementioned parameters in a final assay volume of 15 μL. IC_{50} values were calculated by applying a four-parameter logistic nonlinear regression model. CGP57380 and cercosporamide inhibited Mnk1 with K_i values of 1.01 μM and 0.507 μM, respectively. The corresponding values against Mnk2 were 0.877 μM and 0.079 μM, respectively (Fig. 3E and Table 1).

All compounds causing residual kinase activities of <75% at 1 μM and/or of <10% at 10 μM, as determined in the primary IMAP assay (Fig. 2, A and B), were selected as hits and were subjected to further analysis of enzyme kinetics using the ADP-Glo kinase assay. Dose-response experiments were performed to determine IC_{50} values (Table 2). At this stage, particular emphasis was put on the identification of dual and Mnk subtype-specific inhibitors. Seven compounds (MNNKI-4, -12, -28, -67, -85, -4, and -5-17) were identified as Mnk2 specific inhibitors with IC_{50} values being at least 10 times lower for Mnk2 than for Mnk1: 13 compounds (MNNKI-5, -6, -7, -8, -15, -19, -37, -57, -83, -22, -25, -23, -20, and -7-50) were considered as dual inhibitors, whereas no Mnk1-specific inhibitors were identified (Fig. 3F and Scheme 1).

Identification of Dual Mnk1/2 Inhibitors with Type III Mechanism

The main objective of this work was to select specific chemical probes that would be useful for the future pharmacological validation of Mnk as anticancer drug targets. To achieve this, it is imperative to identify compounds with high specificity. Type III inhibitors are believed to have a tendency to achieve higher specificity due to the fact that the strongly conserved ATP binding pocket is not involved in the binding modalities. To achieve our goal, a total of 20 actives were investigated using the ADP-Glo assay for competing effects at elevated ATP concentrations. All compounds were tested at 10 concentrations ranging from 0.7 nM to 15 μM with 100 ng Mnk1 using 50, 200, or 2000 μM ATP. The eIF4E_{202-214} peptide substrate concentrations were fixed for Mnk1 and Mnk2 at 1.2 and 0.6 mM, respectively. The IC_{50} values were systematically calculated for all conditions, and the ratios between the highest and lowest ATP concentrations are given in Table 2 (IC_{50} ratio). Subsequently, a similar set of experiments were conducted to investigate competition effects of elevated eIF4E_{202-214} concentrations. The peptide substrate was tested at 150, 600, and 3000 μM with an ATP concentration fixed at 2 mM for Mnk1 and 200 μM for Mnk2. The IC_{50} values were routinely calculated, and competing effects were assessed by the ratios obtained at the highest substrate concentration versus the one at the lowest substrate concentration (Table 2). We arbitrarily set a ratio >5 as a significant competing effect. With this criterion, we proposed different inhibitory mechanisms as outlined below:

- **Non-substrate- and non-ATP-competitive Inhibitors (Mode $+/–$).** These compounds did not show significant change in the IC_{50} values when ATP or the eIF4E_{202-214} substrate was used at elevated concentrations. Compounds with this type of inhibitory properties are depicted with mode $+/–$ in Table 2.

- **ATP-competitive Inhibitors (Mode $+/$–).** These compounds showed significant increase in the IC_{50} values at elevated ATP concentrations but showed no or at the most marginally changed IC_{50} values with increased eIF4E_{202-214} concentrations.

- **Dual Substrate- and ATP-competitive Inhibitors (Mode $+/+$).** IC_{50} values were affected by increased ATP and peptide substrate levels. Only one compound (MNNKI-5-17) showed this property and was active only against Mnk2.

- **Substrate-competitive Inhibitors (Mode $–/+$).** Only one compound (MNNKI-2-22) showed a moderate competitive

Dose-response experiments were used to calculate IC_{50} values, which led to the identification of 33 nonselective Mnk1/2 inhibitors and 7 Mnk2 specific inhibitors (for more details, see Table 2). The latter were considered absolute Mnk2 selective inhibitors with the calculated ratio of IC_{50}Mnk2/IC_{50}Mnk1 > 10 (note that for compounds where no IC_{50} fit could be achieved, the value was set to $= 15 \mu$M). No Mnk1 specific inhibitors were found.
where the ATP concentrations were fixed at 3 mM/0.15 mM, remained unchanged, as it would be expected for a type III noncompetitive inhibitory mechanism. Additional examples are given for modes +/− and +/+ in Fig. 5, B and C and F, respectively. Mode +/+ showed increased \(K_m \) values for ATP combined with unchanged \(V_{\text{max}} \) values, which is an expected characteristic of competitive enzyme inhibition (Gumireddy et al., 2005). Finally, for mode +/+ elevation of \(K_m \) values was calculated with increased ATP and eIF4E202-214 concentrations. No major changes of the \(V_{\text{max}} \) values were observed.

Cytotoxic Effects on MV4-11 Acute Leukemia Cells

Antiproliferative activity of the inhibitors was evaluated in MV4-11 cells using the resazurin assay. Cells were exposed to each compound for 72 hours, and the values of concentration that causes 50% growth inhibition (GI50) were summarized in Table 2. All compounds with a GI50 value <15 \(\mu M \) were further tested for inhibitory activity against CDK2A and CDK9T1, if the resulting residual kinase activities were <60% at 10 \(\mu M \), a \(K_i \) value determination was carried out. Finally, all compounds with \(K_i \) values <15 \(\mu M \) for either CDK

Summary of Mnk inhibitory activity, binding mode and cellular antiproliferative activity of compounds

<table>
<thead>
<tr>
<th>Compound</th>
<th>IC50 (nM)</th>
<th>IC50 ratio</th>
<th>MV4-11 cells*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>Series</td>
<td>Mnk1</td>
<td>Mnk2</td>
</tr>
<tr>
<td>MNKI-6</td>
<td>1</td>
<td>147</td>
<td>50</td>
</tr>
<tr>
<td>MNKI-7</td>
<td>1</td>
<td>159</td>
<td>36</td>
</tr>
<tr>
<td>MNKI-8</td>
<td>1</td>
<td>164</td>
<td>52</td>
</tr>
<tr>
<td>MNKI-9</td>
<td>1</td>
<td>279</td>
<td>136</td>
</tr>
<tr>
<td>MNKI-10</td>
<td>1</td>
<td>62</td>
<td>10</td>
</tr>
<tr>
<td>MNKI-11</td>
<td>1</td>
<td>2850</td>
<td>328</td>
</tr>
<tr>
<td>MNKI-12</td>
<td>1</td>
<td>3090</td>
<td>480</td>
</tr>
<tr>
<td>MNKI-13</td>
<td>1</td>
<td>3225</td>
<td>1810</td>
</tr>
<tr>
<td>MNKI-14</td>
<td>1</td>
<td>3495</td>
<td>678</td>
</tr>
<tr>
<td>MNKI-15</td>
<td>1</td>
<td>7230</td>
<td>704</td>
</tr>
<tr>
<td>MNKI-16</td>
<td>1</td>
<td>>10,000</td>
<td>62</td>
</tr>
<tr>
<td>MNKI-17</td>
<td>1</td>
<td>>10,000</td>
<td>452</td>
</tr>
<tr>
<td>MNKI-18</td>
<td>1</td>
<td>>10,000</td>
<td>1,000</td>
</tr>
<tr>
<td>MNKI-19</td>
<td>1</td>
<td>>10,000</td>
<td>1,000</td>
</tr>
<tr>
<td>MNKI-20</td>
<td>1</td>
<td>>10,000</td>
<td>618</td>
</tr>
<tr>
<td>MNKI-21</td>
<td>1</td>
<td>>10,000</td>
<td>1230</td>
</tr>
</tbody>
</table>

N.A., not active; N.T., not tested; Series, compound series; eIF4E, eIF4E202-214; Mode, ATP/eIF4E202-214 competition. Data shown are the mean values derived from at least two replicates.

* \(K_i \) value <15 \(\mu M \) on CDK2A or CDK9T1.

**Mono-specific Mnk2 inhibitor.

By 72 hour resazurin assay.
were excluded from further analysis (Table 2). The remaining 17 compounds were analyzed for the correlation between IC_{50} values on Mnks and GI_{50} values on MV4-11 cells (Fig. 6). Mnk1 inhibitors with an IC_{50} value >10 μM were excluded, resulting in a total of 14 compounds. The discrepancy between biochemical and cellular potencies is expected, because cellular activity may be influenced by physicochemical properties of compounds, which may affect permeability across the cell membrane, intracellular degradation, and so forth. Nevertheless a clear correlation was observed for both Mnk1 and Mnk2 inhibitors. The Pearson correlation was calculated to 0.4006 and 0.7276 for Mnk1 and Mnk2, respectively. The corresponding one-tailed P values were 0.078 and 0.0005. The cellular Mnk inhibition was further confirmed with Western blotting.

Fig. 4. Competition of inhibitor activity with increased ATP and eIF4E peptide substrate concentration on Mnk2. 30 ng of Mnk2 was mixed with 10 different concentrations of Mnk inhibitors, and the ADP-Glo assay was performed in the presence of increasing concentrations of ATP (A, B, and C) and with increasing concentrations of eIF4E_{202-214} peptide substrate (D, E, and F). All experiments were run in duplicate, and the values from individual samples were analyzed using the Prism 6 Graphpad software. The three compounds were selected as examples for the different inhibition modes (MNKI-6: −/−; MNKI-4-61: +/−; MNKI-5-17: +/+). (G) Compound structures.
analysis of MV4-11 cells after treatment with two Mnk inhibitors i.e., MNKI-7 or MNKI-19 for 1 hour. A dose-dependent downregulation of phosphorylation at Ser209 of eIF4E was detected (Fig. 6, C and D).

Discussion

To identify Mnk inhibitors, we established a screening cascade (Scheme 1). The IMAP Mnk1/2 assays enabled us to rapidly identify primary hits whereas the ADP-Glo assay facilitated the dose-response analysis. The sequential use of these mechanistically different assay technologies (identification of phosphorylated peptide versus ATP depletion) excluded any false positives.

For the IMAP assay, we successfully used a TAMRA-labeled eIF4E-derived peptide (eIF4E_{202-214}) to detect kinase activities of Mnk1 and Mnk2 in the presence of tested compounds. However, the assay was incompatible with high ATP concentrations above 200 μM (Fig. 1D). This effect was most likely due to the displacement of the phosphorylated substrate from the IMAP nanobeads by ATP phosphate groups, leading to a reduced FRET signal. This inherent property of the IMAP
assay limits its suitability for experiments requiring high ATP concentrations (e.g., ATP competition testing). However, at relatively low ATP concentrations, the assay was shown to be very robust and cost effective for initial compound profiling. Finally, the IMAP assays were validated with the known Mnk inhibitors CGP57380 and cercosporamide (Fig. 1E) and the obtained inhibitory activities against Mnk1/2 were consistent with the published data (Buxade et al., 2005; Bain et al., 2007; Konicek et al., 2011). One advantage of using low ATP concentrations in the assays was to identify weak ATP-competitive and type II inhibitors that would be lost at higher ATP concentrations.

Three different chemical series of compounds were profiled at the concentrations of 1 and 10 μM by IMAP assays. Figure 2, A and B, shows the averages of the measured residual kinase activities for Mnk1 and Mnk2, respectively. Figure 2, C and D, are scatterplots of duplicate data points with a trend line. The calculated R² correlations of 0.897 and 0.879 indicated sufficient robustness of the assays, and this was further confirmed by the routinely calculated Z’-factors that were always >0.5. Among the total of 31 primary hits, only 2 were Mnk1 specific, 11 were dual inhibitors, and 18 were Mnk2 specific.

In contrast to the IMAP assay, the ADP-Glo assay can be run at much higher ATP concentrations and thus is suited to determine kinetic parameters such as K_m and V_{max} values. We established the ADP-Glo assay for Mnk1 and Mnk2 as outlined in Fig. 3. Surprisingly, the K_m value for ATP was at 2.094 mM for Mnk1 almost 10 times higher than for Mnk2 (Fig. 3D and Table 1). This strongly indicated a lower affinity of ATP for Mnk1 than Mnk2, which is most likely due to structural differences between Mnk1 and Mnk2. The longer C terminus of Mnk1 is known to affect its basal kinase activity and to repress phosphorylation of the activation loop (Parra et al., 2005; Goto et al., 2009). Dose-response curves with kinase inhibitors are routinely run with the substrate concentrations adjusted to K_m. Because of the fact that K_m values were very high for Mnk1, we decided to reduce the substrate concentrations to 50% of the K_m values for ATP and the peptide substrate. For Mnk2, the concentrations were adjusted to K_m. The K_i values for CGP57380 and cercosporamide (Fig. 3E and Table 1) were determined as a final validation step, and the obtained results were comparable to literature values (Buxade et al., 2005; Bain et al., 2007; Konicek et al., 2011).

All compounds causing residual kinase activities of <75% at 1 μM or of <10% at 10 μM in the IMAP assay (Fig. 2, A and B) were subjected to systematic determination of IC_{50} values with the ADP-Glo assay. In total, 20 inhibitors were identified with IC_{50} values of <2 μM. Seven inhibitors were Mnk2 specific with a ratio of $IC_{50,Mnk1}/IC_{50,Mnk2}$ >10, and 13 inhibitors were dual inhibitors (Fig. 3F and Table 2). Out of the 20 compounds, 17 belonged to series 1, whereas only 2 and 1 were from series 2 and 3, respectively. Interestingly, we did not identify any Mnk1 subtype-specific inhibitors, further indicating significant structural differences between Mnk1 and Mnk2. Analysis of crystal structures of the Mnk1 and Mnk2 kinase domains (Jauch et al., 2005; 2006) suggests that Mnk2 has a larger ATP binding pocket than Mnk1. Our Mnk2-specific inhibitors provide a new opportunity to dissect biologic functions of Mnk1 and Mnk2. It is currently not known whether the individual or combined inhibition of Mnk1/2 would be efficacious in induction of cancer cell apoptosis.

It is generally believed that non-ATP-competitive ligands may provide a selectivity advantage over their ATP-competitive counterparts. We tested our compounds for ATP- and/or

Fig. 6. Cytotoxic effects correlate with Mnk enzyme inhibition. MV4-11 cells were exposed to compounds for 72 hours. The resazurin assay was used to test cell viability in dose-response experiments and GI_{50} values were calculated. Compounds with activities against CDK2A or CDK9T1 ($I_K <15$) were excluded. (A) The IC_{50} values for Mnk1 were plotted against the GI_{50} values. Compounds with IC_{50} values >10 μM against Mnk1 were excluded, and the data are given for 14 compounds. (B) A similar plot was generated with the Mnk2 data, with 17 compounds in total. The trend lines are shown, and the Pearson correlations were determined for Mnk1 ($r = 0.4006; n = 14$; one-tailed $P = 0.078$) and Mnk2 ($r = 0.7276; n = 17$; one-tailed $P = 0.0005$). Western blot analysis was conducted with MV4-11 cells after 1 hour exposure to MNIK-7 (C) or MNIK-19 (D) at the concentrations indicated.
eIF4E202-214 competition before investigating their toxicity on cancer cell lines. IC$_{50}$ ratios of dose-response experiments at high and low ATP or eIF4E202-214 concentrations are given in Table 2. We identified two distinct groups: nine compounds did not show any competition with either of the substrates (mode $-/-$) and nine compounds were only competitive with ATP (mode $+/-$). In addition, two compounds were competitive with ATP and eIF4E$_{202-214}$ (mode $+/+$). Interestingly, MNKI-2-22 showed the inhibitory activities in an ATP competitive manner in Mnk1 but is substrate dependent against Mnk2 (Scheme 1 and Table 2). All compounds with mode $-/-$ belonged to series 1, showed IC$_{50}$ values <1.6 μM, and were associated with dual inhibition of Mnk1 and Mnk2 (except MNKI-67). These findings indicate that these inhibitors act via an allosteric type III mechanism, and we thus conclude that an allosteric binding site is structurally conserved between Mnk1 and Mnk2. In contrast, all compounds with mode $+/-$ had IC$_{50}$ values >2.8 μM on Mnk1 and 6 of them were Mnk2 specific. Most intriguingly, very subtle structural changes resulted in the switch between activity modes. For example, MNKI-4-61 of series 2

Fig. 7. (A) Structures of some selected compounds. Very subtle changes of MNKI-5 induce a switch from mode $-/-$ to mode $+/+$ (MNKI-15) or dramatically reduce potency by more than factor 10 against Mnk1 (MNKI-37). The efficacy of MNKI-37 against Mnk1 was significantly improved through modification of the acetamide group as shown for MNKI-83 (B) Hypothetical working model for compound binding at reactive site. The Mns switch from the inactive DFD-out form (I) to the active DFD-in form (II) upon phosphorylation of the activation segment and subsequently bind the ATP substrate. (III) The cartoon depicts MNKI-15 as a type II kinase inhibitor binding partly inside and partly adjacent to the ATP binding pocket. The black diamond represents the common core scaffold between MNKI-15 and -5 that occupies the postulated allosteric binding site. (IV) Hypothetical binding modalities of MNKI-5: The larger side chain is forced through steric hindering (dashed structure) to adopt an alternative conformation with non-ATP-competitive binding mode.
turned from mode +/+ to mode +/+ when 2,4-dimethoxyaniline was replaced with 2-(difluoromethoxy)aniline of MNKI-5-17 (Fig. 4). In the case of MNKI-5, the removal of the 1,3-difluoropropan-2-ol group resulted in a change from mode +/+ to mode +/− of MNKI-15, and the potency against Mnk1 was almost reduced by a factor of 20 (Fig. 7A, Table 2). In contrast, when only the fluorine atoms were removed from the 1,3-difluoropropan-2-ol group (MNKI-37) the mode +/− was maintained but reduction of Mnk1 activity by almost 10-fold was observed. Clearly, the 1,3-difluoropropan-2-ol group prevents competition with ATP. Finally, when the acetonide on the dihydrosphene ring of MNKI-37 was replaced with N-(3-methoxypropyl)-acetamide (MNKI-83), Mnk1 inhibitory activity was enhanced. There is currently no structural data available for activated Mnk1 (Kumarasiri et al., 2015) and these inhibitory modes remain to be elucidated. The very subtle structural changes resulting in the different inhibitory modes led us to believe that the binding site on the kinases is very close to the target sites of ATP and the peptide substrate. We propose the hypothetical models as shown in Fig. 7B. The inactive DFD-out conformation (I) switches into the active DFD-in (II) through phosphorylation of the activation segment by extracellular signal-regulated kinase 1/2 or p38 kinases. The activated kinase coordinates the ATP and the peptide substrate (eIF4E) in contact with catalytically important residues on the activation segment, the glycine-rich loop and the catalytic loop. MNKI-5 is allosteric but shares the same core scaffold (indicated as black diamond in diagrams III and IV) with MNKI-15. The latter may have significant binding affinities adjacent to and inside of the ATP binding pocket so to exhibit its type II mechanism (Fig. 7, B, III). The loss of ATP competition of MNKI-5 may be caused by its 1,3-difluoropropan-2-ol-mediated conformational changes so that it moves away from interacting with the ATP binding site (Fig. 7, B, IV).

We previously showed that inhibition of Mns caused cell type-specific cytotoxicity (Diab et al., 2014b; Yu et al., 2015). Most pronounced cytotoxic effects have been observed in Fms-like tyrosine kinase 3 overexpressing leukemia cells (Altman et al., 2013; Lim et al., 2013; Diab et al., 2014b; Teo et al., 2015a). Accordingly the cytotoxic assay in MV-4;11 cells was included in the screening cascade. To determine whether Mnk inhibition was responsible for the observed cytotoxic effects and to assess potential and off-target effects, we first carried out additional kinase testing against CDK2A and CDK2T1, because some derivatives of the chemical series have been shown to be CDK2/9 modulators (Shao et al., 2013; Diab et al., 2014b). Three compounds were excluded from further analysis because of activities on CDKs. The study with the remaining inhibitors showed positive correlations (Pearson correlation r = 0.4006 and r = 0.7276 for Mnk1 and Mnk2, respectively) between Mnk inhibitory activity and cytotoxic effects, confirming the Mnk-specific activity of the compounds. Our Western blot analysis also demonstrated a dose-dependent reduction in eIF4E phosphorylation after 1 hour exposure to MNKI-7 or MNKI-19 (Fig. 6, C and D).

Taken together, our investigation suggests significant structural differences in the ATP catalytic domain between Mnk1 and Mnk2, leading to very different inhibitory activities with ATP-competitive inhibitors. However, both enzymes share a common structural feature of the allosteric binding site that is located in close proximity of the ATP and peptide substrate targeting sites. These findings will be invaluable for the future design, optimization, and development of highly specific Mnk inhibitors as therapeutic agents.

Address correspondence to: Shudong Wang, Centre for Drug Discovery and Development, Sansom Institute for Health Research, and School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5001, Australia. E-mail: shudong.wang@unisa.edu.au or Hugo Albrecht, Centre for Drug Discovery and Development, Sansom Institute for Health Research, and School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5001, Australia. E-mail: Hugo.Albrecht@unisa.edu.au