Comparison of Steroid Modulation of Spontaneous Inhibitory Postsynaptic Currents in Cultured Hippocampal Neurons and Steady-State Single-Channel Currents from Heterologously Expressed α1β2γ2L GABA_A Receptors

Sampurna Chakrabarti, Mingxing Qian, Kathiresan Krishnan, Douglas F. Covey, Steven Mennerick, and Gustav Akk

Department of Anesthesiology (S.C., G.A.), Department of Developmental Biology (M.Q., K.K., D.F.C.), and Department of Psychiatry (S.M.), and the Taylor Family Institute for Innovative Psychiatric Research (D.F.C., S.M., G.A.), Washington University School of Medicine, St. Louis, Missouri

Received October 23, 2015; accepted January 13, 2016

ABSTRACT

Neuroactive steroids are efficacious modulators of γ-aminobutyric acid type A receptor (GABA_A) receptor function. The effects of steroids on the GABA_A receptor are typically determined by comparing steady-state single-channel open probability or macroscopic peak responses elicited by GABA in the absence and presence of a steroid. Due to differences in activation conditions (exposure duration, concentration of agonist), it is not obvious whether modulation measured using typical experimental protocols can be used to accurately predict the effect of a modulator on native receptors under physiologic conditions. In the present study, we examined the effects of 14 neuroactive steroids and analogs on the properties of spontaneous inhibitory postsynaptic currents (sIPSCs) in cultured rat hippocampal neurons. The goal was to determine whether the magnitude of modulation of the decay time course of sIPSCs correlates with the extent of modulation and kinetic properties of potentiation as determined in previous single-channel studies. The steroids were selected to cover a wide range of efficacy on heterologously expressed rat α1β2γ2L GABA_A receptors, ranging from essentially inert to highly efficacious (strong potentiators of single-channel and macroscopic peak responses). The data indicate a strong correlation between prolongation of the decay time course of sIPSCs and potentiation of single-channel open probability. Furthermore, changes in intracellular closed time distributions were the single best predictor of prolongation of sIPSCs. We infer that the information obtained in steady-state single-channel recordings can be used to forecast modulation of currents.

Introduction

The γ-aminobutyric acid type A receptor (GABA_A) receptor is an inhibitory ionotropic transmitter-gated ion channel whose activation in mature neurons leads to hyperpolarization of the cell or dampening of the effects of excitatory channels. Drugs capable of enhancing GABA_A receptor function have possible applications as anxiolytics, anti-convulsants, and sedatives (Rudolph and Mohler, 2006; Franks, 2008).

Many neuroactive steroids and analogs are potentiators of the mammalian GABA_A receptor. In electrophysiologic experiments, potentiation is observed as augmentation of the whole-cell peak response when a steroid is coapplied with a low concentration of transmitter (Callachan et al., 1987; Harrison et al., 1987a). Studies employing a single-channel patch clamp have revealed that the increase in macroscopic current response is mediated by up to three specific changes in the open and closed time distributions (Akk et al., 2004). Strong potentiators, such as the endogenous steroid (3α,5α)-3-hydroxyprogren-20-one (3α5αP) and the synthetic anesthetic steroid (3α,5α)-3-hydroxyprogren-11,20-dione (3α5αP110), act by decreasing the prevalence of the long-lived closed state and increasing both the prevalence and mean duration of the
long-lived open state (Akk et al., 2005). Weak potentiat-
ing steroids, such as (3α,5β)-3-hydroxyandrost-17-one (3α5β17O), act through changes in a single kinetic com-
ponent, such as an increase in the prevalence of dwellsm in the long-lived open state (Li et al., 2007a). There is a good
correlation between the magnitude of potentiation of whole-
chell peak response and the increase in single-channel open
probability (Akk et al., 2010).

Experimental conditions in macroscopic and single-channel
studies do not, however, reflect the physiologic conditions in
brain. Native GABA_A receptors are continuously bathed in a
mixture of steroids of endogenous origin while clearance of
exogenously-applied anesthetic steroids occurs slowly, with a
timescale of minutes or hours (Ram et al., 2001; Visser et al.,
2002). In contrast, drug applications in macroscopic measure-
ments are of finite length, typically lasting a few seconds
followed by rapid washout. We have previously found that
there is a correlation between the reciprocal of application
length and EC₅₀ of potentiation (Li et al., 2007b), likely due to
initial redistribution of the steroid among the lipid fractions in
the cell, that conceals the true extent of drug effect in short
applications. Single-channel recordings in the cell-attached
configuration are long-lasting, but redistribution of steroid
from the patch to the rest of the cell, which is acting as a sink,
reduces steroid concentration in the patch thereby affecting
potency estimates (Li et al., 2007b).

Another shortcoming is the fact that single-channel mea-
surements are obtained under steady-state conditions, but
synaptic activity occurs far from the steady state. Native
synaptic-type GABA_A receptors are activated by brief (likely
≤1 millisecond) pulses of a saturating concentration of trans-
mitter. The distribution of kinetic states occupied during such
brief activation may differ from that during prolonged ex-
sposure to submaximal agonist concentration in a single-channel
recording. Spatial spread and variable rebinding of trans-
mitter are additional potential complications of physiologic,
synaptic activation that are not evident in steady-state
channel recordings.

The differences in exposure conditions cast some doubt on
our ability to accurately predict effects of modulators on native
GABA_A receptors under physiologic conditions from the data
generated using typical electrophysiologic experimental pro-
tocols. In the present study, we have examined the effects of
several neuroactive steroids and analogs on the properties of
spontaneous inhibitory postsynaptic currents (sIPSCs) in
cultured rat hippocampal neurons. The goal was to determine
whether the extent of modulation observed in synaptic
responses correlates with the kinetic properties of potentia-
tion determined in single-channel studies. On the whole, we
infer that the information obtained from steady-state single-
channel recordings can be used to forecast modulation of
synaptic currents.

Materials and Methods

Cultured rat hippocampal neurons were prepared as described
previously elsewhere (Emnett et al., 2015). Rat pups (postnatal
day 1–3) were anesthetized with isoflurane, and the hippocampus
was dissected and cut into slices (500 μm thickness). The slices
were digested with 1 mg/ml papain in oxygenated Leibovitz L-15 medium
(Invitrogen, Gaithersburg, MD) followed by mechanical trituration
in modified Eagle’s medium (Invitrogen) containing 5% horse serum,
5% fetal calf serum, 17 mM d-glucose, 400 μM glutamine, 50 U/ml
penicillin, and 50 μg/ml streptomycin. Cells were seeded in modified
Eagle’s medium at a density of ~650 cells mm^{−2} onto 25-mm cover
glasses coated with 5 mg/ml of collagen or 0.1 mg/ml of poly-d-lysine
with 1 mg/ml laminin. Cultures were incubated at 37°C in a humid-
ified chamber with 5% CO₂/95% air. Cytosine arabinoside (6.7 μM)
was added 3 to 4 days after plating to inhibit glial proliferation,
followed by replacement of half of the culture medium with Neuro-
basal medium (Life Technologies, Carlsbad, CA) plus B27 supple-
ment (Life Technologies) the following day. The animal procedures
were conducted in accordance with the Guide for the Care and Use of
Laboratory Animals as adopted and promulgated by the National
Institutes of Health. The protocol was approved by the Animal
Studies Committee of Washington University in St. Louis.

We recorded sIPSCs from neurons cultured for 10 to 14 days. For
recordings, coverslips with cells were transferred to a new dish with
extracellular solution containing (in mM): 140 NaCl, 5 KCl, 1 MgCl₂,
2 CaCl₂, 10 d-glucose, and 10 HEPES (pH 7.4 with NaOH). To block
glutamate receptors, 5 μM 6-cyano-7-nitroquinoxaline-2,3-dione
(CNQX) and 25 μM DL-2-amino-5-phosphono-valeric acid (DL-APV)
were added to bath. Steroids and analogs were added to the bath at
the indicated concentration at least 10 minutes before recording to
reach full equilibration with the drug (Zimmerman et al., 1994). Each
coverslip with neurons was exposed to only one kind of drug due to
difficulties associated with complete washout of these lipophilic
compounds from the cells. The pipette solution contained (in mM):
140 CsCl, 4 NaCl, 4 MgCl₂, 0.5 CaCl₂, 5 EGTA, 10 HEPES (pH 7.4 with
CsOH). Neurons were identified visually and clamped at −70 mV. All
experiments were done at room temperature.

Currents were amplified with an Axopatch 200B amplifier (Molec-
ular Devices, Sunnyvale, CA), low-pass filtered at 1 kHz, and digitzed
with a Digidata 1322A interface (Molecular Devices) at 5 kHz. The
detection and analysis of synaptic currents were conducted using
pClamp 10 software (Molecular Devices). First, a template was created
by averaging one to three random events under a drug condition. This
template was used to identify all the events under that drug condition.
The template search parameters were set to detect negative-going
peaks of variable amplitude with a template match threshold set at
the default value 4, which provides balance between missed events
and false positives. The program automatically detected the sponta-
neous firing events that were then visually inspected and manually
accepted or rejected. The overlay plot of all the events thus selected
was then saved in a separate file. The events from each recording were
averaged, and subsequent analysis was conducted on the averaged
traces. Because decay times of the events varied with drug conditions,
different templates representing each drug condition had to be
created. Decay time courses were fitted to sums of two exponentials.
The data are presented in weighted time constants, calculated as
τ_y = A₁τ₁ + A₂τ₂, where τ₁ and τ₂ are the time constants of the two
components and A₁ and A₂ are the proportions of the two components.

Concentration–response curves were fitted for pooled data with the
following equation:

\[Y = Y_{\text{min}} + (Y_{\text{max}} - Y_{\text{min}}) \times \left(\frac{[\text{steroid}]^{\text{aff}}}{(\text{[steroid]}^{\text{aff}} + 1) + \text{EC}_{50}^{\text{aff}}} \right) \]

(1)

where EC₅₀ is the concentration of steroid producing a half-maximal
effect, nH describes the slope of relationship, and Y_{min} and Y_{max} are the
low and high concentration asymptotes, respectively. Fitting
was conducted using the NFIT software (University of Texas, Medical
Branch at Galveston, Galveston, TX).

Inorganic salts used in the buffers CNQX, and DL-APV were bought
from Sigma-Aldrich (St. Louis, MO). Steroids were bought from
Sigma-Aldrich or Steraloids (Newport, RI), or synthesized locally as
described previously elsewhere (Hu et al., 1993; Scaglione et al., 2008;
Li et al., 2009; Qian et al., 2014). Structures of steroids used are given
in Fig. 1. Stock solutions of steroids and analogs were made in
dimethylsulfoxide (DMSO) at a 10−20 mM concentration. Stock
solutions were kept at room temperature and further diluted as
needed on the day of the experiment. The highest final concentration of DMSO was 0.1% (v/v). This concentration of DMSO is without effect on currents from recombinant α1β2γ2L GABA_A receptors and GABA_A receptor-mediated synaptic currents (Li et al., 2007a; Mitchell et al., 2007).

Open probability (P_o) of single-channel activity elicited by 50 μM GABA in the absence or presence of steroids was calculated from the previously published individual intracluster open and closed time distributions using the following equation:

\[P_o = \Sigma OT_i + frOT_i / (\Sigma OT_i + frOT_i + \Sigma CT_i + frCT_i) \]

where OT_i and frOT_i are the mean duration and fraction of the individual open time components and CT_i and frCT_i are the mean duration and fraction of the individual closed time components.

Analysis of single-channel currents and simulation of synaptic events was conducted using the QuB Suite (www.qub.buffalo.edu). Previous single-channel data (Li et al., 2009; Qian et al., 2014) were first reanalyzed using Model 1 (Lema and Auerbach, 2006):

\[
\begin{align*}
A_2O_3 & \iff A_2C_3 \iff A_2O_1 \\
C & \iff AC \iff A_2C_1 \iff A_2C_2 \iff A_2O_2 \\
A_1O_3 & \iff A_1C_3
\end{align*}
\]

This model predicts three open states, differing in their mean duration, associated with fully liganded receptors. The model and the fitted rate constants were then used to simulate synaptic events. Exposure to a vesicle of GABA was mimicked by an agonist profile with a duration of 1 millisecond and a concentration of 10 mM. The starting state was the unliganded, closed state (C). The decay time courses of resulting macroscopic currents were fitted to a single-exponential, using Origin (OriginLab, Northampton, MA).

Results

Effects of Steroids on the Decay Time Course of sIPSCs. Cells cultured for 10 to 14 days exhibited spontaneous IPSCs in the presence of glutamate receptor blockers CNQX and DL-APV (Fig. 2A). In 12 cells, the mean frequency of events was 0.72 ± 0.69 Hz. The sIPSCs were sensitive to GABA_A receptor blockers and eliminated during bath application of 10 μM gabazine (not shown). The decay time course of averaged sIPSCs was fitted to a sum of two exponentials, yielding the mean weighted time constant (τ_w) of 34 ± 3 milliseconds (mean ± S.E.M.; 12 cells; Fig. 2B). This is similar to several previous estimates for decay times of miniature and spontaneous IPSCs from hippocampal neurons (e.g., Poisbeau et al., 1997; Zorumski et al., 1998; Banks and Pearce, 1999; Park et al., 2011). The amplitudes of sIPSCs varied considerably from cell to cell. There was, however, no correlation between mean amplitude and decay time of sIPSC (Fig. 2B).

Addition of potentiating steroid to the extracellular medium led to an increase in the decay time constant of sIPSCs (Fig. 2A lower trace and Fig. 2C). In the presence of 3 μM 3α5αP11O, the τ_w was 145 ± 16 milliseconds (four cells). The increase in decay time was not accompanied by changes in mean amplitude (149 ± 34 pA versus 175 ± 62 pA under control conditions).

Concentration–response measurements conducted in the presence of 10 nM to 3 μM 3α5αP11O yielded an EC₅₀ of 0.21 ± 0.11 μM and a Hill coefficient of 1.2 ± 0.8 (data combined from three to five cells at each concentration; Fig. 2D).

The fitted low concentration asymptote (29 milliseconds) was similar to the decay time constant under control conditions. Addition of the endogenous steroid 3α5αP to the extracellular medium also resulted in prolonged sIPSCs. In the presence of 1 μM 3α5αP the τ_w was 145 ± 25 milliseconds (3 cells). The EC₅₀ for prolongation of decay time constant was 0.19 ± 0.02 μM. The Hill coefficient was 2.2 ± 0.4, and the low concentration asymptote was at 36 ± 4 milliseconds (Fig. 2D).

The maximal fitted values for τ_w in the presence of 3α5αP11O or 3α5αP were indistinguishable (150 ± 22 and 150 ± 7 milliseconds, respectively).

Single-channel experiments have shown that potentiating steroids act on the synaptic-type α1β2γ2L GABA_A receptor via changes in gating properties that manifest as one or more of the following: an increase in the mean duration and prevalence of long openings (duration and % OT₃) and a decrease in the prevalence of long closings (duration and % CT₃). The largest effect on open probability or macroscopic peak response is observed with steroids possessing all three effects (Akk et al., 2010). The steroids 3α5αP and 3α5αP11O modify all three parameters (Akk et al., 2005; unpublished data).

![Fig. 1. Structures of steroids and analogs tested in the study. Enantiomeric steroids (3α,19,19-dimethoxy-5α,16,16-dimethyl-3α-cholestan-3-one, 3α,19,19-di-O-methoxy-5α,16,16-dimethyl-3α-cholestan-3-one), α1β2γ2L GABA_A receptors. For models of the modes of binding natural steroids and their enantiomers, see (Krishnan et al., 2012; Qian et al., 2014).](image-url)
To probe the relationship between the single-channel mechanism of potentiation and prolongation of τ_w of sIPSCs, we measured spontaneous synaptic activity in the presence of several previously characterized steroids and analogs. Each compound was added to the extracellular solution at a concentration (3 to 10 μM) that was known to produce a saturating response in single-channel or whole-cell peak response measurements.

As expected, steroids that only affect open time distributions in single-channel recordings and have a relatively small effect on macroscopic peak response, had a tendency toward smaller effect on τ_w. In the presence of 10 μM 3a5b17O or (3b,5b,8a,9b,10a,13a,14b)-3-hydroxyandrostan-16-one [18nor3a5a16O], whose sole effect in single-channel recordings is to increase the relative frequency of long openings (Li et al., 2007a; Qian et al., 2014), the τ_w was 94 ± 2 milliseconds (5 cells) or 53 ± 10 milliseconds (four cells), respectively.

We examined the effects of five steroid analogs, [(3b,5b,8a,9b,10a,14b)-18-nor-3-hydroxyandrostan-16-one [18nor3a5a16O], (3b,5b,8a,9b,10a,13a,14b)-3-hydroxyandrostan-17-one [3a5b17O], (2s,3s,4aR,6aR,7aS,10aS,11aR,11bR)-hexadecahydro-7a-methyl-spiro[SH-cyclopenta[b]phenanthrene-8,2′-oxiran]-3-ol [3aCPP17βE], (3a,5a)-pregn-3-ol [3a5a17βEt], and (3a,5a,17b)-18-nor-3-hydroxyandrostane-17-carbonitrile [18nor3a5a17CN], that were known to increase both the duration and prevalence of long openings, but not affect intracluster closed times (Li et al., 2007a, 2009; Scaglione et al., 2008; Qian et al., 2014). Exposure to these compounds ranged from no effect on the decay time constant in the presence of 18nor3a5a16O (τ_w = 36 ± 2 milliseconds, four cells) to a more than 4-fold prolongation in the presence of 3a5b17O (τ_w = 143 ± 15 milliseconds, five cells).

In addition to 3a5aP11O and 3a5aP discussed previously, we measured the effects of two additional steroids [(3b,5a,8a,9b,10a,13a,14b)-3-hydroxy-4-methoxy-androstan-16-one [3a5a4βOMe16O] and (3a,5a,17β)-18-nor-3-hydroxyandrostan-17-carbonitrile [3a5a17CN]) that modify both open and closed times in single-channel recordings producing a strong effect on the peak response (Akk et al., 2004; Qian et al., 2014).

Both compounds also strongly increased the decay time constant of sIPSCs. The τ_w was 243 ± 24 milliseconds (4 cells) in the presence of 3a5a4βOMe16O and 132 ± 12 milliseconds (4 cells) in the presence of 3a5a17CN. The steroid (3b,5b,8a,9b,10a,13a,14b)-3-hydroxyestran-16-one [19nor3a5a16O] that only affects closed time properties in single-channel recordings (Qian et al., 2014) was also an efficacious potentiator of the decay time course. In six cells, the decay time constant was 206 ± 36 milliseconds. We tested the effect of (3b,5b,8a,9b,10a,13a,14b)-3-hydroxyandrostan-16-one [3a5a16O], that in single-channel recordings increases the fraction of long openings and decreases the fraction of long closed times (Qian et al., 2014). The τ_w was 241 ± 21 milliseconds (6 cells) in the presence of 1 μM 3a5a16O.

The steroid (3a,5a)-17-phenyl-androst-16-en-3-ol (3a5a16ene17Ph) increases the prevalence of OT3 without affecting its mean duration or the closed time distributions. In whole-cell recording, this steroid is essentially without effect on the peak response (Mennerick et al., 2004). Application of 3a5a16ene17Ph weakly increased the decay time of sIPSCs (61 ± 10 milliseconds; five cells). The data are summarized in Table 1.

As negative control, we measured the effect of (3a,4b,5α)-3-hydroxyandrost-17-one (3a5a4βOMe16O) on the time course of sIPSCs. Prior macroscopic measurements on heterologously expressed a1B2y2L receptors had shown that this steroid does not modulate the peak response (Qian et al., 2014). In four cells bathed in 1 μM 3a5a4βOMe16O the τ_w was 33 ± 4 milliseconds, not different from the value under control conditions ($P > 0.8; t$ test).

Correlation of Effects on Decay of sIPSCs with Effects on Single-Channel Currents. We next determined whether the magnitude of effects observed on decay time course of sIPSCs correlates with changes in single-channel open and closed time properties in the presence of steroid. For that, we calculated the open probability of the receptor, using eq. 2 (Materials and Methods) and previously determined open and closed time parameters (Akk et al., 2004, 2005; Li et al., 2007a; Scaglione et al., 2008; Qian et al., 2014). Results of the calculations and the linear regression fit are shown in Fig. 3A.
The analysis indicates correlation between the increases in τ_w and open probability ($R^2 = 0.56, P = 0.029$).

The increase in open probability mainly results from increases in the mean duration and prevalence of the longest-lived open time component, OT3, and a decrease in the prevalence of the longest-lived intracluster closed time component, CT3 (Akk et al., 2004, 2010). To determine whether any single kinetic component correlates with modulation of the prevalence of the longest-lived intracluster closed time component, CT3 (Akk et al., 2004, 2010). The data for steroid effects on single-channel properties are from Akk et al. (2004, 2005; Li et al., 2007a, 2009; Scaglione et al., 2008; Qian et al., 2014).

<table>
<thead>
<tr>
<th>Steroid</th>
<th>τ_w</th>
<th>P_e</th>
</tr>
</thead>
<tbody>
<tr>
<td>None (control)</td>
<td>34 ± 3</td>
<td>0.41</td>
</tr>
<tr>
<td>3α,5αP110</td>
<td>145 ± 18</td>
<td>0.93</td>
</tr>
<tr>
<td>3α,5αP</td>
<td>145 ± 25</td>
<td>0.94</td>
</tr>
<tr>
<td>3α,5β17O</td>
<td>94 ± 2</td>
<td>0.44</td>
</tr>
<tr>
<td>e18,19δnor3α,5α16O</td>
<td>53 ± 10</td>
<td>0.46</td>
</tr>
<tr>
<td>e18nor3α,5α16O</td>
<td>36 ± 2</td>
<td>0.49</td>
</tr>
<tr>
<td>eα,5β17O</td>
<td>143 ± 15</td>
<td>0.72</td>
</tr>
<tr>
<td>3αCPP17′Ep</td>
<td>86 ± 9</td>
<td>0.83</td>
</tr>
<tr>
<td>3α,5α17βEt</td>
<td>86 ± 11</td>
<td>0.77</td>
</tr>
<tr>
<td>18nor3α,5α17βCN</td>
<td>77 ± 16</td>
<td>0.82</td>
</tr>
<tr>
<td>e3α,5α4βOME16O</td>
<td>243 ± 24</td>
<td>0.86</td>
</tr>
<tr>
<td>3α,5α17βCN</td>
<td>132 ± 12</td>
<td>0.71</td>
</tr>
<tr>
<td>e19nor3α,5α16O</td>
<td>206 ± 36</td>
<td>0.58</td>
</tr>
<tr>
<td>3α,5α16O</td>
<td>241 ± 21</td>
<td>0.84</td>
</tr>
<tr>
<td>3α,5α16ene17Ph</td>
<td>61 ± 10</td>
<td>0.50</td>
</tr>
</tbody>
</table>

For each condition, single-channel data (Li et al., 2009; Qian et al., 2014) from four to six patches were combined and analyzed by fitting to Model 1. Some of the transition rates were fixed to previously determined values. We constrained the GABA association and dissociation rate constants to 3 $\mu M^{-1} s^{-1}$ and 300 second $^{-1}$, respectively (Lema and Auerbach, 2006). Our earlier single-channel data indicate that pairing steroids do not modify receptor affinity to GABA (Akk et al., 2004). Accordingly, the same values were used in characterizing steroid data. We also constrained the rate constant governing transition from A_2C_1 to A_2C_3 at 300 second $^{-1}$ to improve convergence of fits. The fitted rate constants for all experimental conditions are provided in Table 2.

This analysis provides kinetic correlates to the effects observed in single-channel recordings. All three steroids increase the prevalence of long-lived openings, offset by a decrease in the prevalence of the intermediate-duration open state. This effect is mediated by an increase in the rate of transition from A_2C_3 to A_2O_3, accompanied by a decrease in the rate of transition from A_2C_2 to A_2O_2. Increase in the mean duration of OT3 is mediated by reduction in the $A_2O_3 \rightarrow A_2C_2$ transition rate. The effect on the prevalence of CT3 is mediated by...
by the rates governing forward and reverse transitions between A2C1 and A2C2. Interestingly, 3α5α17βEt and e3α5α4βOMe160, that differ in their maximal effects on the prevalence of CT3, had nonidentical effects on these transitions. Both compounds reduced the rate for A2C2 → A2C1, but only e3α5α4βOMe160 increased the rate for A2C1 → A2C2 step.

We then simulated synaptic responses using Model 1 and the rate constants in Table 2. The response was driven by a 1-millisecond square-pulse application of 10 mM agonist, with the unliganded, closed state (C) as the starting state. The simulated responses are shown in Fig. 4A along with fits to a single-exponential decay. The predicted decay time constants under the four conditions show the same rank order as measured weighted time constants (GABA + e3α5α4βOMe160 > GABA + 3α5α17βEt > GABA + e18,19dinor3α5α160 > control). The actual values for predicted and measured decay times were within a factor of 3. For receptors activated by GABA alone, we predict that the decay time constant is 18 milliseconds while the average measured \(\tau_w \) in the absence of steroid was 34 milliseconds. Coapplication of e18,19dinor3α5α160, 3α5α17βEt, or e3α5α4βOMe160 with GABA prolonged the predicted decay time constant to 37 milliseconds, 66 milliseconds, or 112 milliseconds, respectively. The measured \(\tau_w \) in the presence of these steroids was 52 milliseconds, 86 milliseconds, and 271 milliseconds. Comparison of predicted and measured responses is shown in Fig. 4B.

Discussion

There are several notable differences between commonly used electrophysiologic recording protocols and the drug exposure conditions in brain. First, exposure times to the modulator are different. In typical experimental protocols, where modulation is determined by comparing responses to an agonist in the absence and presence of a modulator, drug applications normally last from a few seconds in small cells like human embryonic kidney cells or fibroblasts to a few tens of seconds in the case of large cells such as *Xenopus* oocytes. In contrast, the buildup and clearance of many drugs, including lipophilic steroids and analogs, in the brain has a timescale of minutes or hours (Ram et al., 2001; Visser et al., 2002). Our previous work has shown that steroid redistribution to internal lipid compartments affects modulation of cell membrane localized receptors, and that prolonged drug applications result in lower estimated EC50 (Li et al., 2007b).

A second issue relates to agonist profile. Both the agonist concentration and application duration are different in the two settings. Experimental modulation is usually measured in the presence of some arbitrary low concentration of agonist, such as EC50 or EC20, GABA for \(\alpha_{1,2,3,4} \gamma_2 \) receptors, whereas native synaptic GABA4 receptors are alternately bathed in millimolar (saturating) concentrations of GABA after the release of transmitter from presynaptic nerve terminals followed by longer periods where the surrounding medium contains submicromolar (<EC1) concentrations of the agonist. We recently showed that anesthetic drugs readily potentiate the small steady-state currents elicited by submicromolar GABA, intended to mimic ambient GABA between synaptic events (Li and Akk, 2015). It is, however, less clear whether synaptic events can be potentiated, given the high, near-maximal open probability of \(\alpha_{1,2,3,4} \gamma_2 \) receptors in the presence of saturating GABA. In any case, given the widely different exposure times to the agonist, the occupancy of the various states, and the effects of state-dependent modulators, are likely to be qualitatively different.

We have previously characterized mechanisms of steady-state modulation for several potentiating steroids (e.g., Akk

Table 2

Results of kinetic modeling of single-channel currents elicited by 50 \(\mu M \) GABA alone or in the presence of e18,19dinor3α5α160, 3α5α17βEt, or e3α5α4βOMe160. Data from four to six patches at each condition were combined and analyzed using Model 1. The rate constants (and standard deviations estimated from the Hessian matrix) are in s\(^{-1}\). The association (3 \(\mu M \) s\(^{-1}\)) and dissociation rate constants (300 s\(^{-1}\)) for GABA, and the rate for A2O1→A2C1 transition (300 s\(^{-1}\)) were constrained to values determined in a previous analysis (Lema and Auerbach, 2006). Single-channel data were filtered at 2 kHz. The dead time was 90 \(\mu s \). The rate constants in this table were used to simulate synaptic events (Fig. 4).

<table>
<thead>
<tr>
<th>Transition</th>
<th>GABA</th>
<th>+e18,19dinor3α5α160</th>
<th>+3α5α17βEt</th>
<th>+e3α5α4βOMe160</th>
</tr>
</thead>
<tbody>
<tr>
<td>A2C1→A2C2</td>
<td>1590 ± 86</td>
<td>1902 ± 103</td>
<td>1972 ± 69</td>
<td>3029 ± 290</td>
</tr>
<tr>
<td>A2C2→A2C1</td>
<td>4032 ± 238</td>
<td>3689 ± 287</td>
<td>1846 ± 61</td>
<td>1645 ± 191</td>
</tr>
<tr>
<td>A2C1→A2C1</td>
<td>332 ± 28</td>
<td>474 ± 54</td>
<td>586 ± 55</td>
<td>615 ± 67</td>
</tr>
<tr>
<td>A2C2→A2O1</td>
<td>1491 ± 116</td>
<td>1185 ± 118</td>
<td>1895 ± 75</td>
<td>1348 ± 79</td>
</tr>
<tr>
<td>A2O1→A2C2</td>
<td>4591 ± 317</td>
<td>4648 ± 347</td>
<td>2660 ± 95</td>
<td>2259 ± 120</td>
</tr>
<tr>
<td>A2O2→A2O3</td>
<td>3059 ± 254</td>
<td>836 ± 81</td>
<td>920 ± 47</td>
<td>742 ± 80</td>
</tr>
<tr>
<td>A2O3→A2C2</td>
<td>494 ± 28</td>
<td>822 ± 107</td>
<td>548 ± 47</td>
<td>206 ± 23</td>
</tr>
<tr>
<td>A2C2→A2O2</td>
<td>443 ± 237</td>
<td>1534 ± 106</td>
<td>1401 ± 44</td>
<td>885 ± 86</td>
</tr>
<tr>
<td>A2O3→A2C2</td>
<td>138 ± 22</td>
<td>88 ± 3</td>
<td>69 ± 2</td>
<td>47 ± 3</td>
</tr>
</tbody>
</table>

![Fig. 4](https://example.com/fig4.png)

Fig. 4. Modeling of synaptic events. (A) Synaptic events were simulated according to Model 1 and the rate constants given in Table 2. Receptor activation was driven by a 1 millisecond-long square-pulse of 10 mM GABA (arrow) in the absence (control) and presence of saturating concentrations of e18,19dinor3α5α160, 3α5α17βEt, or e3α5α4βOMe160. Overlaid on the data traces are single-exponential fits that yielded 18 milliseconds, 66 milliseconds, and 112 milliseconds for control, e18,19dinor3α5α160, 3α5α17βEt, or e3α5α4βOMe160, respectively. (B) The fitted lines from (A) are overlaid on the averaged sIPSCs obtained under control conditions (no steroid), and in the presence of e18,19dinor3α5α160, 3α5α17βEt, or e3α5α4βOMe160.
Steroids act by modulating up to three specific parameters of open and closed time distributions. Kinetic components of potentiation detected in single-channel recordings and the resulting changes in receptor open probability are generally a good predictor of magnitude of modulation of peak responses in whole-cell measurements (Li et al., 2007b; 2009; Scaglione et al., 2008; Qian et al., 2014). However, no direct comparison with modulation of synaptic responses is available.

It is known from previous work that addition of neuroactive steroids, such as 3α5αP and 3α5αP11O, to the extracellular medium leads to prolongation of inhibitory postsynaptic currents (Harrison et al., 1987b; Zorumski et al., 1998; Spigelman et al., 2003; Haage et al., 2005). In the present study, we set out to determine whether the magnitude of this effect correlates with the degree of potentiation observed in steady-state single-channel patch clamp recordings, and whether an effect on synaptic currents can be predicted from the kinetic profile of a steroid as determined in single-channel studies.

Based on measuring the effects of fourteen neuroactive steroids and analogs, we conclude that there is a strong positive correlation between steroid-induced changes in single-channel open probability and prolongation of decay time of sIPSCs in the presence of steroids. Steroids that most efficaciously potentiate P_o typically had the strongest effect on t_{dec}. When we separated the increase in P_o into major components that produce potentiation, we found that the decrease in the prevalence of the longest-lived intra-cluster closed time component was the sole predictor of prolongation of sIPSCs. This finding is not necessarily surprising because the decrease in the prevalence of CT3 is most strongly associated with enhancement of single-channel P_o and the macroscopic peak response (Akk et al., 2010). In the framework of Model 1, this kinetic effect is jointly produced by the increase in the rate of the $A_C C_1 \rightarrow A_C C_2$ transition and a decrease in the rate of $A_C C_2 \rightarrow A_C C_1$. We interpret the lack of correlation between open time properties and t_{dec} as an independence of steroid’s ability to prolong the mean open duration and its effects on closed times.

Overall, our data indicate that studies of steroid-induced changes in steady-state single-channel currents can be employed to predict steroid effects on transient, synaptic responses. We also infer that the $\alpha 1\beta 2\gamma 2L$ receptor is an acceptable model system to mimic and study synaptic-type GABA_A receptors.

Several prior studies have observed prolongation of the decay time course of sIPSCs or deactivation time constant of heterologously expressed $\alpha 1\beta 2\gamma 2L$ receptors in the presence of potentiating steroids (Harrison et al., 1987b; Wohlforth et al., 2002; Spigelman et al., 2003; Haage et al., 2005) or volatile anesthetics such as halothane and isoflurane (Banks and Pearce, 1999). Based on kinetic modeling simulations, Haage et al. (2005) proposed that 3α5αP increases the decay time by reducing the GABA unbinding rate. A similar conclusion was reached for halothane-induced prolongation of decay time course (Li and Pearce, 2000). However, mechanistic conclusions can be dependent on the activation model selected for analysis. Changes in the occupancies of any of the fully liganded states, including various short-lived nonconducting states, would modify the macroscopic deactivation time course (Bianchi and Macdonald, 2001; Bianchi et al., 2007). We previously showed that receptor affinity to GABA, i.e., the binding and unbinding rates, or the maximal effective opening rate in the presence of GABA are not affected by potentiating steroids (Akk et al., 2004). Our current modeling results are in agreement with this, showing that steroid effects can be fully accounted for by changes in transitions between fully liganded states.

Strictly speaking, an increase in the decay time course does not necessarily lead to an increase in charge transfer. Sojourns in intraburst nonconducting states have been associated with prolonged decay after brief applications of agonist (Jones and Westbrook, 1995). However, a compound whose sole effect is an introduction of such nonconducting states will also reduce the open probability within the burst. In fact, the prolongation of the burst duration will be exactly offset by the reduction in open probability within the burst. It is noteworthy that the effects observed in the presence of $e18,19\text{dinor}3\alpha 5\alpha 16O$, $3\alpha 5\alpha 17\beta\text{Et}$, or $e3\alpha 5\alpha 4\text{OHMe}16O$ increase both the mean duration and the open probability of a burst.

Acknowledgments
The authors thank Ann Benz for technical help preparing cultures, Lily Cao for assistance with electrophysiologic recordings, and Joe Henry Steinbach for helpful comments on the manuscript.

Authorship Contributions
Participated in research design: Chakrabarti, Covey, Mennerick, Akk.
Conducted experiments: Chakrabarti.
Contributed new reagents or analytic tools: Qian, Krishnan.
Performed data analysis: Chakrabarti, Akk.
Wrote or contributed to the writing of the manuscript: Chakrabarti, Covey, Mennerick, Akk.

References

Li P and Akk G (2013) Synaptic-type a1b2γ2L GABA(A) receptors produce large persistent currents in the presence of ambient GABA and anesthetic drugs. Mol Pharmacol 87:776–781.

Address correspondence to: Dr. Gustav Akk, Department of Anesthesiology, Washington University, Campus Box 8054, 660 South Euclid Avenue, St. Louis, MO 63110. E-mail: akk@morpheus.wustl.edu

