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ABSTRACT
Agonist-induced endocytosis is a key regulatory mecha-
nism for controlling the responsiveness of the cell by
changing the density of cell surface receptors. In addition
to the role of endocytosis in signal termination, endocytosed
G protein–coupled receptors (GPCRs) have been found to
signal from intracellular compartments of the cell. Arrestins
are generally believed to be the master regulators of GPCR
endocytosis by binding to both phosphorylated receptors
and adaptor protein 2 (AP-2) or clathrin, thus recruiting
receptors to clathrin-coated pits to facilitate the internali-
zation process. However, many other functions have been
described for arrestins that do not relate to their role in
terminating signaling. Additionally, there are now more than
30 examples of GPCRs that internalize independently of
arrestins. Here we review the methods, pharmacological
tools, and cellular backgrounds used to determine the role
of arrestins in receptor internalization, highlighting their
advantages and caveats. We also summarize key examples
of arrestin-independent GPCR endocytosis in the literature

and their suggested alternative endocytosis pathway (e.g.,
the caveolae-dependent and fast endophilin-mediated endocy-
tosis pathways). Finally, we consider the possible function of
arrestins recruited to GPCRs that are endocytosed indepen-
dently of arrestins, including the catalytic arrestin activation
paradigm. Technological improvements in recent years have
advanced the field further, and, combined with the important
implications of endocytosis on drug responses, this makes
endocytosis an obvious parameter to include in molecular
pharmacological characterization of ligand-GPCR interactions.

SIGNIFICANCE STATEMENT
G protein–coupled receptor (GPCR) endocytosis is an important
means to terminate receptor signaling, and arrestins play a central
role in the widely accepted classical paradigm of GPCR endocy-
tosis. In contrast to the canonical arrestin-mediated internalization,
an increasing number of GPCRs are found to be endocytosed via
alternate pathways, and the process appearsmore diverse than the
previously defined “one pathway fits all.”

Introduction
G protein–coupled receptors (GPCRs) form the largest class

of transmembrane cell surface receptors, and they regulate
intracellular signaling in response to a diverse range of
extracellular stimuli (Lefkowitz, 2013). Initiation, processing,

and termination of these signals are tightly regulated in
a spatiotemporal manner to ensure homeostasis. To date,
approximately one-third of themarketed drugs target GPCRs,
illustrating their importance in human pathologies (Hauser
et al., 2017).
Agonist-stimulated GPCRs catalyze the activation of heter-

otrimeric G proteins and thereby modulate downstream
effector proteins, including adenylyl cyclase, phospholipase
C, and Rho guanine nucleotide exchange factor (Hilger et al.,
2018). Stimulation of these pathways can evoke receptor
phosphorylation on serine and threonine residues in the third
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calcium-sensing; Cdc42, cell division control protein 42 homolog; C-domain, C-terminal domain; CIP4, Cdc42-interacting protein 4; C-tail, carboxy-
terminal tail; ERK, extracellular signal-regulated kinase; FEME, fast endophilin-mediated endocytosis; FlAsH fluorescein arsenical hairpin FPR1,
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glutamate; N-domain, N-terminal domain; PAR, proteinase-activated receptor; PI(4,5)P2, phosphatidylinositol 4,5-bisphosphate; PKC, protein
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transmembrane; TR-FRET, time-resolved Förster resonance energy transfer.
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intracellular loop (ICL) and the carboxy-terminal tail
(C-tail), mediated by GPCR kinases (GRKs) and second
messenger–dependent kinases from the protein kinase A
and protein kinase C (PKC) families (Ferguson, 2001;
Gurevich and Gurevich, 2019). Recruitment of arrestin
proteins to phosphorylated active-state receptors can lead
to desensitization of second messenger signaling by steri-
cally precluding G protein coupling to receptors. Further-
more, arrestins can facilitate and regulate receptor signaling
by scaffolding a wide range of proteins involved in signaling
pathways, for instance, components of mitogen-activated pro-
tein kinase cascades, Src family tyrosine kinases, and E3
ubiquitin ligases (Peterson and Luttrell, 2017).
To protect cells from overstimulation upon prolonged or

repeated exposure to agonists, activated GPCRs are removed
from the cell surface by means of endocytosis. In this way, the
majority of the cell surface population of a GPCR may be
internalized within minutes of agonist stimulation (January
et al., 1997). Internalized receptors are processed and sorted
in the endosomal network for recycling to the plasma mem-
brane (resensitization) or degradation via the lysosomal
pathway (downregulation) (Pavlos and Friedman, 2017).
Moreover, GPCRs can signal from intracellular compartments
as well. This may result in different signaling consequences
compared with cell surface signaling due to distinct location
and timing (Lobingier and von Zastrow, 2019).
In thismini reviewwe summarize the endocytosis pathways

that have been described for GPCRs—arrestin-dependent and
-independent—and the receptors that have been shown to be
endocytosed independently of arrestins, including the tools
and methods that have been used to assess the arrestin
dependence. Finally, we discuss the possible functional impli-
cations of arrestin recruitment to receptors that internalize
independently of arrestins.

Clathrin-Mediated Endocytosis
Several mechanisms of GPCR endocytosis have been de-

scribed. The best characterized endocytic route and the pre-
dominant pathway of endocytosis in mammalian cells
is clathrin-mediated endocytosis (Pearse, 1976) (Fig. 1A).
Ligand-activated GPCRs are in many cases targeted to
clathrin-coated pits by binding to arrestins (Traub, 2009).
There are four subtypes of arrestin: arrestin-1 and -4 that are
mainly expressed in the visual system and arrestin-2 and -3
(also called b-arrestin-1 and -2, respectively) that are ubiqui-
tously expressed (Mundell et al., 2002). Activated arrestins
are recruited to clathrin-coated pits through interaction with
theb2 adaptin subunit of adaptor protein-2 (AP-2), via anRXR
motif located in the autoinhibitory C-tail of all arrestin
subtypes (Laporte et al., 2000; Schmid et al., 2006). In
addition, arrestins can interact with clathrin through an
LIELD or LIEFE motif located in the autoinhibitory segment
of arrestin-2 and -3 and/or through a loop in the C-terminal
domain (C-domain) of arrestin that is present in the long splice
isoform of arrestin-2 and in arrestin-1 and -4 (Goodman et al.,
1996; Kang et al., 2009). In the inactive form, the C-tail of
arrestin functions as an autoinhibitory segment that is bound
to a groove in the N-terminal domain (N-domain) of arrestin,
thus masking the AP-2 and clathrin motifs (Hirsch et al.,
1999). Binding of a phosphorylated receptor C-tail displaces
the autoinhibitory segment and enables arrestin to interact

with AP-2 and clathrin (Xiao et al., 2004; Nobles et al., 2007).
Alternatively, the m2 adaptin subunit of AP-2 has been shown
to interact directly with GPCRs, through which it might
facilitate clathrin-mediated endocytosis independently of
arrestins (Diviani et al., 2003; Paing et al., 2006).
AP-2 and other clathrin adaptor proteins initiate clathrin-

mediated endocytosis by binding to plasma membrane
domains enriched for the phospholipid phosphatidylinositol
4,5-bisphosphate [PI(4,5)P2]. AP-2 is a tetrameric protein
complex comprising a, b2, m2, and s2 adaptin subunits.
Interaction with PI(4,5)P2 induces a conformational change
in AP-2, exposing binding sites for clathrin, receptors, and
other cargo proteins and additional PI(4,5)P2 interaction
motifs (Kelly et al., 2014) (Fig. 1A, step 2a and b). Clathrin
molecules interact with AP-2 and form polymeric lattices,
enveloping the plasma membrane into clathrin-coated pits
(Fotin et al., 2004; Dannhauser and Ungewickell, 2012)
(Fig. 1A, step 3). Bin/amphiphysin/Rvs (BAR) domain–containing
proteins, such as endophilins, induce and stabilize mem-
brane curvature and thereby mediate constriction of the
invagination neck, whereasmembrane scission is powered by
oligomers of dynamin, which is a GTPase (Sundborger et al.,
2011). Dephosphorylation of PI(4,5)P2 (Cremona et al., 1999)
and chaperone-mediated disruption of clathrin-clathrin inter-
actions (Schlossman et al., 1984) drive the uncoating of
clathrin-coated vesicles, followed by vesicle fusion to early
endosomes.
Another class of clathrin adaptors is constituted by epsins,

which are monomeric proteins that can interact simulta-
neously with PI(4,5)P2, clathrin, and AP-2 (Traub, 2009).
Through their ubiquitin-interacting motifs, epsins can di-
rectly recruit polyubiquitinated proteins to clathrin-coated
pits, including GPCRs (Chen et al., 2011) (Fig. 1A, step 2b).
Many other proteins contribute to the formation of clathrin-
coated pits (Traub, 2011), potentially including yet unidenti-
fied GPCR adaptor proteins.

Clathrin-Independent Endocytosis
Although the majority of endocytic vesicles arise from

clathrin-mediated endocytosis (Pearse, 1976; Anderson et al.,
1977), several other endocytic mechanisms have been shown to
operate at the plasma membrane of mammalian cells. Some of
these have been implicated in the internalization of GPCRs.
Characterization of clathrin-independent endocytosis path-
ways, however, is hampered by a lack of knowledge about
specific cargo and cellular machinery and an absence of
pathway-specific manipulation tools (Sandvig et al., 2018).
Hence, clathrin-independent endocytosis routes are generally
less well delineated than clathrin-mediated endocytosis.
Fast Endophilin-Mediated Endocytosis. In addition to

their contribution to clathrin-mediated endocytosis, endophi-
lins (endophilin A1–3, but not B1 and B2) are essential for
a rapid, clathrin-independent internalization pathway, called
fast endophilin-mediated endocytosis (FEME) (Boucrot et al.,
2015) (Fig. 1B). This rapid response to receptor activation (few
seconds) relies on the presence of endophilin-enriched
domains in the plasma membrane, which are dynamically
assembled and disassembled in the absence of activated
receptors or other cargo proteins.
FEME priming starts with the recruitment of the FES/CIP4

homology–BAR domain proteins formin-binding protein 17
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Fig. 1. Endocytosis pathways involved in GPCR internalization. (A) Clathrin-mediated endocytosis of GPCRs. (1) Ligand-mediated receptor activation
leads to conformational changes, for instance, exposing AP-2 binding motifs in the receptor C-tail, and/or post-translational modification of the receptor,
such as phosphorylation or ubiquitination. (2a) Most GPCRs are recruited to clathrin-coated pits through arrestins. Binding of arrestin to the
phosphorylated receptor C-tail enables interaction of the arrestin C-tail with AP-2 and clathrin. (2b) Additionally, receptors can be recruited to clathrin-
coated pits independently of arrestins, through direct interaction with AP-2 or binding of their polyubiquitinated C-tails to epsins. (3) Clathrin is

244 Moo et al.
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and Cdc42-interacting protein 4 (CIP4) by active, membrane-
bound cell division control protein 42 homolog (Cdc42). In
turn, these proteins recruit the phosphatidylinositol 3,4,5-
trisphosphate 59 phosphatase 1 and 2, thus increasing the
local concentration of phosphatidylinositol-3,4-bisphosphate
(ChanWahHak et al., 2018). Through its phosphatidylinositol-
3,4-bisphosphate–binding pleckstrin homology domain and
multiple endophilin-binding motifs, lamellipodin facilitates
the concentration of endophilins in patches at the cell surface
(Vehlow et al., 2013; Boucrot et al., 2015) (Fig. 1B, step 1).
Endophilins containing BAR domains with an additional
N-terminal amphipathic helix induce plasma membrane cur-
vature by insertion of amphipathic helices in the inner
membrane leaflet as well as membrane scaffolding through
their BAR domains (Boucrot et al., 2012), whereas protein
scaffolding is mediated via their Src homology 3 (SH3) domains
(Boucrot et al., 2012, 2015; Vehlow et al., 2013). FEME vesicle
formation requires membrane scaffolding by endophilin, actin
polymerization, and dynamin-mediated scission (Boucrot et al.,
2015; Renard et al., 2015) (Fig. 1B, step 3). Multiple ligand-
stimulatedGPCRs can internalize via the FEME route through
direct interaction between proline-richmotifs in their ICL3 and
the SH3 domain of endophilins (Tang et al., 1999; Boucrot et al.,
2015), but it is not yet understood how receptor stimulation
triggers FEME (Fig. 1B, step 2).
Endocytosis via Caveolae. Caveolae are invaginations

of the plasma membrane, enriched for cholesterol and sphin-
gomyelin (Ortegren et al., 2004). Their formation relies on
the coordinated membrane-deforming activity of caveolin,
cavin, and pacsin (also named syndapin) proteins (Ludwig
et al., 2013) (Fig. 1C). Caveolins are cholesterol-binding
proteins integrated in the inner leaflet of the plasma
membrane that form 12- to 16-meric complexes (Ariotti
et al., 2015). Mature caveolae are formed upon phospha-
tidylserine- and PI(4,5)P2-mediated association of coat-
forming trimeric cavin complexes (Kovtun et al., 2014),
FES/CIP4 homology–BAR domain–containing pacsin proteins
(Hansen et al., 2011) and the EH domain–containing 2 protein
(Yeow et al., 2017) with these caveolin-rich domains (Fig. 1C,
step 2). Pacsin furthermore interacts with dynamin via its SH3
domain, facilitating caveolae vesicle scission (Koch et al., 2011).
Several GPCRs have been reported to localize in caveolae,

interact with caveolin, and/or internalize via caveolae-
mediated endocytosis (Chini and Parenti, 2004). GPCRs can
directly bind to caveolin through fXfXXXXf or fXXXXfXXf
motifs (X = any amino acid; f = Phe, Trp, or Tyr) (Couet et al.,
1997) (Fig. 1C, step 1a). Interaction with caveolin, however,
does not necessarily dictate receptor endocytosis via caveolae,
as caveolin can also function as chaperone during receptor
transport to the cell surface or facilitate caveolae localization
without triggering receptor internalization (Chini and
Parenti, 2004). Also, Gaq subunits, but not Gbg or other

Ga proteins, can interact with caveolin, which facilitates
association between receptors and caveolae (Sengupta et al.,
2008; Calizo and Scarlata, 2012) (Fig. 1C, step 1b).
In contrast to clathrin-coated pits, the density of caveolae

differs between tissues and cell types: whereas caveolae can be
undetectable in some cell types, they can occupy up to 50% of
the plasma membrane surface in others (Thorn et al., 2003;
Zhuang et al., 2011). It is unclear whether differences in
caveolae abundance affect endocytosis of receptors via this
pathway. Furthermore, even though caveolae can bud from
the plasma membrane and translocate to early endosomes
(Hayer et al., 2010), caveolae are now primarily viewed as
membrane structures with functions different from endocyto-
sis, including membrane tension buffer and specialized lipid
rafts important for signaling (Sinha et al., 2011; Shvets et al.,
2015). Altogether, the molecular mechanisms driving GPCR
internalization via caveolae are still poorly understood, and it
is unknown how agonist stimulation triggers caveolae-
mediated endocytosis of GPCRs.

Arrestin-Independent Agonist-Induced
Endocytosis

Despite the well characterized role of arrestins in GPCR
endocytosis, including inhibiting GPCR/G protein coupling
and initiating internalization (Kang et al., 2013; Tian et al.,
2014), there is now a considerable number of examples of
arrestin-independent GPCR internalization upon agonist
stimulation (Table 1). In several cases the mechanism has
been investigated further, and alternative mediators of endo-
cytosis have been identified, such as caveolae, endophilin,
GRKs, clathrin, and clathrin adaptors.
Clathrin- and AP-2–Dependent Pathway. In addition

to the role of AP-2 in arrestin-mediated endocytosis, the m2
adaptin subunit of AP-2 can directly interact with polyargi-
nine motifs (Diviani et al., 2003), dileucine motifs ([D/E]XXXL
[L/I], X = any amino acid) (Pandey, 2010), or tyrosine motifs
(YXXF,F = bulky hydrophobic amino acid) (Ohno et al., 1995)
in the intracellular loops or C-tail of GPCRs, through which it
might facilitate clathrin-mediated endocytosis independently
of arrestins.
The C-tail of proteinase-activated receptor (PAR) 1 con-

tains a YXXL m2 adaptin binding motif (Paing et al., 2004).
Similar to the role of arrestins for other receptors, AP-2
interacts directly with PAR1 and is required for its consti-
tutive and agonist-induced internalization through a cla-
thrin- and dynamin-dependent pathway (Paing et al.,
2006). Arrestins play a critical role in PAR1 desensitization
to uncouple G protein signaling but are not essential for
PAR1 internalization (Paing et al., 2002). Native receptors
are found in two distinct pools: one in the cell membrane and
one in an intracellular compartment (Shapiro et al., 1996).

recruited to the plasma membrane by adaptor proteins, such as AP-2 and epsins, to form clathrin carriers upon scission of clathrin-coated pits from the
plasma membrane by dynamin. (B) Fast endophilin-mediated endocytosis. (1) Endophilin is concentrated at the plasma membrane through interaction
with lamellipodin (Lmpd), which depends on the sequential action of Cdc42, formin-binding protein 17 (FBP17), CIP4, and phosphatidylinositol 3,4,5-
trisphosphate 59 phosphatase (SHIP) 1/2. (2) Interaction of a ligand-activated GPCRwith endophilin triggers FEME. (3) FEME carriers are formed upon
scission of endophilin stabilized invaginations by dynamin. (C) Endocytosis via caveolae. GPCRs can be recruited to caveolae through direct interaction
with caveolin (1a) or via Gaq-mediated interaction with caveolin (1b). (2) Caveolae membrane deformations consist of oligomeric caveolin complexes
stabilized by coat-forming cavins and membrane curvature inducing pacsins. Caveolae carrier formation relies on dynamin for membrane scission. For
clarity, only a selection of the components involved in the various endocytosis pathways are represented in the schematic. PI(3,4)P2, phosphatidylinositol
3,4-bisphosphate; PI(3,4,5)P3, phosphatidylinositol 3,4,5-trisphosphate; PS, phosphatidylserine.
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In the absence of agonist, the native receptor cycles between
the cell membrane and the intracellular pool. Instead, in-
ternalized, activated PAR1 is sorted from endosomes to
lysosomes, where it is rapidly degraded (Trejo et al., 1998).
Studies using a combination of microscopy, mutant receptors,
and pharmacological and genetic inhibitors showed that the
two processes are dependent on distinct mechanisms. Consti-
tutive internalization is effected upon mutation of the PAR1
tyrosine motif (Y383A/L386A) and by depletion of AP-2 using
small interfering RNA (siRNA), indicating the importance of
AP-2 in the process (Paing et al., 2006). On the other hand,
agonist-induced internalization is only partially inhibited in
AP-2–depleted cells and is reliant on additional sequences in
the C-tail, suggesting the involvement of other clathrin
adaptors (Paing et al., 2004, 2006; Trejo et al., 2000). Trejo
and colleagues proposed that epsin-1 is the other key clathrin
adaptor protein for active PAR1 internalization (Chen et al.,
2011). Epsin-1–mediated endocytosis requires ubiquitination
of PAR1, and the ubiquitin-interacting motifs of epsin-1 are
crucial for this pathway. In cells depleted of epsin-1 and/or AP-
2 by siRNA, activated PAR1 internalization was impaired,
further confirming that both adaptor proteins are required for
agonist-induced internalization.
Several other receptors that internalize through a partially

or completely arrestin-independent mechanism also contain
tyrosinemotifs. PAR4 has aYXXLmotif in ICL3, and aY263A/
L268A double mutation in the AP-2 binding motif disrupted
the ability of the receptor to internalize (Smith et al., 2016).
Similarly, depletion of AP-2 and clathrin by siRNA inhibited
receptor internalization, thus confirming an AP-2– and
clathrin-dependent mechanism. The IP prostanoid receptor
has a YXXL motif in ICL2 (Smyth et al., 2000). Microscopy
studies showed that the active receptor was present in
clathrin-coated vesicles. This process is repressed by domi-
nant negative dynamin (K44A), but it is arrestin- and GRK-
independent and is not affected by PKC-mediated receptor
phosphorylation. In contrast, the a1B-adrenoceptor contains
several YXXF and dileucine motifs (Diviani et al., 2003), but
AP-2 has not been shown to interact with these motifs.
Instead, AP-2 binds to a stretch of eight arginine residues on
the receptor C-tail. Arrestins contribute partially to a1B-
adrenoceptor endocytosis, demonstrating that multiple path-
ways can regulate internalization of an individual receptor.
GRK-Dependent Pathway. GRKs are serine/threonine

kinases that phosphorylate active GPCRs, thus facilitating
arrestin binding to the receptor and inhibiting G protein
interactions (Benovic et al., 1986, (Bouvier et al., 1988);
Komolov and Benovic, 2018). Seven mammalian GRKs
(GRK1–7) that regulate GPCRs have been identified: GRK1
and GRK7 are expressed exclusively in the retina; GRK4 is
only found in significant amounts in the testes, whereas
GRK2, -3, -5 and -6 are universally expressed (Komolov and
Benovic, 2018). In addition to their role in arrestin binding,
there are several reports of an internalization pathway that is
GRK phosphorylation-dependent but arrestin-independent.
Upon agonist stimulation, the BLT1 leukotriene receptor

internalizes through a GRK2- and dynamin-dependent mech-
anism without involving arrestins (Chen et al., 2004b).
Agonist stimulation of the receptor does not cause arrestin
redistribution within the cell, and the receptor does not
associate with arrestins. Moreover, receptor internalization
is not affected by overexpression of wild-type and dominant

negative arrestin-2 (V53D). The receptor undergoes endocy-
tosis in rat basophilic leukemia (RBL)-2H3 cells that express
high levels of endogenous GRK2, but not in human embryonic
kidney 293 (HEK293) or COS-7 cells that express 5–10-fold
less GRK2 than RBL-2H3 cells. Additionally, the process is
blocked by coexpression of a catalytically inactive GRK2
mutant (K220R) and enhanced when wild-type GRK2 is
overexpressed, which indicates that it is phosphorylation-
dependent. A BLT1 receptor mutant with truncated C-tail
lost the ability to internalize and associate with GRK2 and
dominant negative dynamin (K44A) inhibited BLT1 endocy-
tosis. However, the mechanism of how GRK2-mediated phos-
phorylation can trigger arrestin-independent endocytosis
remains to be clarified.
Formylpeptide receptor 1 (FPR1) has also been suggested

to internalize via a GRK phosphorylation-dependent and
arrestin-independent pathway (Prossnitz et al., 1995; Hsu
et al., 1997; Vines et al., 2003). A phosphorylation-deficient
mutant of FPR1 where the serine and threonine residues in
the C terminus are converted to alanine and glycine residues
was unable to desensitize and internalize, thus indicating that
phosphorylation is required for the processes (Hsu et al.,
1997). GRK2 and to a lesser degree GRK3 were shown to be
the kinases responsible for phosphorylating the FPR1 C-tail
(Prossnitz et al., 1995). Although arrestins are colocalized
with FPR1 in membranes and endosomes during receptor
internalization (Bennett et al., 2000), they are not involved in
internalization as determined by the use of dominant negative
arrestin-2 (arrestin-23192418) and mouse embryonic fibroblasts
(MEFs) from arrestin-2/3 knockout mice (Gilbert et al., 2001;
Vines et al., 2003). Nonetheless, arrestins have been suggested
to play a role in FPR1 recycling to the plasma membrane
because in arrestin-2/3 knockout MEFs the receptor accumu-
lated in the perinuclear endosome compartment instead of
recycling through an unknown mechanism (Vines et al., 2003).
FPR1 internalization is furthermore insensitive to dominant
negative mutants of dynamin (K44A) and clathrin (hub region,
competes for binding to clathrin light chain) (Gilbert et al.,
2001), which suggests that it is internalized through a different
mechanism than the BLT1 receptor.
FEME Pathway. b1- and a2A-adrenoceptors, D3 and D4

dopamine receptors, and the M4 muscarinic receptor have
been demonstrated to internalize through the FEME pathway
(Boucrot et al., 2015) (Fig. 1B). Agonist-induced internaliza-
tion of these receptors was strongly reduced upon siRNA
knockdown of endophilin-A1–3, but not with knockdown of
clathrin or AP-2, thus indicating that it is an endocytic route
that is independent of clathrin. Correspondingly, the process
is not affected by overexpression or siRNA depletion of
arrestin-2/3. Dynamin is identified as the main driver of the
endophilin-mediated fission because dominant negative dyna-
min (K44A and K65A) and several small molecule dynamin
inhibitors negatively affected the formation of endophilin
buds. Using pharmacological inhibitors, this pathway was
further shown to depend on cholesterol, actin, Rho GTPase,
phosphatidylinositol 3-kinase, and the serine/threonine pro-
tein kinase PAK1 (Boucrot et al., 2015).
Caveolae Pathway. Using arrestin-2/3 knockout HEK293

cells, the glucagon-like peptide (GLP)-1 receptor has been
shown to internalize independently of arrestins (Jones et al.,
2018). Studies applying confocal microscopy showed that the
GFP-tagged receptor localizes in membrane lipid rafts and
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caveolae (Fig. 1C). As the receptor contains a classic caveolin-
1 binding motif (EGVYLYTLLAFSVF) in ICL2, the receptor
could interact directly with caveolin-1 and be endocytosed via
caveolae. This is further evidenced using dominant negative
mutants of caveolin-1 (P132L) and dynamin (K44A) that
inhibit GLP-1 receptor endocytosis (Syme et al., 2006). The
GLP-2 receptor within the same receptor family can most
likely also be desensitized, internalized, and recycled in-
dependently of arrestins, since these processes were inert to
receptor C-tail truncation (Estall et al., 2004, 2005). GLP-2
receptor endocytosis is inhibited by cholesterol sequestration
with filipin or cholesterol depletion withmethyl-b-cyclodextrin,
thus suggesting that the receptor internalizes via a lipid-
raft–mediated pathway. After endocytosis, the GLP-2 receptor
colocalizes with caveolin-1 in early endosomes and perinuclear
recycling compartments (Estall et al., 2004). However, unlike
the GLP-1 receptor, the GLP-2 receptor lacks the classic
caveolin-1 binding motif and is internalized independently of
dynamin, thus suggesting different internalization pathways
for the two receptors.
The ETA and ETB endothelin receptors are able to recruit

arrestins but unable to promote association with AP-2 upon
agonist stimulation, as shown using bioluminescence resonance
energy transfer (BRET)–based assays for arrestin-2 and -3/b2
adaptin interactions (Hamdan et al., 2007). Furthermore, in-
ternalization of theETA receptor is not blocked by the arrestin/b2
adaptin inhibitor barbadin (Beautrait et al., 2017). However,
knockdownof arrestin-2/3 using siRNAshowedpartial inhibition
of ETA and ETB receptor endocytosis (Hamdan et al., 2007).
Thus, this indicates that these receptors internalize partially
through a mechanism that involves a direct interaction between
arrestin and clathrin and partially through an arrestin- and AP-
2–independent pathway. In fact, around a third of all clathrin-
coated pits have been found not to contain AP-2 (Pascolutti et al.,
2019), which suggests that AP-2–independent clathrin-mediated
endocytosis could be more common than previously anticipated.
The ETA receptor undergoes caveolae-mediated internalization
in HEK293 cells (Okamoto et al., 2000), which could account for
the arrestin-independent component.
b2-adrenoceptors and angiotensin (AT)1A angiotensin recep-

tors are shown to internalize via two distinct pathways,
clathrin-mediated endocytosis and the caveolae endocytic route
(Guo et al., 2015). Using specific inhibitors for clathrin (domi-
nant negative epsin204–458) and caveolae (methyl-b-cyclodex-
trin) in cells depleted of clathrin and caveolin-1 by small hairpin
RNA, the authors confirmed that these are different pathways.
Moreover, clathrin-mediated endocytosis is mediated by
GRKs, but caveolar endocytosis is not dependent on GRKs.
The AT1A receptor also showed cell type–specific internali-
zation. In HEK293 and COS-7 cells, receptor internalization
was not mediated by dynamin or arrestins, but in CHO cells,
it was abolished by hypertonic sucrose, dominant negative
arrestins (arrestin-2-V53D and arrestin-212349) and domi-
nant negative dynaminK44A, thereby indicating that arrest-
ins are involved in clathrin-mediated AT1A internalization in
this cell line (Zhang et al., 1996; Oakley et al., 2000; Gáborik
et al., 2001).

Arrestin-Independent Constitutive Endocytosis
GPCRs canalso undergo endocytosis in the absence of agonist

stimulation. In contrast to agonist-induced endocytosis, the

mechanisms and functions of constitutive endocytosis are less
well understood. Similar to active receptor endocytosis, there
are examples of GPCRs that are able to internalize constitu-
tively without the need for arrestins (Table 1).
Major Histocompatibility Complex Class I Pathway. b2-

adrenoceptor andM3muscarinic receptors internalizewithout
agonist stimulation and colocalize with major histocompati-
bility complex class I (MHC-I) on peripheral endosomal
structures. MHC-I marks a clathrin-independent endocytic
pathway. Their constitutive internalization is also not
inhibited by dominant negative dynamin (K44A) and only
slightly affected by siRNA depletion of clathrin, suggesting
that dynamin and clathrin are not required. Upon agonist
stimulation, these receptors switch to a clathrin-dependent
trafficking pathway (Scarselli and Donaldson, 2009). The
clathrin-independent endocytosis pathway used by MHC-I is
believed to be independent of arrestins, but it remains to be
confirmed if arrestins play a role in the constitutive internal-
ization of the b2-adrenoceptor and the M3 receptor.
It is well established that the metabotropic glutamate

(mGlu) receptors are unable to recruit arrestins (Pin and
Bettler, 2016). In the absence of ligand, the mGlu7 receptor
colocalizes with internalized MHC-I in endosomes (Lavezzari
and Roche, 2007). It was found to traffic there via an ADP-
ribosylation factor 6–positive endosomal pathway that is not
regulated by clathrin. The mGlu5 receptor also internalizes
through a clathrin-independent pathway in the absence of
receptor activation (Fourgeaud et al., 2003); however, it
contains caveolin-1 binding motifs in ICL1 and ICL3 and
colocalizes with caveolin-1 in hippocampal neurons, and
constitutive mGlu5 receptor internalization is inhibited by
nystatin-mediated sequestration of cholesterol (Francesconi
et al., 2009), thus suggesting that mGlu5 is constitutively
internalized via caveolae.
Other Pathways. Other GPCRs also internalize constitu-

tively without the need for arrestins, but their exact mecha-
nisms are not defined. Using ELISA and confocal microscopy,
the orphan adhesion receptor ADGRA3 (previously called
GPR125) was found to undergo rapid constitutive internali-
zation in an arrestin-independent, but clathrin-dependent
manner (Spiess et al., 2019). The internalized receptor
colocalized with transferrin receptor 1 in early endosomes.
Chemokine receptors CXCR4 and XCR1 and the viral GPCR
US28 also show constitutive activity and internalization in the
absence of arrestins (Fraile-Ramos et al., 2003; Bauer et al.,
2019; Spiess et al., 2019). Like the b2-adrenoceptor and theM3

receptor, constitutive and agonist-induced internalization of
CXCR4 occurs through distinct pathways. Constitutive in-
ternalization of the receptor is dependent on PKC and
dynamin but seems to be independent of arrestins, as in-
ternalization was not affected by deleting potential arrestin-2/
3 binding sites from the C-tail of CXCR4. However, activated
CXCR4 internalizes through the arrestin-mediated pathway
(Signoret et al., 1997, 1998). Similarly, the calcium-sensing
(CaS) receptor undergoes constitutive internalization through
a pathway that is partially arrestin-independent, whereas
agonist-mediated internalizationwas found to be arrestin-2/3-
dependent (Mos et al., 2019). Altogether, several GPCRs have
been reported to internalize constitutively in an arrestin-
independent manner. Although the molecular mechanisms at
play during arrestin-independent internalization are often not
investigated, these studies show that ligand-stimulated and
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constitutive receptor endocytosis can differ in terms of arrestin
dependency.
Arrestin Activation without Triggering Internaliza-

tion. As described above, FPR1 and PAR1 recruit arrestins
upon activation but internalize independently of arrestins.
Instead, arrestins are proposed to regulate PAR1 desensiti-
zation (Paing et al., 2002) and FPR1 recycling (Vines et al.,
2003). Most of the receptors that have been reported to
internalize independently of arrestins (Table 1) have in fact
been shown to recruit arrestin-2 and/or -3 to the plasma
membrane in a recent systematic study using a receptor-
independent enhanced bystander BRET assay (Avet C et al.,
preprint, DOI: https://doi.org/10.1101/2020.04.20.052027).
These inconsistencies could be a result of different cellular
backgrounds or experimental conditions, such as the need for
overexpression of arrestin in most assays measuring arrestin
recruitment. However, it is intriguing to consider the possi-
bility that GPCRs can interact with arrestin without trigger-
ing internalization and the potential functional consequences
of such an interaction.
Would it be possible for a receptor to interact with arrestin

without exposing the AP-2 and clathrin binding motifs in the
arrestin C-tail that is bound to the arrestin N-domain in
inactive arrestin (Fig. 2A)? Several studies have used intra-
molecular biosensors to show that arrestins can adopt multi-
ple active conformations with distinct functions (“active
arrestin” is defined in the following as a conformation that
involves a major conformational change from the inactive
state, which exposes functionalities, such as protein and lipid
binding sites that were inaccessible in the inactive state). This
was first shown with arrestin-2 or -3 biosensors with BRET
donors and acceptors fused to each end of arrestin (Shukla
et al., 2008; Nobles et al., 2011; Zimmerman et al., 2012).
Whereas endogenous agonists for AT1A angiotensin and para-
thyroid (PTH) 1 parathyroid hormone receptors [angiotensin
II and parathyroid hormone (PTH)-1-34, respectively] in-
creased the intramolecular arrestin BRET signal, the
arrestin-biased ligands [Sar1, Ile4, Ile8]-angiotensin II and

[D-Trp12, Tyr34]-PTH-(7–34) decreased the BRET signal, thus
indicating different arrestin conformations (Shukla et al.,
2008). Similarly, when introducing point mutations in the
transmembrane segment of the AT1A receptor or the b2-
adrenoceptor that interfere with G protein coupling, thus
generating an arrestin-biased receptor, the intramolecular
BRET signal upon stimulation with angiotensin II or iso-
proterenol changed from increasing to decreasing. The intra-
molecular biosensor approach was later extended by inserting
short (six amino acids) binding motifs for fluorescein arsenical
hairpin (FlAsH) in different places in arrestin-3 and monitor-
ing either Förster resonance energy transferwith aC-terminal
cyan fluorescent protein (Nuber et al., 2016) or BRET with an
N-terminal Renilla luciferase (Lee et al., 2016). These bio-
sensors confirmed the existence of receptor and ligand specific
arrestin conformations. The conformational signatures of
arrestin furthermore correlated with receptor trafficking
and arrestin-dependent extracellular signal-regulated ki-
nase (ERK) 1/2 phosphorylation patterns (Lee et al., 2016).
Although it is tempting to speculate that some of these
biosensors could provide evidence for arrestin activation
without arrestin C-tail displacement, such inferences are
notoriously difficult to make for biosensors. Recently, the
biosensor experiments were corroborated by a study using
an intracellularly expressed antibody fragment (intrabody)
specific for active arrestin-2 (Baidya et al., 2020). The
binding of the intrabody to arrestin-2 was triggered by
ligand stimulation of the V2 vasopressin receptor, but not
by the B2 bradykinin receptor, although both recruited
arrestin-2 to a similar extent. It is thus possible that some
GPCRs can stabilize an arrestin conformation that does not
lead to internalization but supports other arrestin func-
tions, although such a conformation has not yet been
demonstrated directly.
A possible mechanism for stabilizing different arrestin

conformations could be by arrestin interactions with discrete
receptor sites. The prevailing model for arrestin activation
was for many years a multistep model where arrestin first

Fig. 2. Nonconventional receptor-arrestin interactions that do not lead to arrestin-dependent internalization. (A) Hypothetical interaction between
arrestin and the 7TM core of a receptor that stabilizes an intermediate state of arrestin without displacement of the arrestin C-tail from the arrestin
N-domain. The clathrin and AP-2 interaction motifs in the arrestin C-tail are still masked, but arrestin blocks G protein activation and could potentially
potentiate signaling by scaffolding kinases. This model allows simultaneous interaction of the receptor C-tail with a hypothetical protein (depicted as
interactor) that mediates receptor internalization. (B) Catalytic activation of arrestin. Arrestin is activated by a transient interaction with the receptor
7TM core and is stabilized at the membrane in this conformation by binding of PI(4,5)P2. Activated arrestins accumulate in clathrin-coated structures
where they can scaffold kinases to enhance signaling.
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recognizes either the phosphorylated C-tail of the receptor or
the seven transmembrane (7TM) core of an activated receptor,
which constitutes a low-affinity precomplex. Arrestin can then
proceed to engage the other binding site if it is present, thus
forming the high-affinity complex that is required for arrestin
activation (Gurevich and Benovic, 1993). Later studies have,
however, revealed that engagement of only one of these sites is
sufficient for activation of arrestin (Richardson et al., 2003;
Kumari et al., 2016, 2017; Cahill et al., 2017; Latorraca et al.,
2018). Several studies have looked at the correlation between
the functional consequences of receptor-arrestin interactions
and whether arrestin is binding to the receptor 7TM core, the
phosphorylated C-tail, or both. For receptors with a C-tail that
forms stable complexeswith arrestins, such as the V2 receptor,
the core interaction was shown to be important for rapid
desensitization of G protein signaling, but the interaction
between the phosphorylated receptor C-tail and arrestin was
sufficient to mediate internalization and arrestin-dependent
ERK phosphorylation (Kumari et al., 2016, 2017; Cahill et al.,
2017). This is consistent with PAR1 where G protein de-
sensitization by arrestin is independent of phosphorylation
(Chen et al., 2004a). Conversely, a truncation mutant of the
substance P receptor that removes all serine and threonine
residues from the C-tail desensitized and internalized like
the full-length receptor (Richardson et al., 2003). Similarly,
a phosphorylation-deficient mutant of the BLT1 leukotriene
receptor was still able to recruit arrestin and internalize,
although with a delay compared with the wild-type receptor
(Jala et al., 2005). Thus, only desensitization of G protein
signaling seems to be specifically linked to interaction with
the receptor 7TM core, whereas internalization and enhance-
ment of signaling can bemediated by interactionwith either of
the two binding sites but seem to be linked as long as arrestin
is associated with the receptor.
Displacement of the arrestin C-tail has been shown to

enable arrestin to spontaneously undergo conformational
changes to a presumably active conformation where the
C-domain of arrestin is twisted 20° relative to the N-domain
(Latorraca et al., 2018). This is supported by the fact that the
naturally occurring p44 splice variant of arrestin-1 that lacks
the C-tail has been crystallized in both active and inactive
conformations (Granzin et al., 2012; Kim et al., 2013).
Allosteric coupling between the two events would suggest
that the converse is also true, i.e., that the conformational
rearrangement of the N- and C-domains that normally occurs
upon receptor binding would lead to C-tail displacement and
subsequently receptor endocytosis. However, if multiple ac-
tive arrestin conformations exist, as suggested by intramo-
lecular biosensor experiments, we speculate that some of
these conformations might not displace the arrestin C-tail.
Indeed, differential phosphorylation of the receptor C-tail has
been suggested to induce different arrestin conformations by
selectively interacting with a distinct subset of the key
elements that stabilize the inactive state of arrestin (Sente
et al., 2018). Interestingly, proximal phosphorylation appears
to release the finger loop that is important for interacting with
the receptor 7TM core, but possibly not the three-element
interaction between a-helix 1 and b-strand 1 of the arrestin
N-domain and the arrestin C-tail.
None of the structures of receptor-arrestin complexes pub-

lished so far has retained autoinhibitory binding of the arrestin
C-tail. However, these structures used either phosphorylated

receptor C-tails that are known to bind strongly to arrestin
(Shukla et al., 2014; Lee et al., 2020; Staus et al., 2020),
truncated the arrestin C-tail (Huang et al., 2020; Staus et al.,
2020), or destabilized the arrestin C-tail binding through
mutations in the arrestin C-tail (Kang et al., 2015; Yin et al.,
2019), thus making it unlikely or impossible to preserve auto-
inhibitory arrestin C-tail binding. Structures of receptors
without a phosphorylated C-tail in complex with full-length
arrestin are eagerly awaited to shed light on whether it is
possible to retain binding of the arrestin C-tail when bound to
a receptor.
An alternative model of arrestin activation termed catalytic

activation has been described, where arrestin interacts tran-
siently with the receptor 7TM core but remains bound to the
membrane in an active conformation stabilized by phosphoi-
nositide binding (Fig. 2B) (Eichel et al., 2016, 2018; Nuber
et al., 2016). When arrestin dissociates from the receptor, it
can no longer drive receptor internalization, but it can still
traffic to clathrin-coated structures and mediate ERK1/2
phosphorylation from there. This catalytic activation mecha-
nism was found for several receptors that are known to
interact transiently with arrestin: the b1- and b2-adrenocep-
tors, the D2 dopamine receptor, and the m and k opioid
receptors (Eichel et al., 2016, 2018).
In conclusion, arrestins can block G protein activation

without triggering endocytosis by binding to the 7TM core of
stimulated receptors in amechanism that most likely does not
involve major conformational changes in arrestin. There is
evidence from intramolecular arrestin biosensor experiments
that a given receptor-ligand combination could stabilize
a specific arrestin conformation, but the role of arrestins in
FPR1 recycling after arrestin-independent endocytosis
remains the only functional or structural evidence of a re-
ceptor-arrestin complex that mediates arrestin functions re-
quiring arrestin activation without also driving receptor
internalization (Vines et al., 2003). Catalytic activation of
arrestin does, however, provide such a mechanism, and it
would be interesting to determine if receptors that internalize
in an arrestin-independent way accumulate active arrestins at
clathrin-coated structures.

Methods for Measuring Endocytosis
It has for many years been technically challenging to

measure receptor endocytosis with the same level of sensitiv-
ity and robustness as receptor signaling, which made detailed
analysis of endocytic pathways challenging. However, there
are now sensitive and robust internalization assays that can
be combined with imaging for a complete picture of receptor
endocytosis.
Imaging. The most direct method to track subcellular

distribution of GPCRs is by fluorescence microscopy (Hislop
and von Zastrow, 2011; Foster and Bräuner-Osborne, 2018).
The receptor usually has to be genetically tagged with an
epitope or fluorescent protein or undergo enzyme-directed
covalent modification to allow for examination and localiza-
tion using fluorescence microscopy (Daunt et al., 1997; Hislop
and von Zastrow, 2011; Cahill et al., 2017). The method is
flexible, widely available, and applicable to most GPCRs.
Furthermore, it can be used in vivo, by knocking in the tagged
receptor in animals, allowing for real-time imaging of receptor
trafficking in e.g., neurons (Ehrlich et al., 2019). A potential
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drawback is that recombinantly expressed and modified
receptors may not exactly mimic the properties of native
receptors.
BRET and Time-Resolved Förster Resonance Energy

Transfer. BRETand time-resolvedFörster resonance energy
transfer (TR-FRET) internalization assays have higher
throughput than imaging assays but lack the spatial resolu-
tion. BRET trafficking assays require heterologous coexpres-
sion of fusion proteins with a luciferase variant that can
catalyze the generation of donor bioluminescence and a fluo-
rescent protein acceptor to measure proximity between
GPCRs and compartment markers in real time (Hamdan
et al., 2005, 2006; Pfleger et al., 2007). The acceptor can be
anchored to distinct cell compartments by genetically fusing it
to targeting sequences for the plasmamembrane (e.g., CAAX),
the endoplasmic reticulum (e.g., PTP1B), or different stages of
endosomes (e.g., Rab5, Rab7, or Rab11) (Pfleger and Eidne,
2006; Lan et al., 2012; (Szakadáti et al., 2015) Namkung et al.,
2016; Cahill et al., 2017). When GPCRs relocate to these
compartments, bystander BRET will be generated that allows
for the study of the complete trafficking cycle (Balla et al.,
2012; Cao et al., 2019). However, the specificity of the
bystander BRET assay should be taken into consideration,
as it relies on the assumption of a homogenous cell population
with similar levels of fusion protein expression and requires
fusion of a luciferase on the intracellular side of receptors,
which could interfere with trafficking.
The TR-FRET internalization assay can also effectively

assess the time course of receptor internalization. It requires
fusion of an N-terminal SNAP-tag to receptors, which is less
likely to interfere with trafficking than an intracellular tag
and is applicable to a wide range of GPCRs (Roed et al., 2014;
Jacobsen et al., 2017; Foster et al., 2019). The SNAP-tagged
receptors are covalently labeled with a cell-impermeant
terbium cryptate substrate (SNAP-Lumi4-Tb) that acts as
energy donor and ensures that only receptors that are at the
cell surface during labeling are tracked. Lanthanide com-
plexes, such as terbium cryptate, have millisecond lifetimes,
which makes it possible to introduce a delay between excita-
tion and recording of emission, eliminating short-lived fluores-
cence background from, for example, cellular autofluorescence
(Levoye et al., 2015). After washing to remove excess donor
substrate, cells are incubated with a cell-impermeant energy
acceptor (e.g., fluorescein-O9-acetic acid). For receptors at the
cell surface, energy is transferred from the donor to the acceptor
upon excitation of the donor, thus resulting in a low donor-
acceptor ratio. Receptor internalization (constitutive or agonist-
induced) causes an increased donor-acceptor distance that is
incompatible with energy transfer, which leads to an increased
donor/acceptor ratio (Foster and Bräuner-Osborne, 2018). The
TR-FRET internalization assay uses a synthetic fluorophore in
solution as the acceptor, which limits the assay to measuring
receptor endocytosis.
ELISA, Flow Cytometry, Immunoblotting, and

Radioligand Binding. Other high-throughput GPCR endo-
cytosis assays include biochemical measurements of receptors
with N-terminal epitope tags, such as hemagglutinin and Flag
tags (Kang et al., 2013; Foster and Bräuner-Osborne, 2018).
Examples include ELISA, flow cytometry, and immunoblot-
ting to quantify loss of cell surface GPCR and determine the
rate of internalization upon agonist stimulation (Okamoto
et al., 2000). For receptors with readily available radioligands,

different protocols of binding experiments can be performed to
compare cell surface with total receptor density (Heilker,
2007). However, this is limited to receptors with specific high-
affinity radiolabeled ligands. Also, these assays are only able
to measure net changes in receptor number, which is why it
can be challenging to effectively distinguish between the
effects of receptor biosynthesis and degradation, in contrast
to the BRET assays that can track receptor quantity changes
in different cellular compartments (Hislop and von Zastrow,
2011).
Tools for Testing Arrestin Involvement in Endocyto-

sis. A variety of methods have been used to determine
whether receptor endocytosis depends on arrestins, to further
examine themolecularmachinery involved, and to identify the
distinct endocytic routes. Here we present a critical overview
of some of the most commonly used tools, including their
advantages and possible pitfalls, with focus on probing the
involvement of arrestins.
Genetic Approaches. To determine the involvement of

arrestins in GPCR desensitization, internalization, and down-
regulation, a wide range of pharmacological and genetic tools
have been developed. Arguably, the most effective method to
study their impact on receptor endocytosis is to genetically
deplete endogenous arrestins from the cellular background.
Different methods have been used to successfully achieve this,
including the use of RNA interference to knockdown arrestins
(Ahn et al., 2003;Wei et al., 2003; Shenoy et al., 2006; O’Hayre
et al., 2017; Luttrell et al., 2018). However, full knockdown of
expression is rarely achieved with this method, which compli-
cates analysis of the results. In contrast, MEFs prepared from
arrestin-2/3 knockout mice can be used to perform experi-
ments in the complete absence of arrestins. These MEFs
have been used to study the contribution of arrestin to the
endocytosis of several GPCRs, including the b2-adrenocep-
tor, the FPR1 formylpeptide receptor, the PAR1 and
PAR4 proteinase-activated receptors, and the viral chemokine
receptor US28 (Kohout et al., 2001; Paing et al., 2002; Fraile-
Ramos et al., 2003; Vines et al., 2003; Smith et al., 2016). More
recently, advancement of the CRISPR/CRISPR-associated
protein genome editing technology has made specific gene
targeting widely available. This led to the generation of a wide
range of HEK293 cell lines where genes encoding different
proteins have been knocked out, including GPCRs, G proteins,
GRKs, and arrestins (Milligan and Inoue, 2018; Møller et al.,
2020). The arrestin-2/3 knockout cells have been used to
express and study GPCRs such as the b2-adrenoceptor and
the CaS, gastric inhibitory polypeptide, m-opioid and V2

vasopressin receptors and to assess the role of arrestins in
receptor endocytosis as well as their function in cell signaling
(Gabe et al., 2018; Luttrell et al., 2018; Mos et al., 2019; Møller
et al., 2020). The cell lines were validated to be completely
deprived of arrestins, and, compared with knockout animals,
they are less likely to have altered levels of other network
components to compensate for the loss of the deleted genes, as
arrestin-2/3 knockout cells did not have significantly altered
expression of G proteins (Alvarez-Curto et al., 2016).
Dominant Negative Protein Mutants. Another com-

monly used group of tools to study GPCR endocytosis is
dominant negative mutants. These mutants are able to com-
pete with the wild-type protein for some of the same binding
partners but are unable to perform certain key functions. They
will effectively inhibit the action of the wild-type protein when
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expressed in excess (Sheppard, 1994). For arrestins, there are
several dominant negative mutants that effectively inhibit
agonist-promoted endocytosis by interfering with the ability
of arrestins to bind to GPCRs (arrestin-2-V53D, arrestin-3-
V54D) (Ferguson et al., 1996), clathrin (arrestin-2-DLIELD), or
b2 adaptin (arrestin-2-F391A) (Kim and Benovic, 2002) or
by competing with clathrin binding (arrestin-23192418 and
arrestin-32842409) (Krupnick et al., 1997; Orsini and Benovic,
1998).
Pharmacological Inhibitors. Finally, pharmacological

inhibitors can be used to decipher the contribution of their
target protein in the receptor endocytosis process. Barbadin is
an inhibitor that selectively binds to AP-2 and disrupts the
interaction between arrestins and the b2 adaptin subunit of
AP-2 (Beautrait et al., 2017). Other pharmacological inhib-
itors include pitstop2 that blocks both clathrin-dependent and
-independent endocytosis (Dutta et al., 2012), dynasore and
dyngo-4a that inhibit dynamin-dependent pathways (Macia
et al., 2006; Hill et al., 2009; McCluskey et al., 2013), nystatin
and filipin that disrupt caveolae-mediated internalization,
and chlorpromazine that blocks internalization via clathrin-
coated pits (Okamoto et al., 2000). However, experimental
results based on these inhibitors need to be interpreted with
care, as the selectivity of these compounds may not be as
defined as previously thought (Ivanov, 2008; Park et al., 2013;
Guo et al., 2015). Pitstop2, for instance, is still being adver-
tised as a clathrin-selective inhibitor, even though equipotent
inhibition of clathrin-independent endocytosis was reported
long ago (Dutta et al., 2012).

Conclusions
GPCR endocytosis is often assumed to be an arrestin-

mediated process. Here we have presented more than 30
examples of arrestin-independent agonist-induced or consti-
tutive endocytosis (Table 1), which show that GPCR endocy-
tosis is a more diverse process than initially expected.
However, for most of the receptors that are shown to in-
ternalize independently of arrestins, there is little known
about the alternative pathway. The absence of clear discrim-
inators between the pathways has resulted in a lack of tools to
specifically study them. Further complicating matters, ago-
nists that selectively activate one endocytosis pathway have
been described, for example, for the D3 dopamine receptor (Xu
et al., 2019). Moreover, receptors display cell type–specific
endocytosis, indicating that cellular background and molecu-
lar makeup of the environment can drive distinct internaliza-
tion pathways. It is thus necessary for the field to apply the
recent technological developments that are outlined in this
review, such as high-throughput internalization assays and
CRISPR/CRISPR-associated protein genome editing, to de-
lineate the arrestin-independent internalization pathways
and thereby expand our understanding of GPCR regulation.
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