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ABSTRACT
A single receptor can activate multiple signaling pathways that
have distinct or even opposite effects on cell function. Biased
agonists stabilize receptor conformations preferentially stimu-
lating one of these pathways, and therefore allow a more
targeted modulation of cell function and treatment of disease.
Dedicated development of biased agonists has led to promising
drug candidates in clinical development, such as the G protein-
biased m opioid receptor agonist oliceridine. However, leverag-
ing the theoretical potential of biased agonism for drug discovery
faces several challenges. Some of these challenges are techni-
cal, such as techniques for quantitative analysis of bias and

development of suitable screening assays; others are more
fundamental, such as the need to robustly identify in a very early
phase which cell type harbors the cellular target of the drug
candidate, which signaling pathway leads to the desired thera-
peutic effect, and how these pathways may be modulated in the
disease to be treated. We conclude that biased agonism has
potential mainly in the treatment of conditions with a well-
understood pathophysiology; in contrast, it may increase effort
and commercial risk under circumstances where the pathophys-
iology has been less well defined, as is the case with many highly
innovative treatments.

Introduction
It has been assumed historically that a given G protein-

coupled receptor (GPCR) primarily couples to one G protein
and signaling pathway—for instance, angiotensin II type
1 receptors (AT1Rs), muscarinic M3 receptors, and a1-adreno-
ceptors receptors couple to Gq; muscarinic M2 receptors,
m opioid receptors and a2-adrenoceptors couple to Gi; and
b-adrenoceptors couple to Gs (Bylund et al., 1994; Dhawan
et al., 1996; Caulfield and Birdsall, 1998; de Gasparo et al.,
2000). While exceptions to this rule were reported not too long
after the definition and classification of G proteins, it has only
become accepted in the past decade that coupling of a single
GPCR to multiple G proteins is the rule and not the exception.
Receptors typically coupling to Gq proteins can also couple to
Gi proteins, for instance, AT1R (Crawford et al., 1992), or to

Gs proteins, for instance, a1B-adrenoceptors (Horie et al.,
1995). Conversely, typically Gi-coupled receptors such as
M2 muscarinic acetylcholine receptors can also couple to Gq

(Schmidt et al., 1995), and typically Gs-coupled receptors such
as b2- and b3-adrenoceptors can also couple to Gi (Cao et al.,
2000) and/or Gq (Wenzel-Seifert and Seifert, 2000). Moreover,
GPCRs can directly couple not only to G proteins but also to
other signaling molecules such as arrestins (Peterson and
Luttrell, 2017) or src (Cao et al., 2000). Apparently, the classic
or canonical signaling pathway of a receptor is present in most
if not all cell types, whereas the additional or noncanonical
signaling pathways can exhibit a more restricted presence.
For instance, we have detected coupling to cAMP formation
upon b-adrenoceptor stimulation, presumably via Gs, in every
cell type we ever studied; in contrast, we only detected
coupling to phosphorylation of extracellular signal-regulated
kinase (ERK) via Gi in only some cell types. This does not
necessarily mean that coupling to additional signaling path-
ways per se is restricted, but it may be too weak in many cell
types to be quantified in a robust manner.
The term biased agonism, originally introduced by Jarpe

et al. (1998), describes the phenomenon that a ligand prefer-
entially activates one of several signaling pathways, whereas
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another agonist in the same system and acting on the same
receptor preferentially activates another pathway (Patel
et al., 2010). This phenomenon has also been referred to as
stimulus trafficking (Kenakin, 1995), functional dissociation
(Whistler et al., 1999), biased inhibition (Kudlacek et al.,
2002), differential engagement (Manning, 2002), and ligand-
directed signaling (Michel and Alewijnse, 2007). Such prefer-
ential coupling translates into differential induction of
receptor trafficking and gene transcription programs (Maudsley
et al., 2015; Delgado-Peraza et al., 2016). Of note, the concept of
biased agonism is not necessarily restricted to GPCRs and could
also be applied to other signaling processes where the ligand-
activated molecule may bind to more than one other partner, for
instance, to steroid hormone receptors and other ligand-activated
transcription factors (Michel et al., 2014).
Perhaps the best-known hypothesis for the molecular basis

of biased agonism relates to the fact that each ligand stabilizes
a specific conformation of a receptor (Kenakin and Morgan,
1989; Kenakin andMiller, 2010; Costa-Neto et al., 2016). This
has been demonstrated using a variety of techniques, from
NMR and double electron-electron resonance spectroscopy
(Manglik et al., 2015) to stabilization of discrete conformations
using allosteric nanobodies (Staus et al., 2016). Since different
receptor conformations are likely to exhibit different affinities
for various G proteins or G protein versus arrestin, it appears
logical that ligands inducing different receptor conformations
will also differentially affect coupling to specific G proteins,
i.e., can exhibit biased agonism. Even minor chemical differ-
ences between ligands, e.g., their stereoisomers, may lead to
preferential activation of distinct signaling pathways of the
same receptor (Seifert and Dove, 2009). A structural basis for
this is that distinct amino acids within a receptor are critical
for coupling to Gs compared with Gi proteins (Manglik et al.,
2015).
Many cases of proposed biased agonism include receptor

binding to arrestins (Peterson and Luttrell, 2017), which in
turn is often linked to activation of ERK (Patel et al., 2010;
Szakadáti et al., 2015; Delgado-Peraza et al., 2016). Activation
of ERK can also occur independently of arrestin, for instance,
via src (Cao et al., 2000). Moreover, it has been proposed that
receptors primarily coupling to Gq or Gs proteins may activate
ERK via Gi. An example of the latter are b3-adrenoceptors,
which typically couple to Gs followed by activation of adenylyl
cyclase and generation of cAMP; however, in some cell types
they can also cause (moderate) induction of ERK phosphory-
lation, which is proposed to involve activation of a pertussis
toxin (PTX)–sensitive G protein, presumably Gi (Gerhardt
et al., 1999; Soeder et al., 1999). However, the latter finding
may not be robust since it is based on the observation that less
ERK phosphorylation was observed following pretreatment
with PTX, but the effects of PTX on basal ERK phosphoryla-
tion had not been assessed. Recent observations from our group
confirm that PTX reduces ERK phosphorylation responses but
also markedly lowers basal ERK phosphorylation; relative to
this lowered basal value, b3-adrenoceptor ligands, if anything,
yielded a greater relative enhancement of ERK phosphoryla-
tion than in the absence of PTX (Okeke et al., 2018). Since this
may also apply to other receptors, the true role of Gi proteins in
ERK activation as an alternative signaling pathway remains
to be determined. Of note, ERK activation byGq- or Gs-coupled
receptors may result from activation of these G proteins
(Lef kowitz et al., 2002).

Based on the molecular basis of biased agonism, the specific
signaling pathway activated by a ligand depends on several
factors (Kenakin and Christopoulos, 2013). First, the bimo-
lecular interaction between ligand and receptor favors a
specific receptor conformation. This conformation in turn will
favor binding to a given G protein, arrestin, or other signaling
molecule. These two properties together define ligand bias
(Kenakin, 2015a). Second, the stochiometric ratio of G pro-
teins, arrestins, and other signaling partners affects the
degree to which they will be activated by a given receptor
conformation (Onfroy et al., 2017). Thus, high expression of
one signaling partner may lead to preferential activation of
this pathway even if the receptor conformation has somewhat
lower affinity for it. These stochiometric ratios define sys-
tem bias (Kenakin, 2015a). Third, stochiometric ratios of
G proteins and arrestins in a given cell type or tissue can be
modified by various physiologic, pathologic, or iatrogenic
factors. These effects define dynamic bias (Michel et al.,
2014). Fourth, whether a given signaling pathway is stimu-
lated by a ligand may be dominated by the intrinsic efficacy of
that ligand for the pathway to be activated, which in turn
depends on the relative affinity of the effector molecules for
the receptor (Kenakin, 2015b). Of note, ligands may be weak
partial agonists or even inverse agonists for one signaling
pathway but strong agonists for another signaling pathway,
for instance, carvedilol at b2-adrenoceptors (Wisler et al.,
2007) or L 748,337 at b3-adrenoceptors (Sato et al., 2008).

The Promise of Biased Agonism
Since different G proteins and arrestins can modulate

different signaling pathways, which in some cases may even
have opposite effects on cell function, it is obvious that a ligand
exhibiting biased agonism may yield distinct cellular re-
sponses compared with a reference agonist. Some of these
signaling responses may be desirable, whereas others are
undesirable depending on the clinical condition under consid-
eration. Thus, biased agonism in principle offers the possibil-
ity to selectively modulate one cellular/tissue response
activated by a given receptor. For obvious reasons, this
potential new avenue for selective modulation of cell and
tissue function has generated considerable excitement.
The most informative example, and perhaps up to now the

only example, of how the potential of biased agonism can be
leveraged for the development of novel therapeutics is the
discovery of opioid receptor agonists that exhibit analgesic
effects but are associated with little constipation and/or
respiratory suppression. Initial work had demonstrated that
b-arrestin 2 knockout mice or mice and rats injected with
b-arrestin 2 interfering RNAs exhibited enhanced analgesia
in response to opioid receptor agonists but less tolerance
development and little constipation or respiratory suppres-
sion (Raehal et al., 2011; Kelly, 2013). This suggested that
m opioid receptor agonists biased for G protein activation, but
having little arrestin-mediated effects, may exhibit a benefi-
cial profile in the treatment of pain. Based on such findings, a
team at Trevena has developed oliceridine (formerly known as
TRV 130), a m opioid receptor agonist (DeWire et al., 2013).
Oliceridine exhibited robust G protein activation with a
potency and efficacy similar to that of morphine, but caused
far less arrestin recruitment and receptor internalization. It
was a potent analgesic in mice and rats but caused less
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gastrointestinal dysfunction and respiratory suppression than
morphine at equally analgesic doses. A clinical phase II study
confirmed that oliceridine is a potent analgesic drug in
patients (Viscusi et al., 2016), and the Food and Drug
Administration has granted breakthrough therapy status to
this drug. Oliceridine produced similar analgesia compared
with morphine but caused fewer adverse events in a phase IIB
study (Singla et al., 2017). However, presently available
clinical data rely on short-term administration, i.e., are
unsuitable to determine whether the reduced desensitization,
constipation, and respiratory depression also occur with
chronic treatment. In a different approach, other investigators
have used the crystal structure of m opioid receptors and
docking studies with over three million molecules to identify
another ligand with strong bias for the G protein compared
with arrestin pathways (Manglik et al., 2016); however, the
leading ligand identified in this study has not yet been tested
clinically. Biased agonists have also been described for k

opioid receptors (White et al., 2014), but the relevance for this
subtype in analgesia remains unclear.

The Unfulfilled Promise of Biased Agonism
AT1Rs are modulators of many cardiovascular and renal

functions; antagonists at these receptors have beneficial
effects in corresponding disease and are clinically established
drugs (Michel et al., 2016) but the clinically used AT1R
antagonists do not exhibit biased agonism (Michel et al.,
2013). However, experimental AT1R antagonists (Szakadáti
et al., 2015) and analogs of the endogenous agonist angioten-
sin II (Domazet et al., 2015) exhibit biased agonism. There-
fore, investigators at Trevena also developed biased agonists
at AT1R. They reasoned that the optimal ligand should be a
potent antagonist for G protein activation via AT1R but a
biased agonist promoting arrestin recruitment. Based on
these considerations, they have identified N-methylglycyl-L-
arginyl-L-valyl-L-tyrosyl-L-isoleucyl-L-histidyl-L-prolyl-D-
alanine (TRV 027) (formerly known as TRV 120027). It was
found that TRV 027 inhibited angiotensin-stimulated G pro-
tein signaling and stimulated arrestin recruitment and
activated several kinase pathways, including ERK, src, and
endothelial nitric oxide synthase phosphorylation (Violin
et al., 2010). Similar to clinically used AT1R antagonists,
TRV 027 reduced blood pressure, but unlike the unbiased
antagonists it increased cardiac performance. This compound
showed promising results in a dog model of congestive heart
failure (Boerrigter et al., 2012). However, a clinical phase II
study (i.e., the BLAST-AHF study; see Pang et al., 2017) failed
to meet its composite primary endpoint consisting of the
following: 1) time from baseline to death through day 30; 2)
time from baseline to heart failure rehospitalization through
day 30; 3) the first assessment time point following worsening
heart failure through day 5; 4) change in the dyspnea visual
analog scale score calculated as the area under the curve
representing the change from baseline over time from baseline
through day 5; and 5) length of initial hospital stay (in days)
from baseline (Pang et al., 2017).
Many reasons may potentially explain why a novel drug

fails to reach its primary endpoint in a clinical proof-of-concept
study. However, it is noteworthy that the clinically most
advanced drug candidate based on biased agonism is an
agonist at m opioid receptors. This is a mechanism of action

that has been known for more than a century and numerous
clinical and preclinical investigations have elaborated on the
properties of morphine and how it decreases pain, causes
tolerance, and induces constipation and respiratory depres-
sion. Thus, the analgesic properties of opioid receptor agonists
may be one of the best understood mechanisms in all of
pharmacology. This is not likely to be the case for drug
candidates that are based on novel targets.

The Challenge for Drug Discovery
Two technical obstacles exist for leveraging the promise of

biased agonism for drug discovery. First, quantification of bias
is not a trivial thing. Several useful approaches have been
developed (Kenakin, 2015b; Luttrell et al., 2015; Stott et al.,
2016; Gundry et al., 2017; Onaran et al., 2017), with DDlog(t/
KA) or DDlog(Emax/EC50) being perhaps the most useful tools
currently available (Winpenny et al., 2016). However, it has
recently been demonstrated that the kinetic context at the
level of ligand-receptor and receptor-pathway kinetics is also a
key consideration, which further complicates the interpreta-
tion of data (Klein Herenbrink et al., 2016; Lane et al., 2017).
Identification of suitable screening assays for biased agonism,
particularly high-throughput assays, is not trivial either, but
there is theory to address this (Luttrell et al., 2015) and
examples of practical implementation (Winpenny et al., 2016;
McAnally et al., 2017). For reasons of scope, these obstacles
will not be discussed further here.
In our view, the biggest challenge for drug discovery based

on biased agonism is establishing the correct target product
profile (TPP), which is used to determine how effective the
ligand to be developed should be for each signaling pathway.
We illustrate this challenge largely based on the example of
drug discovery for b3-adrenoceptor agonists, a novel drug class
for the treatment of the overactive bladder (OAB) syndrome
(Ohlstein et al., 2012; Chapple et al., 2014).
The signaling response to a receptor ligand depends on a

combination of factors attributable to the ligand and the cell
type/tissue in which it acts (ligand and system bias, respec-
tively) (Kenakin, 2015a), and any changes this system may
undergo in a pathologic setting (dynamic bias) (Michel et al.,
2014). Thus, the TPP of the lead compound for development
must make assumptions about which cell type harbors the
molecular target responsible for desired and potential adverse
effects, which signaling pathways mediate such effects, and
how this may be modulated in disease. Most b3-adrenoceptor
agonists that have entered clinical development originally had
been selected for the treatment of type 2 diabetes and obesity
at a time when little knowledge was available about biased
agonism and its implications; development for OAB syndrome
was a repurposing endeavor (Michel and Korstanje, 2016).
When repurposing studies for the OAB syndrome indication
began, it had been assumed that the cellular target is the
smooth muscle cell in the urinary bladder detrusor and that it
mediates its desirable effects by increasing intracellular
cAMP concentrations. Therefore, primary and secondary
screens for suitable compounds in various companies were
based on cAMP generation and relaxation of isolated detrusor
strips in an organ bath, respectively, for instance, for mirabe-
gron (Takasu et al., 2007), ritobegron (Maruyama et al., 2012),
solabegron (Hicks et al., 2007), and vibegron (Moyes et al.,
2014). While one of these compounds has successfully
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undergone clinical development (Chapple et al., 2014) this
may have been pure luck. Thus, while such drugs were already
in clinical development, it became clear that cAMP generation
plays a minor role (if any role at all) in mediating detrusor
smoothmuscle relaxation by b-adrenoceptor agonists (Frazier
et al., 2005; Uchida et al., 2005). Perhaps even more impor-
tantly, it is now increasingly being questioned whether the
detrusor smoothmuscle cell is indeed the cellular target of this
drug class or rather is indirectly modulated via the urothe-
lium, afferent nerves, or other structures (Michel, 2015).
Therefore, even with today’s knowledge it is difficult to say
which cell type (system bias) and which signaling pathway
(ligand bias) would be the optimal target for the treatment of
OAB syndrome.
Moreover,b3-adrenoceptor ligands for the treatment of OAB

syndrome must be agonists, and based on their mode of action
are assumed to provide symptom relief but not cure, indicating
that long-term treatment may be required. Desensitization is
a general issue with extended treatment with GPCR agonists,
and biased agonism may affect speed and extent of desensi-
tization (Raehal et al., 2011), including those of b-adrenocep-
tors (Gimenez et al., 2015). Therefore, it would be interesting
to know whether the b3-adrenoceptor agonists used or
intended for use in OAB syndrome treatment differ with
regard to biased agonism and how this affects their suscepti-
bility for desensitization. Whether any of the clinically tested
b3-adrenoceptor agonists is a biased agonist remains un-
known, but multiple experimental b3-adrenoceptor ligands
are biased agonists (Evans et al., 2010). However, recent data
show that both cAMP formation andERKphosphorylation can
undergo agonist-induced desensitization when expressed in
Chinese hamster ovary cells, but that the pattern of de-
sensitization differs between the two signaling pathways
(Okeke et al., 2018).
The aforementioned may be a rather theoretical example

since effective drugs have emerged. However, it illustrates
how lack of pathophysiological knowledge increases risk in
defining a TPP. If neither the cell type nor the signaling
pathway leading to desired therapeutic effect is known with
certainty, it remains a high-stakes gamble to define the
desirable molecular properties of a drug development candi-
date, i.e., whether it should be a biased agonist, and if so for
which signaling pathway. Only early translational approaches
(most likely based on animal models) will be able to test
whether a TPP based on biased agonism is viable. Strategies
for translational pathway validation have been reported
(Rominger et al., 2014) but do not address the validity of the
inherent assumptions about validity of the model being used
for the human target tissue and its alterations in disease.
Animal models still play a key role in target validation

activities for many disease states, particularly through the
widespread use of knockout mouse models. It is not common,
however, for the degree of agonist bias to be studied at
different species orthologs of the human receptor. The often
tacit assumption that the pathway bias of a particular
compound is maintained in other species presents another
potential risk when ascribing the required degree of bias for a
particular disease. This can be exemplified by studies on the
histamine H4 receptor. 1-[(5-Chloro-1H-indol-2-yl)carbonyl]-
4-methylpiperazine (JNJ7777120) was the first selective
histamine H4 antagonist described and has been critical in
defining a role for the H4 receptor in a variety of allergic and

inflammatory processes (Thurmond et al., 2008). In 2011,
however, it was discovered that although JNJ7777120 was an
antagonist/inverse agonist at the humanH4 receptor–mediated
Gai pathway, it was a partial agonist for the recruitment of
b-arrestin to the humanH4 receptor (Rosethorne andCharlton,
2011). Furthermore, it was able to induce prolonged ERK
activation. While this unexpected biased agonism at the
human receptor clearly complicates the interpretation of
previous studies that assumed pure antagonism, the waters
were muddied further when the activity of JNJ7777120 was
tested in a number of species orthologs of the H4 receptor.
Surprisingly, and in stark contrast to the human receptor,
JNJ7777120was a partial agonist at the Gai pathway from the
mouse, rat, and dog H4 receptor (Schnell et al., 2011). This
suggests that the beneficial effects of JNJ7777120 in the
mouse (Thurmond et al., 2004) may be via H4-mediated Gai

activation, rather than inhibition, potentially leading to the
wrong choice of pathway for treating human disease. These
species differences also raise concerns over interpretation of
safety studies that often use the rat and dog as preferred
species for the evaluation of toxicology. Thus, biased agonism
simply being a probe-dependent form of allostery and alloste-
ric effects being species dependent, it should not be surprising
that biased agonism observed in one species does not neces-
sarily translate to others.
System bias (i.e., the stochiometric ratios between relevant

signaling molecules) and dynamic bias (i.e., their possible
alterations in disease and/or with treatment) are key in
establishing the optimal TPP. As indicated previously, the
signaling pathway being activated by a ligand depends on its
intrinsic properties (ligand bias) and those of the cell type that
is targeted (system bias). A key element that influences
system bias is the stochiometric ratio of the different signaling
molecules that are able to bind to activated receptor confor-
mations (Onfroy et al., 2017), which is likely to differ
considerably between cell types and tissues. To highlight this
point, we have analyzed data on mRNA expression of several
thousand genes across a panel of 31 human tissues (Uhlén
et al., 2015). This analysis shows that the ratio between
expression of Gs, Gi, and arrestin is highly variable between
tissues (Fig. 1). While these data are based on mRNA
expression and we do not know how this translates into
functional protein in those tissues, it is safe to assume that a
similar lack of correlation will hold true at the protein level
and also when cell types rather than tissues are analyzed.
Moreover, if differential expression of these three elements
exists across human tissues, it is likely that similar differen-
tial expression exists in animal models compared with
patients.
To further complicate matters, expression of these various

signaling components within a given cell type of tissue can be
modulated by disease. For instance, congestive heart failure
(the condition in which TRV 027 did not meet its primary
endpoint) is characterized by desensitization and downregu-
lation of b1-adrenoceptors (with less, if any, desensitization
and downregulation of b2-adrenoceptors), downregulation of
Gs, and upregulation of Gi, b-arrestin-1, andGprotein-coupled
receptor kinases (Brodde, 2007). Thus, a signaling pathway
that may have been important in healthy tissue may be less or
more prominent in disease tissue. We have proposed to call
such alterations of the signalosome dynamic bias (Michel
et al., 2014).
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Conclusions
While it is clear that correctly assigning the required bias

for a new receptor is currently very difficult, there are several
technological advances that promise to shed more light on the
discrete signaling pathways activated in disease. In particu-
lar, novel imaging approaches to dissect individual pathways
in living cells, tissues, and animals will allow better matching

of the kinetics and signal strength to a particular phenotypic
response. Förster resonance energy transfer–based imaging
biosensors have been developed that can monitor the
spatiotemporal characteristics of signaling pathways (e.g.,
calcium, cAMP, and phosphorylated ERK) in single cells
and even subcellular compartments (Lohse et al., 2012;
Halls et al., 2015). More exciting still is the recent use of
genetically encoded versions of these sensors to measure
spatiotemporal signaling at the whole organ level in living
animals (van Unen et al., 2015; Jones-Tabah et al., 2017).
Using amicroendoscopic implant, signaling via protein kinase
A and ERK1/2 has been imaged in the striatum of mice
undergoing behavioral testing (Goto et al., 2015; Yamaguchi
et al., 2015), representing a step change in our ability to
monitor therapeutically relevant signaling pathways in their
physiologic context.
The concomitant coupling of a single receptor to multiple

signaling pathways and the selectivity for one of them that can
theoretically be achieved by biased agonists is an attractive
concept for drug discovery. However, definition of a sound TPP
requires a lot of assumptions on system bias and dynamic bias,
most importantly the cell type mediating the desired response
and adverse responses, the signaling pathway causing them,
and how they behave quantitatively in the disease to be
treated. Since such knowledge typically is not available for
highly innovative targets at the time lead identification and
optimization takes place, we feel that targeted development of
biased agonists will be limited to a rather small number of
conditions, and even then only in the discovery of second or
third generation medicines.
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