Involvement of Spinal Angiotensin II System in Streptozotocin-Induced Diabetic Neuropathic Pain in Mice

Yoshihiko Ogata, Wataru Nemoto, Osamu Nakagawasai, Ryota Yamagata, Takeshi Tadano, and Koichi Tan-No

Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan (Y.O., W.N., O.N., R.Y., K.T.-N.); Department of Health Care Medical Research, Venture Business Laboratory, Kanazawa University, Kanazawa, Japan (T.T.)

Received March 1, 2016; accepted July 6, 2016

ABSTRACT

Renin-angiotensin system (RAS) activity increases under hyperglycemic states, and is thought to be involved in diabetic complications. We previously demonstrated that angiotensin (Ang) II, a main bioactive component of the RAS, might act as a neurotransmitter and/neuromodulator in the transmission of nociceptive information in the spinal cord. Here, we examined whether the spinal Ang II system is responsible for diabetic neuropathic pain induced by streptozotocin (STZ). Tactile allodynia was observed concurrently with an increase in blood glucose levels the day after mice received STZ (200 mg/kg, i.v.) injections. Tactile allodynia on day 14 was dose-dependently inhibited by intrathecal administration of losartan, an Ang II type 1 (AT1) receptor antagonist, but not by PD123319, an AT2 receptor antagonist. In the lumbar dorsal spinal cord, the expression of Ang II, Ang converting enzyme (ACE), and phospho-p38 mitogen-activated protein kinase (MAPK) were all significantly increased on day 14 after STZ injection compared with vehicle-treated controls, whereas no differences were observed among AT1 receptors or angiotensinogen levels. Moreover, the increase in phospho-p38 MAPK was significantly inhibited by intrathecal administration of losartan. These results indicate that the expression of spinal ACE increased in STZ-induced diabetic mice, which in turn led to an increase in Ang II levels and tactile alldynia. This increase in spinal Ang II was accompanied by the phosphorylation of p38 MAPK, which was shown to be mediated by AT1 receptors.

Introduction

The renin angiotensin (Ang) system (RAS) is involved in regulating blood pressure and fluid and electrolyte homeostasis (Kobori et al., 2007). In the RAS, angiotensinogen (AGT) is metabolized into Ang I, and Ang I is then converted to Ang II by Ang converting enzyme (ACE) (Paul et al., 2006; Campbell, 2014). The evidence indicates that Ang II, a main bioactive component of the RAS, affects a wide range of central and peripheral components of the sensory systems (Wu et al., 2000; Burkhalter et al., 2001; Pelegreni-da-Silva et al., 2005), and is mediated by Ang II type 1 (AT1) and Ang II type 2 (AT2) receptors.

Traditionally, Ang II has been considered to be generated by the circulating RAS, but additional local organ-specific RASs have been confirmed to exist in several organs (Bader, 2010). In both rat and human dorsal root ganglia (DRGs) Ang II is colocalized in two known regulators for nociception and sensory transmission: substance P and calcitonin gene–related peptide (Patil et al., 2010). We have previously demonstrated that when mice are administered Ang II intrathecally, p38 mitogen-activated protein kinase (MAPK) is phosphorylated through AT1 receptors, leading to nociceptive behavior (Nemoto et al., 2013, 2015a). Moreover, injections of 2% formalin into mice hind paws increases Ang II approximately 1.5-fold on the ipsilateral side of the lumbar superficial dorsal horn, and AT1 receptor antagonist losartan dose-dependently produces an antinociceptive effect by inhibiting p38 MAPK phosphorylation (Nemoto et al., 2015b). Taken together, Ang II may act as a neurotransmitter and/neuromodulator in the spinal transmission of nociceptive information.

Neuropathy occurs in about 50% of patients with diabetes (Dyck et al., 1993; Veves et al., 2008) as a diffuse symmetric injury to peripheral nerves, and has major implications on the quality-of-life and public health costs (Gordois et al., 2003;
Boulton et al., 2005). One of the prominent pathognomonic symptoms of diabetic neuropathy is neuropathic pain, which affects 16% of patients with diabetes, but is frequently unreported (12.5%) and often inadequately treated (39%) (Daousi et al., 2004). The pathogenesis of diabetic neuropathic pain is complex and thus remains poorly understood.

In the diabetic state, there is an increase in plasma ACE activity and levels of Ang II (Van Dyk et al., 1994; van Dijk et al., 2001) and there have been many studies conducted on the relationship between RAS and diabetic complications. One of the outcomes of RAS activation is the hypertrophy of various renal cells promoted by Ang II, which leads to the development of diabetic nephropathy (Leehey et al., 2000; Vidotti et al., 2004). Evidence obtained from both animal and clinical studies supports the hypothesis that nephropathy can be effectively treated by intrarenal RAS blockade (Hollenberg et al., 2003). In addition, the retinal RAS is also activated in diabetic mice and treatment with AT1 receptor antagonists significantly ameliorates the course of retinopathy (Ebrahimian et al., 2005). Although the role of spinal RAS on diabetic mice and treatment with AT1 receptor antagonists significantly ameliorates the course of retinopathy (Ebrahimian et al., 2005). Although the role of spinal RAS has not been studied to date, these reports suggest that RAS is also activated in the spinal cord and is involved in diabetic neuropathic pain.

Thus, in the present study we examined whether the spinal RAS is responsible for diabetic neuropathic pain using the streptozotocin (STZ)-induced diabetic mouse model.

Materials and Methods

Animals

Male ddY mice (26–30 g; Japan SLC Inc., Hamamatsu, Japan) were housed in cages with food and water provided ad libitum under constant temperature (22 ± 2°C) and humidity (55 ± 5%), with a 12-hour light/dark cycle (lights on: 8:00 AM to 8:00 PM). Mice were separated into groups of 10–20 mice for behavioral experiments, 5–6 for reverse-transcription polymerase chain reaction (RT-PCR), 4–6 for Western blotting, and 4–10 for immunohistochemical experiments in single experiments. The Ethics Committee of Animal Experiments at Tohoku Medical and Pharmaceutical University approved all experiments according to the National Institutes of Health Guide for the Care and Use of Laboratory Animals (https://grants.nih.gov/grants/olaw/Guide-for-the-Care-and-use-of-laboratory-animals.pdf). Efforts were made to minimize suffering and to reduce the number of animals used.

Induction of Diabetes

STZ (Sigma-Aldrich, St. Louis, MO) was dissolved in 0.1 N citrate buffer (pH 4.5), and a single intravenous injection was given to mice promptly thereafter to induce diabetes (Kamei et al., 1991). Control mice were injected with vehicle alone. Blood samples from the tail vein were taken to measure blood glucose levels via the FreeStyle Optium Blood Glucose Monitoring System (Abbott Japan Co. Ltd., Osaka, Japan).

Intrathecal Injections

Intrathecal injections were performed as previously described (Nemoto et al., 2013, 2014, 2015a,b).

Behavioral Studies

Tactile allodynia was determined by assessing paw withdrawal via the von Frey filament test. Mice were placed on a mesh floor inside a clear plastic cubicle and were allowed to acclimatize for at least 30 minutes before the tests. Thereafter, von Frey filaments (pressure applied by each filament: 0.07, 0.16, 0.4, 0.6, 1.0, and 1.4 g) were applied perpendicularly against the plantar surface of the left and right hind paws from beneath the mesh floor and held for 3 seconds with slight buckling of the filaments. If the paw was sharply withdrawn, a positive response was recorded, and the next weakest von Frey hair was applied. On the other hand, if a negative response occurred, the next strongest force was applied. The mean left and right paw scores of trials for each mouse were calculated.

Stimulation of equal intensity (0.4-g filament) was applied to the plantar surface of the left and right hind paws, and repeated 10 times at intervals of 5 seconds to assess the dose-dependent effect of losartan on tactile allodynia. The frequency of sharp withdrawal responses was measured.

Drugs and Antibodies

The following drugs and reagents were used: losartan potassium (LKT Laboratories, St Paul, MN); 1-[(4-dimethylamino)-3-methylphenyl)methyl-5-(diphenylacetyl)-4,5,6,7-tetrahydro-1H-imidazo[4,5-c]pyridine-6-carboxylic acid ditrifluoracetate (PD123319; Torcis Bioscience, Ellsville, MO); sodium pentobarbital (Kyoritsu Seiyaku

Fig. 1. Changes in blood glucose levels, body weights, and tactile allodynia in STZ mice. Blood glucose levels (A), body weights (B), and tactile allodynia (C) were monitored over 28 days after the injection of STZ (2-200 mg/kg, i.v.). (A) Two-way ANOVA: group (F1,32 = 20.97, P < 0.01); time (F7,224 = 16.78, P < 0.01); group × time (F21,154 = 20.77, P < 0.01). One-way ANOVA: before (pre), F3,22 = 2.08, P = 0.13; day 1, F3,22 = 5.39, P < 0.01; day 3, F3,22 = 34.13, P < 0.01; day 5, F3,22 = 22.47, P < 0.01; day 7, F3,22 = 224.93, P < 0.01; day 14, F3,22 = 420.87, P < 0.01; day 21, F3,22 = 1002.69, P < 0.01; day 28, F3,22 = 583.84, P < 0.01. (B) Two-way ANOVA: group (F3,22 = 7.78, P < 0.01); time (F7,224 = 8.47, P < 0.01); group × time (F21,154 = 18.55, P < 0.01). One-way ANOVA: pre, F3,22 = 3.12, P < 0.05; day 1, F3,22 = 9.08, P < 0.01; day 3, F3,22 = 16.94, P < 0.01; day 5, F3,22 = 34.91, P < 0.01; day 7, F3,22 = 263.22, P < 0.01; day 14, F3,22 = 31.79, P < 0.01; day 21, F3,22 = 24.09, P < 0.01; day 28, F3,22 = 26.32, P < 0.01. (C) Two-way ANOVA: group (F3,22 = 4.06, P < 0.01); time (F7,224 = 8.65, P < 0.01); group × time (F21,154 = 0.39, P < 0.01). One-way ANOVA: pre, F3,22 = 0.08, P = 0.97; day 1, F3,22 = 1.85, P < 0.05; day 3, F3,22 = 10.76, P < 0.01; day 5, F3,22 = 9.06, P < 0.01; day 7, F3,22 = 8.47, P < 0.01; day 14, F3,22 = 11.10, P < 0.01; day 21, F3,22 = 10.05, P < 0.01; day 28, F3,22 = 20.45, P < 0.01. Values represent the mean ± S.E.M. for groups of 7–8 mice. *P < 0.05, **P < 0.01 compared with vehicle (0.1 N citrate buffer) controls.
overnight at 4°C with fluorescein isothiocyanate were washed four times with PBS for 1.5 hours and incubated containing 1% NGS), or rabbit anti-AGT antibody (1:25 dilution with PBS containing 1% NGS), rabbit anti-AT1 receptor antibody (1:100 dilution with PBS containing 0.3% Triton X-100 and 1% NGS), rabbit anti-phospho-p38 MAPK antibody (dilution of 1:50 for confocal microscopy, whereas other primary and secondary antibodies were diluted at 1:200. Losartan was dissolved in Ringer’s solution (Fuso Pharmaceutical Industries, Osaka, Japan), and PD123319 was dissolved in Ringer’s solution containing 6.8% dimethylsulfoxide (Wako Chemicals) for intrathecal injections.

Immunohistochemical Study

MapAnalyzer. Immunohistochemical staining was conducted as previously described (Nakagawasai et al., 2003; Nemoto et al., 2013, 2014, 2015b). The quantities of Ang II, phospho-p38 MAPK, ACE, AT1 receptors, or AGT in both sides of the superficial dorsal horn (laminae I and II) were determined as follows: 20-μm-thick slices were incubated overnight at 4°C with rabbit anti-Ang II antibody (diluted 1:50 with PBS containing 0.3% Triton X-100 and 1% NGS), rabbit anti-phospho-p38 MAPK antibody (1:100 dilution with PBS containing 1% NGS and 0.3% Triton X-100), rabbit anti-ACE antibody (1:50 dilution with PBS containing 1% NGS), rabbit anti-AT1 receptor antibody (1:100 dilution with PBS containing 1% NGS), or rabbit anti-AGT antibody (1:25 dilution with PBS containing 1% NGS and 0.3% Triton X-100), respectively. Slices were washed four times with PBS for 1.5 hours and incubated overnight at 4°C with fluorescein isothiocyanate–labeled anti-rabbit IgG goat anti-NeuN antibody, and/or rabbit anti-Iba-1 antibody, diluted with PBS containing 0.3% Triton X-100 and 1% NGS or NDS, respectively.) The antigen-specific fluorescence intensity was visualized on a D-Eclipse C1 microscope (Nikon, Kanagawa, Japan).

Confocal Microscopy. Immunohistochemical staining was conducted as previously described (Nemoto et al., 2014, 2015a). Immunofluorescence double labeling was achieved by incubating 40-μm-thick slices with the primary antibodies, rabbit anti-ACE antibody, goat anti-ACE antibody, mouse anti-NeuN antibody, and/or rabbit anti-Iba-1 antibody, diluted with PBS containing 0.3% Triton X-100 and 1% NGS or NDS, respectively. Negative control slides were stained under identical conditions but were incubated with non-immune serum as 1.

Western Blotting

Western blotting was conducted as previously described (Nemoto et al., 2013, 2014, 2015a). Electrophoresis was performed in 7.5% acrylamide gels for the detection of ACE; 10% acrylamide gels were used in all other cases. Proteins were transferred electrophoretically from the gel onto a polyvinylidene difluoride membrane using a semi-dry blotting apparatus (Bio-Rad Laboratories, Tokyo, Japan). Blots were blocked with 5% skim milk in Tris-buffered saline (TBST) supplemented with 0.01% Tween-20 for 30 minutes, and incubated with secondary antibodies (diluted 1:200 with PBS containing 0.3% Triton-X and 1% NGS or NDS, correspondingly, goat anti-rabbit IgG, Alexa Fluor 488–conjugated donkey anti-rabbit IgG, and Alexa Fluor 568–conjugated goat anti-goat IgG (Molecular Probes, Eugene, OR). The antigen against ACE was used at a dilution of 1:50 for confocal microscopy, whereas other primary and secondary antibodies were diluted at 1:200.

Immunohistochemical staining was conducted as previously described (Nakagawasai et al., 2003; Nemoto et al., 2013, 2014, 2015b). The quantities of Ang II, phospho-p38 MAPK, ACE, AT1 receptors, or AGT in both sides of the superficial dorsal horn (laminae I and II) were determined as follows: 20-μm-thick slices were incubated overnight at 4°C with rabbit anti-Ang II antibody (diluted 1:50 with PBS containing 0.3% Triton X-100 and 1% NGS), rabbit anti-phospho-p38 MAPK antibody (1:100 dilution with PBS containing 1% NGS and 0.3% Triton X-100), rabbit anti-ACE antibody (1:50 dilution with PBS containing 1% NGS), rabbit anti-AT1 receptor antibody (1:100 dilution with PBS containing 1% NGS), or rabbit anti-AGT antibody (1:25 dilution with PBS containing 1% NGS and 0.3% Triton X-100), respectively. Slices were washed four times with PBS for 1.5 hours and incubated overnight at 4°C with fluorescein isothiocyanate–labeled anti-rabbit IgG goat anti-NeuN antibody, mouse anti-NeuN antibody, and/or rabbit anti-Iba-1 antibody, diluted with PBS containing 0.3% Triton X-100 and 1% NGS or NDS, correspondingly. Negative control slides were stained under identical conditions but were incubated with non-immune serum as 1.

Confocal Microscopy. Immunohistochemical staining was conducted as previously described (Nemoto et al., 2014, 2015a). Immunofluorescence double labeling was achieved by incubating 40-μm-thick slices with the primary antibodies, rabbit anti-ACE antibody, goat anti-ACE antibody, mouse anti-NeuN antibody, and/or rabbit anti-Iba-1 antibody, diluted with PBS containing 0.3% Triton X-100 and 1% NGS or NDS, respectively. Negative control slides were stained under identical conditions but were incubated with non-immune serum as 1.

Western Blotting

Western blotting was conducted as previously described (Nemoto et al., 2013, 2014, 2015a). Electrophoresis was performed in 7.5% acrylamide gels for the detection of ACE; 10% acrylamide gels were used in all other cases. Proteins were transferred electrophoretically from the gel onto a polyvinylidene difluoride membrane using a semi-dry blotting apparatus (Bio-Rad Laboratories, Tokyo, Japan). Blots were blocked with 5% skim milk in Tris-buffered saline (TBST) supplemented with 0.01% Tween-20 for 30 minutes, and incubated with secondary antibodies (diluted 1:200 with PBS containing 0.3% Triton-X and 1% NGS or NDS, correspondingly, goat anti-rabbit IgG, Alexa Fluor 488–conjugated donkey anti-rabbit IgG, and Alexa Fluor 568–conjugated goat anti-goat IgG (Molecular Probes, Eugene, OR). The antigen against ACE was used at a dilution of 1:50 for confocal microscopy, whereas other primary and secondary antibodies were diluted at 1:200.

Immunohistochemical staining was conducted as previously described (Nakagawasai et al., 2003; Nemoto et al., 2013, 2014, 2015b). The quantities of Ang II, phospho-p38 MAPK, ACE, AT1 receptors, or AGT in both sides of the superficial dorsal horn (laminae I and II) were determined as follows: 20-μm-thick slices were incubated overnight at 4°C with rabbit anti-Ang II antibody (diluted 1:50 with PBS containing 0.3% Triton X-100 and 1% NGS), rabbit anti-phospho-p38 MAPK antibody (1:100 dilution with PBS containing 1% NGS and 0.3% Triton X-100), rabbit anti-ACE antibody (1:50 dilution with PBS containing 1% NGS), rabbit anti-AT1 receptor antibody (1:100 dilution with PBS containing 1% NGS), or rabbit anti-AGT antibody (1:25 dilution with PBS containing 1% NGS and 0.3% Triton X-100), respectively. Slices were washed four times with PBS for 1.5 hours and incubated overnight at 4°C with fluorescein isothiocyanate–labeled anti-rabbit IgG goat anti-NeuN antibody, mouse anti-NeuN antibody, and/or rabbit anti-Iba-1 antibody, diluted with PBS containing 0.3% Triton X-100 and 1% NGS or NDS, correspondingly. Negative control slides were stained under identical conditions but were incubated with non-immune serum as 1.
rabbit antibodies against p38 MAPK, phospho-p38 MAPK, ACE, AGT, AT1 receptor, or β-actin (diluted 1:1000 with TBST containing 5% skim milk) at 4°C overnight. Blots were then washed several times and incubated at room temperature for 2 hours with horseradish peroxidase-conjugated anti-rabbit IgG antibody (1:5000 with TBST containing 5% skim milk). An ECL assay kit was used to develop the blots and immunoreactive (IR) proteins were visualized on Hyper-film ECL. The densities of the corresponding bands were analyzed using Image-J 1.43u (National Institutes of Health).

RT-PCR
Total RNA was isolated from the spinal cord, kidney, and liver of nontreated mice using TRI Reagent according to the manufacturer.
The amount of each PCR product was normalized to GAPDH. Real-Time PCR System (Applied Biosystems, Foster City, CA). The plate (2 primer 5′-AGT sense primer 5′-TCC ATT G-3′ and antisense primer 5′-GAT AAC CCT GCA TGC GAC CTG-3′ (148 bp product); AGT sense primer 5′-ACA GCA CCT CGG TGT CGT TG-3′ and antisense primer 5′-TGT CGA GAT CTG AGG AGC AG-3′ (153 bp product); ACE sense primer 5′-ACA TAC CCT AGC TGA GCC TTC-3′ and antisense primer 5′-GTC GTG GG-3′ and antisense primer 5′-ATT CCC ATG AAG-3′ (245 bp product); chymase sense primer 5′-GCC CAA GCC ATT GCA TCC TA-3′ and antisense primer 5′-TGC CAT GGC ACA AAC CT-3′ (177 bp product); cathepsin D sense primer 5′-GTT CCT CTG GCC CAA GCC ACC TA-3′ and antisense primer 5′-ATT CCC ATG AAG CCA CTC AG-3′ (167 bp product) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) sense primer 5′-ACC ACA GTC CAT GCC ATC CAG GTT GA-3′ and antisense primer 5′-ATT CCC ATG AAG CCA CTC AG-3′ (166 bp product). To assess the PCR products qualitatively, an aliquot from each reaction was separated by electrophoresis on each gel was captured using FAS-III (Toyobo). For quantification of mRNA expression, real-time RT-PCR was carried out in a 20-μl solution containing Go Taq quantitative PCR Master mix (10 μl), RT template (2 μl), water (7 μl), and primers (1 μl) using the StepOnePlus Real-Time PCR System (Applied Biosystems, Foster City, CA). The amount of each PCR product was normalized to GAPDH.

Statistical Methods

Data are expressed as the mean ± SEM. Significant differences were analyzed by one-way or two-way analysis of variance (ANOVA), followed by Fisher’s protected least significant difference test for multiple comparisons. The Student’s t test was used for comparisons between two groups. Statistical significance was considered at \(P < 0.05 \) in all comparisons.

Results

Time Course of Blood Glucose Levels, Body Weight, and Tactile Allodynia Up to 28 Days After STZ Injection. Blood glucose levels, body weights, and tactile allodynia were measured at 1, 3, 5, 7, 14, 21, and 28 days after mice received injections of STZ (2–200 mg/kg) or vehicle (citrate buffer). Blood glucose levels were significantly increased in STZ (200 mg/kg)-treated mice (from 190 to 280 mg/dl) compared with those of vehicle-treated mice 1 day after injection, and rose above the detection limit of the meter (>500 mg/dL), where they remained from day 7 onward (Fig. 1A). Such increases in glucose levels after STZ injection confirmed the induction of a diabetic state. On the other hand, 2 and 20 mg/kg doses of STZ did not affect blood glucose levels (Fig. 1A). The rate of increase in body weight in STZ (200 mg/kg)-induced diabetic mice (STZ mice) was slower than in vehicle or STZ-treated mice at 2 and 20 mg/kg throughout the experimental period (Fig. 1B).

STZ mice are widely used as models of diabetic neuropathic pain. However, it has been shown that STZ can directly stimulate DRG neurons and induce thermal hyperalgesia without affecting blood glucose levels (Pabbidi et al., 2008). Concurrent with the increase in blood glucose levels, a significant decrease in the withdrawal threshold was observed 1 day after treatment with 200 mg/kg STZ (Fig. 1C), and this remained the same throughout the entire experimental period. In addition, blood glucose levels were not affected by STZ doses of 2 and 20 mg/kg, whereas the withdrawal threshold was significantly decreased on day 1 only and on days 1–3 after injection, respectively (Fig. 1C). Therefore, to exclude the possibility that STZ has a direct action on neurons, we used mice on day 14 after injection at 200 mg/kg, which was a point in time that showed a marked decrease in pain threshold.

Effects of Ang II Receptor Antagonists on STZ-Induced Tactile Allodynia. To investigate whether spinal Ang II receptors are involved in STZ-induced tactile allodynia, the effects of intrathecal administration of losartan or PD13319, which are AT1 and AT2 receptor antagonists, respectively, were examined on day 14 after STZ injection.
Tactile allodynia was measured before and after (15, 30, 60, 90, and 120 minutes) intrathecal injection. In vehicle-treated mice, losartan did not affect the withdrawal threshold at any time throughout the experimental period (Fig. 2A). Similarly, PD123319 showed no significant effects (Fig. 2B). On the other hand, tactile allodynia was significantly inhibited 60–120 minutes after intrathecal administration of losartan (30 nmol) in STZ mice compared with Ringer’s solution–treated controls (Fig. 2C). In contrast, PD123319 (30 nmol) did not have any significant effects on STZ-induced tactile allodynia (Fig. 2D), although it has been shown to significantly reduce the pressor effect induced by intrathecal administration of Ang II at a lower dose of 13.6 nmol (Park and Henry, 1997).

We additionally examined the dose dependency of losartan (10–30 nmol) on STZ-induced tactile allodynia 90 minutes after administration. As shown in Fig. 2E, losartan (10–30 nmol) inhibited STZ-induced tactile allodynia in a dose-dependent manner. Taken together, these results suggest that spinal AT1, but not AT2, receptors are involved in STZ-induced tactile allodynia.

Levels of Ang II in the Lumbar Spinal Cord of STZ Mice. To examine whether spinal Ang II levels are increased in STZ mice, the distribution of Ang II immunofluorescence intensity was determined by microphotometry and categorized according to 18 levels (shown by colors in Fig. 3B, where the lowest concentration is black, and the highest concentration is white). Relatively high fluorescence intensities for Ang II were seen in the lumbar superficial dorsal horn (laminae I and II) in vehicle mice (Fig. 3B). Importantly, these intensities increased by approximately threefold in STZ mice, indicating a potential increase in local RAS activity (Fig. 3C).

Phosphorylation of p38 MAPK in the Lumbar Spinal Cord of STZ Mice. To investigate whether spinal p38 MAPK is activated in STZ mice, we examined the phosphorylation of p38 MAPK in the lumbar dorsal cord by Western blotting. There was a marked increase in the phosphorylation of p38 MAPK in STZ mice (Fig. 4A). However, intrathecal administration of losartan (30 nmol) had a significant preventive effect on this increase (Fig. 4A). High fluorescence intensity for phospho-p38 MAPK was seen in the lumbar

Fig. 7. Changes in ACE, AT1 receptors and AGT levels in the lumbar spinal cord of STZ mice. (A) Representative Western blots showing ACE, AT1 receptors, AGT, and β-actin. Dorsal lumbar spinal cord samples were taken 14 days after STZ (200 mg/kg) injection. (B–D) Relative quantification of ACE (B), AT1 receptors (C), and AGT (D) to β-actin set as 1.0 in the vehicle mice. Each value represents the mean ± S.E.M. of 5–6 mice. *P < 0.05 compared with vehicle controls. Immunofluorescence intensities were measured on day 14 after STZ (200 mg/kg) injection. Distribution of the immunohistochemical intensity for ACE (E), AT1 receptors (F), and AGT (G) in the lumbar spinal cord of STZ mice. Quantification of the fluorescence intensity for ACE (H), AT1 receptors (I), and AGT (J) relative to the superficial dorsal horn (laminae I and II) of vehicle mice. Values represent the mean ± S.E.M. for groups of 4–8 mice. *P < 0.05, compared with vehicle. n.s., nonsignificant.
superficial dorsal horn of Ringer-injected STZ mice (Fig. 4B). Furthermore, the intensity was increased approximately 1.5-fold in Ringer-injected STZ mice compared with Ringer-injected vehicle mice, and was significantly attenuated by losartan (Fig. 4C).

Expression of mRNA of RAS Components in the Mouse Spinal Cord. To investigate whether RAS components are expressed in the mouse lumbar dorsal spinal cord, the presence of transcripts were determined by RT-PCR. The mRNAs for AT1A receptors, ACE, AGT, and cathepsin D were expressed in the lumbar dorsal spinal cord (Fig. 5), whereas those for AT1B receptor, renin, and chymase were not detected. The kidney and liver were used as positive controls for PCR detection.

Next, we determined the levels of AT1A receptors, ACE, AGT, and cathepsin D mRNA expression in the lumbar dorsal spinal cord of STZ mice using real-time quantitative RT-PCR. Both AGT and ACE transcripts were significantly increased in STZ mice compared with vehicle mice (Fig. 6, A and B). In contrast, the mRNA levels for AT1A receptor and cathepsin D did not differ significantly between STZ and vehicle mice (Fig. 6, C and D).

Levels of ACE, AT1 Receptors, and AGT in the Lumbar Spinal Cord of STZ Mice. We determined the levels of ACE, AT1 receptors, and AGT in the lumbar dorsal spinal cord of STZ mice by Western blotting. Spinal ACE increased significantly in STZ mice compared with vehicle mice (Fig. 7, A and B). On the other hand, the levels of AGT and AT1 receptors did not significantly differ between STZ and vehicle mice (Fig. 7, A, C, and D). Moreover, to quantify the levels of these RAS components in the superficial dorsal horn, we performed immunohistochemical labeling and measured the intensity of fluorescence in laminae I and II using MapAnalyzer. The distribution of ACE, AT1 receptors, and AGT in the mouse lumbar spinal cord and their immunofluorescence intensities are shown in Fig. 7, E–G. Relatively high fluorescence intensities for ACE, AT1 receptors, and AGT were seen in vehicle mice. In addition, the fluorescence intensity for ACE in the superficial dorsal horn had increased by approximately 1.7-fold in the STZ mice compared with vehicle mice (Fig. 7H). However, the intensities of AT1 receptors (Fig. 7I) and AGT (Fig. 7J) in diabetic mice did not differ from those of vehicle mice.

Dual Immunolabeling of ACE and Cell-Specific Markers in the Mouse Lumbar Superficial Dorsal Horn. Dual-immunofluorescence staining for ACE was performed in conjunction with that for cell-specific markers—NeuN for neurons, GFAP for astrocytes, and Iba-1 for microglia—to determine the cell types that are involved in the production of Ang II. ACE was localized in NeuN-IR cells (Fig. 8, A–C), whereas it was absent in GFAP-IR and Iba-1-IR cells (Fig. 8, D–I). These results indicated that ACE is expressed in neurons, but not in astrocytes or microglial cells in the mouse superficial dorsal horn.

Discussion

We have previously reported that Ang II may act as a neurotransmitter and/or neuromodulator in the spinal transmission of nociceptive information (Nemoto et al., 2013, 2015a, 2015b). The involvement of the RAS in diabetic nephropathy and retinopathy has been demonstrated alongside the beneficial effects on these complications by treatment with ACE inhibitors or AT1 receptor antagonists (Carey and Siragy, 2003; Nagai et al., 2007). Coppey et al. (2006) have shown that treatment with either enalapril, an ACE inhibitor, or L-158809, an AT1 receptor antagonist, prevents or reverses diabetic neuropathy in STZ-induced diabetic rats (STZ rats). Although the evidence indicates that RAS activity is increased in diabetes (Van Dyk et al., 1994; van Dijk et al., 2001), the role of spinal RAS on diabetic neuropathic pain has not been reported to date. Thus, we hypothesized that it was important to examine whether spinal RAS is necessary and sufficient for diabetic neuropathic pain in the STZ mouse model.

STZ is the most common agent used to induce experimental type 1 diabetic syndrome in animals. STZ is taken up by the β-cells of the islets of Langerhans in the pancreas via glucose transporter-2, which leads to their destruction and elevated plasma glucose levels (Schnell et al., 1994; Szukalski, 2001). In this study, a single intravenous injection of STZ (200 mg/kg) caused a rapid onset of hyperglycemia within 24 hours. The blood glucose levels remained markedly elevated even on day 28 after injection. A sudden increase in blood glucose level can cause structural and functional changes in the nerves, and possibly neuropathic pain (Boulton, 1992; Tesfaye et al., 1996). Moreover, the development of STZ-induced diabetic neuropathic pain is prevented by pretreatment with insulin (Aley and Levine, 2001; Messinger et al., 2009). These previous reports suggest that STZ-induced diabetic neuropathic pain may be frequently associated with hyperglycemia. In our study, lower doses of STZ (2 and 20 mg/kg) had no effect on blood glucose levels, whereas the withdrawal threshold was only briefly decreased to a significant level (on days 1–3) after

Fig. 8. Double-immunofluorescence staining of ACE and either NeuN, GFAP, or Iba-1 in the mouse lumbar superficial dorsal horn (L5). Photomicrographs of fluorescent NeuN-IR cells (A) and ACE-IR cells (B), and the merging of (A) and (B) (C). Photomicrographs of fluorescent GFAP-IR cells (D) and ACE-IR cells (E), and the merging of (D) and (E) (F). Photomicrographs of fluorescent Iba-1-IR cells (G) and ACE-IR cells (H), and the merging of (G) and (H) (I). Scale bar, 20 μm.
injection. To exclude the possibility that STZ has a direct action on neurons, as reported previously (Pabbidi et al., 2008), we used STZ (200 mg/kg)-injected mice with altered blood glucose levels from a later time point (day 14) as our model for diabetes-induced neuropathic pain.

Oral administration of an Ang II receptor antagonist or ACE inhibitor increases motor nerve conduction velocity, and is decreased in STZ rats without affecting blood glucose levels (Coppey et al., 2006). This suggests that blocking the activation of the RAS provides an effective approach toward the prevention/reversal of diabetes-induced neuronal dysfunction. In addition, it has been shown that oral administration of telmisartan, an AT1 receptor antagonist, has the potential to attenuate neuropathic pain in a chronic constriction injury model (Jaggi and Singh, 2011). In the present study, the fluorescence intensity for Ang II in the superficial dorsal horn of the spinal cord increased significantly on day 14 after STZ injection compared with vehicle-treated controls. Intrathecal administration of losartan reversed the tactile allodynia observed significantly and led to a dose-dependent decrease in the number of withdrawal responses on day 14 after injection of STZ. In contrast, the AT2 receptor antagonist PD123319 had no effect on STZ-induced tactile allodynia. Moreover, STZ-induced increases in phospo-p38 MAPK in the superficial dorsal horn of STZ mice were significantly inhibited by intrathecal administration of losartan. A Ser/Thr kinase, p38 MAPK, which converts extracellular stimuli into a wide range of cellular responses, plays an important role in spinal nociceptive transmission. For example, spinal p38 MAPK is phosphorylated in neuropathic pain models, such as chronic constriction injury or spinal nerve ligation, whereas intrathecal administration of p38 MAPK inhibitors attenuates tactile allodynia in these models (Tsuda et al., 2004; Xu et al., 2007). The phosphorylation of p38 MAPK is also seen in STZ rats, and p38 MAPK inhibitors reverse or prevent neuropathic pain (Daulhac et al., 2006). In our previous study, the phosphorylation of p38 MAPK induced by intrathecal administration of Ang II in mice was seen in spinal astrocytes and neurons, both of which can express AT1 receptors (Nemoto et al., 2015a). These findings suggest that losartan inhibits the phosphorylation of astrocytic and neuronal p38 MAPK in the superficial dorsal horns of diabetic mice. We have reported that intrathecal administration of Ang II induces nociceptive behavior alongside phosphorylation of spinal p38 MAPK (Nemoto et al., 2013, 2014, 2015a). Both nociceptive behavior and an increase in p38 MAPK phosphorylation have been shown to be mediated through AT1, but not AT2, receptors (Nemoto et al., 2013). Moreover, the injection of 2% formalin into the mouse hind paw increases the fluorescence intensity for Ang II on the ipsilateral side of the lumbar superficial dorsal horn. Furthermore, losartan dose-dependently protects against the nociceptive effect by inhibiting p38 MAPK phosphorylation (Nemoto et al., 2015b). Collectively, these findings suggest that STZ-induced diabetic neuropathic pain involves the activation of p38 MAPK signaling mediated by AT1, but not AT2, receptors in spinal astrocytes and neurons.

ACE and AGT are expressed in the pineal gland, diencephalon, brain stem, cortex, and cerebellum (Baltatu et al., 1998), whereas Ang II is locally synthesized in the brain (Ganten et al., 1983). However, Ang II has not yet been reported to be locally synthesized in the spinal cord. Therefore, we examined whether the local Ang II–generating system is present in the mouse lumbar dorsal spinal cord, and found mRNAs for AGT, ACE, and cathepsin D, an enzyme homologous to renin (Morris and Reid, 1978), but not that for renin. Moreover, renin mRNA was not detected in the lumbar dorsal spinal cord of STZ mice (data not shown). Although chymase can form Ang II by cleaving Ang I (Kirimura et al., 2005), its mRNA was also absent from the lumbar dorsal spinal cord. Similar to the spinal cord, the mRNA for cathepsin D, but not renin, is reported to be expressed in the DRG (Patil et al., 2010). Therefore, we can speculate that cathepsin D cleaves AGT to Ang I, which is in turn converted to Ang II by ACE in the spinal cord.

It has been reported that renin gene expression and AT1 receptor protein synthesis are increased, whereas the expression levels of AGT and ACE mRNAs remain unchanged, in the proximal tubules of STZ rats (Zimpelmann et al., 2000). On the other hand, an increase in AGT mRNA leading to the upregulation of Ang II has been observed in the retinæ of STZ mice (Ebrahimian et al., 2005). These reports indicate that several local Ang II–generating system components are increased in diabetes, depending on the organ or tissue under investigation. In this study, the expression of both AGT and ACE genes was increased in the lumbar dorsal spinal cord of STZ mice, whereas there was no change in cathepsin D expression. However, at the protein level, only ACE was increased in a significant manner, whereas AGT was not changed. Moreover, we observed that spinal ACE is present in neurons but is absent from glial cells in the superficial dorsal spinal cord. Therefore, the present results suggest that only the expression of ACE was increased, and among the local Ang II–generating system components in the spinal cord of the STZ mice, it was responsible for the increase in Ang II levels.

Regarding the expression of AT1 receptors, only transcripts for AT1A but not AT1B subtypes were expressed in the mouse lumbar dorsal spinal cord. Most species express a single type of AT1 receptor, but rodents express two isoforms, AT1A and AT1B (Timmermans et al., 1993). These isoforms share approximately 96% amino acid sequence homology and have similar ligand-binding affinities (Iwai and Inagami, 1992; Yoshida et al., 1992). In the lumbar dorsal spinal cord of STZ mice, neither the expression of AT1 receptor gene nor protein levels changed, though the immunofluorescence intensity for Ang II increased. It has been demonstrated that Ang II decreases AT1 receptor expression in proximal tubule cells in rats (Zeng et al., 2003). In the STZ mouse model, the local expression levels of AT1A receptor mRNA and AT1 receptors may not be influenced by the increase in Ang II in the spinal cord.

In conclusion, our data show that a local Ang II–generating system is present in the spinal cord. Among local components, the expression of ACE was increased in STZ-induced diabetic mice, which led to an increase in Ang II levels. Moreover, this increase in Ang II caused tactile allodynia accompanied by the phosphorylation of p38 MAPK via AT1 receptors in the lumbar superficial dorsal horn.

Acknowledgments

The authors thank Daichi Hasegawa, Aya Ohori, Yoshiko Shimawaki, and Shiori Hino at Tohoku Medical and Pharmaceutical University for their technical assistance.
Streptozotocin-Induced Neuropathic Pain and Angiotensin II

Address correspondence to: Dr. Koichi Tan-No, Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan. E-mail: koichi@tohoku-mpu.ac.jp

Downloaded from molpharm.aspetjournals.org at ASPET Journals on October 29, 2017.

Streptozotocin-Induced Neuropathic Pain and Angiotensin II

Address correspondence to: Dr. Koichi Tan-No, Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan. E-mail: koichi@tohoku-mpu.ac.jp

Downloaded from molpharm.aspetjournals.org at ASPET Journals on October 29, 2017.