














Fig. 6. P2X4 responses in gene-edited BV-2 cells to eliminate P2X7 receptors. BV-2 cells deficient for P2X7 were generated using CRISPR/Cas9 editing.
(A) Flow cytometry data indicating parental BV-2 cells express P2X7 (black histogram), whereas P2X7-deficient BV-2 cells show no P2X7-positive stain
(green histogram) using Hano43 antibody labeling. Red histogram indicates negative control, cells labeled with secondary antibody only. (B) Western
blots showing no anti-P2X7 reactive protein band in P2X7-deficient BV-2 cells compared with parental BV-2 and J774 macrophages. Equal amounts of
protein (25 mg) were loaded per lane as indicated by the b-actin loading control on stripped and reprobed blots. P2X4 protein levels were unchanged
following knockout of P2X7. (C) Staining for P2X4 receptors was performed using a fix/perm method with cells grown on 13-mm glass coverslips. Rabbit
anti-P2X4 (1:200) was used to label all P2X4 receptors in BV-2 parental and P2X7-deficient BV-2 cells. Images are representative of two independent
experiments. (D) Intracellular calciummeasurements in Fura-2 acetoxymethyl ester–loaded BV-2 and P2X7-deficient BV-2 show identical ATP (25 mM)
responses. ATP + ivermectin (3 mM) responses were reduced by pretreatment of cells with 5-BDBD (10 mM) or PSB-12062 (1 mM). Error bars are S.D. and
*P , 0.05, one-way ANOVA with Dunnett’s multiple comparison post hoc test.
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cells (Fig. 7), suggesting that activation of P2X4 does not cause
cell death. In HEK-hP2X7 cells, CK was able to enhance cell
death to nonlethal concentrations of ATP (500mM), similar to
J774 cells (Helliwell et al., 2015). This is likely due to the
increased receptor sensitivity to ATP in the presence of CK,
allowing cells to overcome a threshold level of signaling for
the initiation of apoptosis. CK was not as effective at
enhancing cell death in response to 1 or 3 mM ATP; however,
this may be due to maximum cell death being induced by full
activation of P2X7.
Positive allosteric modulators for P2X4 are thought to be

useful in treatment of alcohol-use disorders due to a compet-
itive effect on channel activity (Asatryan et al., 2010; Yardley
et al., 2012). Ethanol has an inhibitory effect on P2X4
responses and prevents the action of ATP, which in turn
affects the modulation of neurotransmission in various re-
gions of the brain (Franklin et al., 2014). The binding of
ivermectin to P2X4 is postulated to counteract the binding of
ethanol, thus preventing its inhibitory effect on channel
activation. It would be interesting to determine whether
positive allosteric modulators that bind to other regions of
the channel will have a similar effect on elimination of ethanol
effects on P2X4. In addition to alcohol-use disorders, P2X4 has

been implicated in the regulation of dopamine-dependent
behaviors (Khoja et al., 2016), suggesting that modulation
of P2X4 in the CNS may also be beneficial in dopaminer-
gic disorders such as Parkinson’s disease. Interestingly,
P. ginseng extract is reported to have some beneficial effects
in animal models of Parkinson’s disease (Van Kampen et al.,
2014). However, due to their chemical properties, it is
unclear how easily the ginsenosides cross the intact blood-
brain barrier. A recent study suggests ginsenosides can be
detected in rat vascular endothelial cells and astrocytes
following oral administration of high purity ginseng total
saponins (Zhao et al., 2018). The larger ginsenosides with
multiple sugar moieties are much less likely to be absorbed
from the intestine into the bloodstream, but the smaller
ginsenosides and metabolites such as CK are found at
appreciable concentrations in plasma and liver. Peak plasma
concentrations of CK are reported to be 8.35 ng/ml (low nM
range) in humans following oral administration of Korean
red ginseng extract (Kim, 2013), although a more recent
study foundhigher plasma concentrations (1183.26445.1 ng/ml
following a single 800 mg dose) in volunteers receiving pure
Ginsenoside CK tablets (Chen et al., 2018). Furthermore, the
source of the ginsenosides, whether from a natural extract,

Fig. 7. Ginsenosides show little potentiation of ATP-induced responses in BV-2 microglia in the absence of P2X7. (A and B) Intracellular calcium
measurements were performed using a no-wash Fura-2-QBT assay on parental BV-2 cells and P2X7-deficient BV-2 microglia cells. ATP (200 mM) was
injected in the absence or presence of various ginsenosides (all 10 mM). Calcium responses were calculated as area under curve using Softmax Pro
software. Significant potentiation was only evident in cells expressing P2X7. Data are from three independent experiments, error bars represent S.D.,
and *indicates P , 0.05 using two-way ANOVA with Bonferroni’s multiple comparison post hoc test. (C) Cell viability was assessed using MTS
reagent. BV-2 cells were plated for 24 hours prior to stimulation with ATP in the absence or presence of ginsenoside CK (10mM). Cells were treated for
24 hours, and MTS was added for the final 1 hour. Data are represented as mean percentage of control values in which control was vehicle-treated
cells. Data are from three independent experiments, error bars represent S.D., and *indicates P , 0.05 using one-way ANOVA with Dunnett’s
multiple comparison post hoc test.

218 Dhuna et al.

 at A
SPE

T
 Journals on February 21, 2019

m
olpharm

.aspetjournals.org
D

ow
nloaded from

 

http://molpharm.aspetjournals.org/


supplement, high purity chemicals, total saponins, plus the
route of administration, length of dosing, and the influence
of the gut microbiota are all factors that are likely to affect
plasma levels. It also remains unclear whether reported
CNS effects are due to peripheral effects. As these natural
products gain recognition for their potential therapeutic
benefits, more detailed studies are likely to be conducted in
humans.
There are several processes in which P2X4 has been shown

to play a role; in endothelial cells P2X4 is reported to be
involved in a vasodilatory effect induced by shear stress
(Yamamoto et al., 2000), and in the hippocampus P2X4 has a
role in long-term potentiation (Sim et al., 2006). Enhance-
ment of these physiologic processes may be beneficial in
people suffering from hypertensive disorders or cognitive/
memory deficit, and positive allosteric modulators may be a
useful future strategy for manipulating P2X4 receptors. It
has also been shown that activation of P2X4 can cause

surfactant secretion in the lung (Miklavc et al., 2013),
chemokine and prostaglandin E2 secretion from macro-
phages (Ulmann et al., 2010; Layhadi et al., 2018), and
BDNF secretion from spinal microglia (Coull et al., 2005;
Ulmann et al., 2008). It is less clear whether enhancement of
such responses would be beneficial, particularly in the case of
the P2X4-BDNF axis in neuropathic pain. However, we have
shown that the action of CK and Rd ginsenosides on P2X4-
mediated calcium responses in microglial cells is minor (Fig.
7), and this may be due to the low surface expression of P2X4
in these cells (Qureshi et al., 2007; Stokes and Surprenant,
2009). Alternatively, the ginsenosides may be less active on
mouse P2X4 receptors relative to human P2X4 receptors,
because the BV-2 cell line is of mouse origin. It is unlikely
that ginsenosides would enhance neuropathic pain because
concentrations in the CNS would be much lower than plasma
concentrations and below the levels reported in this study to
potentiate P2X4. Peripheral P2X4 receptors are therefore

Fig. 8. Molecular model of hP2X4 with CK and Rd docked into a predicted central vestibule binding site. (A) Representation of a homology model of
trimeric hP2X4 in the open (ATP-bound) state with ginsenoside CK docked in the central vestibular region. Each subunit chain is differentially colored
(green, cyan, and magenta). (B) A zoomed-in view of the binding site to compare CK pose docked to hP2X4 (yellow) to CK pose docked to hP2X7 (purple).
(C) A rotated view of the CK binding site from the inside of the cavity facing outward (rotation of 180°). Polar contacts are highlighted between CK and
b-sheets lining the lower body region. (D) Trimeric hP2X4model with ginsenoside Rd docked into the central vestibule binding site. (E) A zoomed-in view
of the binding site to compare Rd pose docked to hP2X4 (yellow) to Rd pose docked to hP2X7 (purple). (F) Same rotated view of the Rd binding site from the
inside of the cavity facing outwards (rotation of 180°). Polar contacts are highlighted between Rd and b-sheets lining the lower body region and E96 in the
internal loop region. Ligands and side chains are represented as sticks with all hydrogen atoms omitted for clarity. Images were generated in Pymol.
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more likely to be modulated by circulating ginsenosides or
ginsenosides accumulated in tissues such as liver and lung.
In conclusion, we have demonstrated that ginsenosides are

not selective in their potentiating action on P2X7 receptors,
but have some PAM activity on P2X4 receptors most likely
through a similar binding site in the large ectodomain of these
trimeric channel complexes.
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Supplementary Figure 1: Ginsenosides have no effect on P2Y-induced Ca2+ 

responses in HEK-293 cells.  

Intracellular Ca2+ responses were measured in fura-2AM loaded HEK-293 cells using 

a Flexstation 3 plate reader. Baseline values were recorded for 20 seconds and then 

nucleotide agonists (ATP, ADP, and UTP) were automatically injected. A 

representative UTP-induced response is shown in black, UTP plus CK (10 μM) is 

shown in red. Error bars are SEM. Bar charts show quantification of peak Ca2+ 

responses in HEK-293 cells in response to agonist (ATP, ADP or UTP) + 

ginsenoside CK, Rd, Rb1, Rh2 or aglycone PPD (10 µM). ns represents P > 0.05, 

one-way ANOVA with Dunnett’s multiple comparison post-hoc test. 

 



Data Supplement 1: hP2X4 homology model with CK docked  

 

Data Supplement 2: hP2X4 homology model with Rd docked  

 

 


