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Abstract 

Recent evidence suggests that CD38, an ectoenzyme that converts NAD+ to cyclic 

ADP-ribose (cADPr), may play a role in cytokine-induced airway smooth muscle (ASM) 

cell hyper-responsiveness, a key feature associated with chronic asthma. In the present 

study, we investigated the major signaling pathways by which TNFα induces CD38 

expression as well as its role in regulating gene expression in human ASM cells. Using 

flow cytometry analyses, TNFα enhanced CD38 expression in a manner that was time (0-

24hr), concentration (0.1-40 ng/ml) and protein synthesis (cycloheximide blockade) 

dependent. A selective agonistic antibody against TNFR1 also augmented CD38 

expression while anti-TNFR2 antagonistic antibody did not prevent the TNFα response. 

Inhibition of the JAK/STAT pathways using a soluble inhibitor ((2-(1,1-Dimethylethyl)-

9-fluoro-3,6-dihydro-7H-benz-[h]imidaz[4,5f]isoquinolin-7-one) or with neutralizing 

antibody against IFNβ completely abrogated TNFα-induced CD38 expression at both 

protein and mRNA levels. Combining TNFα (0.1 and 1 ng/ml) and IFNβ (100 IU/ml), at 

concentrations alone that had little effect on CD38 expression, induced a robust 

synergistic induction of CD38 mRNA and protein levels. 8-bromo-cADPr, a cADPr 

antagonist, significantly augmented TNFα-induced IL-6 secretion, while RANTES 

secretion was suppressed. 8-bromo-cADPr, however, did not affect TNFα-induced cell 

surface expression of ICAM-1. Together, our study is the first to demonstrate that IFNβ-

dependent activation of CD38 pathway is a novel component by which TNFα 

differentially regulates the expression of inflammatory genes in ASM cells. 
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Introduction 

CD38 is a bifunctional ectoenzyme with ADP-ribosyl cyclase activity that 

converts the cellular intermediary metabolite βNAD+ to cADPr, a calcium (Ca2+)-

mobilizing second messenger. In addition, CD38 mediates the degradation of cADPr to 

ADPR through its cADPr hydrolase activity (reviewed in (Lee, 2001)). CD38 expression 

occurs widely in many mammalian cells including hematopoetic cells, such as B and T 

lymphocytes, macrophages, as well as resident cells such as pancreas, heart, brain, liver 

and lung cells, vascular and uterine smooth muscle (reviewed in (Deaglio et al., 2001)). 

The cellular function of CD38 remains unclear. Early evidence shows that CD38 plays a 

critical role in insulin release from pancreatic ß cells (Takasawa et al., 1993). Additional 

studies, using different experimental approaches, such as monoclonal agonistic 

antibodies, cADPr antagonist 8-Bromo-cADPr (8-Br-cADPr) or CD38-deficient cells 

demonstrate a role for CD38 in both B and T cell proliferation (Funaro et al., 1997), 

cytokine production from B and T cells (Deaglio et al., 2003), neutrophil migration 

(Partida-Sanchez et al., 2001), as well as neurotransmission and cardiac contraction 

(Higashida et al., 2001). Whether all CD38 cellular effects are mediated via cADPr 

remains controversial; new evidence shows that CD38 signaling in response to activating 

antibodies occurs independently of its enzymatic activity (Lund et al., 1999). The nature 

of these signaling pathways is not known but CD38 ligation can activate multiple 

molecules such as phospholipase Cγ, phosphatidyl inositol 3-kinase and other tyrosine 

phosphorylated proteins (Shubinsky and Schlesinger, 1997). Together, these studies show 

the mechanisms that regulate CD38/cADPr expression and function remain unknown.  
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We and others recently showed that the CD38/cADPr pathway represents a novel 

component in the regulation of Ca2+ homeostasis in response to activation of G protein 

coupled receptors (GPCR) in monocytes (Partida-Sanchez et al., 2004), in arterial SM 

cells (Ge et al., 2003) and in airway SM cells (Prakash et al., 1998; White et al., 2003). 

We also found that induction of CD38 expression by TNFα or IL-1β correlated with 

increases in Ca2+ signals to different GPCR agonists (bradykinin, carbachol), an effect 

that was abrogated by the cADPr antagonist, 8-Br-cADPr (Deshpande et al., 2003). 

Similar findings were also recently reported in myometrium cells where oxytocin-

induced Ca2+ responses were enhanced by TNFα, an effect also prevented by 8-Br-

cADPr (Barata et al., 2004). Collectively, these data suggest that the modulation 

CD38/cADPr pathways by inflammatory cytokines may represent one mechanism in the 

regulation of cell responsiveness to GPCR agonists. We therefore propose that changes in 

CD38 expression and/or function in ASM, the main effector tissue that regulate the 

bronchomotor tone, may represent a key mechanism underlying the development of 

bronchial hyper-responsiveness to GPCRs, a defining feature of asthma. 

In this study, we present the first evidence that the induction of CD38 expression 

by TNFα occurs via transcriptional mechanisms involving the synergistic cooperation of 

endogenous IFNβ. More importantly, activation of CD38/cADPr pathway by TNFα 

differentially regulates the expression of inflammatory genes. Our findings shows that, in 

addition to its recently shown role in promoting airway hyper-responsiveness, 

CD38/cADPr pathway potentially modulates airway inflammation via the transcriptional 

regulation of inflammatory genes in ASM cells.  
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Materials and Methods 

Cell culture. Human tracheal tissue culture was obtained from lung transplant donors in 

accordance with procedures approved by the University of Pennsylvania Committee on 

Studies Involving Human Beings. The culture of human ASM cells was performed as 

described elsewhere (Amrani et al., 2001).  

Flow cytometry analysis. Flow cytometry was performed as described previously 

(Amrani et al., 1999). Briefly, adherent cells were washed with PBS, detached by 

trypsinization (2 min, 37°C) and then washed with Ham’s-F12 (10% feotal calf serum) 

media, centrifuged, and transferred to microfuge tubes (1.5 ml). Following incubation 

with the mouse anti-human CD38 antibody (2 µg/ml, Santa Cruz Biotechnology, Santa 

Cruz, CA) and FITC-conjugated goat anti-mouse antibody (Jackson immunoResearch, 

West Grove, PA), the cells were centrifuged and resuspended in cold PBS in microfuge 

tubes. Samples were then analyzed using an EPICS XL flow cytometer (Coulter, Hialeah, 

FL). ICAM-1 expression was assessed using FITC-conjugated mouse anti-human ICAM-

1 Ab (10 µg/ml, R&D Systems, Minneapolis, MN). CD38 and ICAM-1 expression was 

expressed as the fold increases in mean fluorescence intensity over basal (untreated cells).  

Sodium Dodecyl Sulfate–Polyacrylamide Gel Electrophoresis and Western Blot 

Analysis. Immunoblot analysis for phospho-STAT1 was performed as described 

previously (Tliba et al., 2003): To ensure equal loading, the membranes were stripped and 

reprobed with anti-STAT1 (Santa Cruz Biotechnology, Santa Cruz, CA).  

Reverse Transcription-Polymerase Chain Reaction (RT-PCR) Analysis. Total RNA 

was extracted from human ASM cells using RNeasy mini kit (Qiagen) according to the 

manufacturer's instructions. RT-PCR reactions were performed using human CD38 
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primers for semi-quantitative analysis as previously described (Deshpande et al., 2003). 

Each of 35 cycles of the PCR was programmed to carry out denaturation at 94°C for 30 s, 

primers annealing at 55°C for 45 s, extension at 72°C for 45 s, and a final extension at 

72°C for 10 min. The semi-quantitative PCR approach of CD38 mRNA was performed in 

parallel by investigating human GAPDH mRNA levels with the following primers: 5'-

ATGGATGATGATATCGCCGC-3' (sense) and 5'-TTAATGTCACGCACGATTTC-3' 

(antisense). The intensity of density area was analyzed using a Gel-Pro Analyzer (Silver 

Spring, MD). The final PCR product was expressed as the ratio of CD38 to GAPDH used 

for scanning analysis. 

Measurement of IL-6 and RANTES Secretion by ASM Cells by ELISA. Confluent 

ASM cells were growth-arrested by incubating the monolayers in Ham's F12 with 0.1% 

bovine serum albumin for 24 h and stimulated with TNFα (10ng/ml) for 24 h. The 

concentration of IL-6 and RANTES in the culture medium was determined by ELISA as 

described previously (Tliba et al., 2003). To investigate the effect of CD38/cADPr 

pathway on TNFα induced IL-6 and RANTES expression, the 8-Br-cADPr, a membrane 

permeant antagonist of cADPr (100 µM) was added 15 min before the addition of TNFα.  

Measurement of cADPr levels. cADPr levels were determined by an enzymatic cycling 

method developed by Graeff et al. (Graeff and Lee, 2002). ASM cultures were treated in 

the absence or presence of TNFα for 24 hours.  The media was then removed by 

aspiration and 5ml of ice-cold 40 %(v/v) acetonitrile was added (Grob et al., 2003). The 

cells were scraped from the dish and frozen.  After thawing, the cell extracts were 

sonicated for 20 seconds on ice and centrifuged at 2000xg for 30 minutes to remove 
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precipitated protein.  The supernatant was evaporated to dryness using a Savant Speed-

Vac concentrator.  The cADPr assay depends on the conversion of cADPr to 

nicotinamide adenine dinucleotide (NAD) using Aplysia ADP-ribosyl cyclase, thus 

necessitating removal of endogenous NAD before the assay [Graeff, 2002 #2; Graeff, 

2003 #3].  To accomplish this, we used reverse phase HPLC to separate cellular NAD 

from cADPr.  The chromatography step utilized a LC18T column (4.6mm x 15cm, 

Supelco) at a flow rate of 1 ml/min with 10mM KH2PO4, pH 6.0.  A gradient from 0-

10% methanol in 10mM KH2PO4, pH 6.0 from 6 to 15 minutes was utilized to separate 

cADPr from NAD.  cADPr elutes between 3 and 4 minutes while NAD elutes at 

approximately 14 minutes.  The dried samples were reconstituted in 500µl of 10mM 

KH2PO4, pH 6.0 and filtered through 0.22µm cellulose acetate centrifugal filters (Spin-x, 

Corning, Inc) before injection.  Fractions containing cADPr (1 ml fractions collected 

from 2 to 6 minutes) were dried on a Savant Speed-Vac concentrator.  These fractions 

were reconstituted in 200µl of 100mM sodium phosphate, pH 8.0.  Forty µl aliquots of 

the reconstituted fractions were used in the cADPr determination. 

Materials and Reagents. Tissue culture reagents and primers used for PCR were 

obtained from Life Technologies (Grand Island, NY). Human rTNFα was provided by 

Boehringer Mannheim (Minneapolis, MN). rIFNγ, rIFNβ, rIFNα, and the different 

antibodies: antagonistic anti-TNFR1, agonistic anti-TNFR1 , neutralizing anti-IFNβ 

(sheep polyclonal Ab), isotype-matched goat or mouse IgG were all purchased from 

R&D Systems (Minneapolis, MN). Cycloheximide was purchased from Sigma (St. Louis, 

MO). The JAK inhibitor (DBI) (2-(1,1-Dimethylethyl)-9-fluoro-3,6-dihydro-7H-benz-

[h]imidaz[4,5f]isoquinolin-7-one) was provided by Calbiochem (San Diego, CA). The 
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anti-TNFR2 antagonistic Ab was obtained from Cell Sciences Inc. (Norwood, MA). 8-

Br-cADPr was prepared as previously described (Walseth et al., 1997). The Sheep serum 

was purchased from Jackson ImmunoResearch (West Grove, PA). 

Data analysis. Data points from individual assays represent the mean values of triplicate 

measurements. Significant differences among groups were assessed with ANOVA 

(Bonferroni-Dunn test) or by t-test analysis, with values of P < 0.05 sufficient to reject 

the null hypothesis for all analyses. Each set of experiments was performed with a 

minimum of three different human ASM cell lines.  
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Results 

TNFα stimulates CD38 expression and cADPr production in human ASM 

Cells. In ASM cells stimulated with 10 ng/ml of TNFα for 0-24 h, CD38 expression was 

increased in a time-dependent manner, with a significant increase of 1.8 + 0.1 and 4.1 ± 

0.5 fold at 12 hr and 24 hr, respectively (P < 0.01, Fig. 1A). To determine whether the 

TNFα effect on CD38 expression was due to protein synthesis, ASM cells were 

pretreated with the protein synthesis inhibitor cycloheximide (10 µM for 1 h, as described 

in (Amrani et al., 2000b)). As shown in Figure 1A, cycloheximide completely inhibited 

TNFα-induced CD38 induction at 24 hr (P<0.001). These results suggest that TNFα-

induced CD38 expression required de novo protein synthesis. In addition, CD38 

expression by TNFα (0.1-40 ng/ml, 24 hr) was concentration-dependent with a net fold 

increase of 4.3 + 0.2 and 8.2 ± 0.4 at 10 and 40 ng/ml, respectively (P < 0.01, Fig. 1B). 

We also found that the increase in CD38 protein expression was associated with 

increased levels of cADPr with a net 1600 fmol/mg  (n=2, data not shown). For all 

subsequent experiments, modulation of CD38 expression was examined in ASM cells 

stimulated with 10 ng/ml of TNFα for 24 h.  

CD38 induction by TNFα involves the activation of TNFR1, but not TNFR2. 

Using a set of agonistic and antagonistic antibodies, we showed that TNFR1 plays an 

important role in mediating many cellular effects induced by TNFα in ASM cells 

(Amrani et al., 2001). Incubation of ASM cells with the agonistic antibody to TNFR1 for 

24 h stimulates the expression of CD38 with levels similar to those induced by TNFα 

with a 4.8 ± 0.61 and 5.3 ± 0.45 fold increase over basal, respectively (Fig. 2A). At the 

same concentration, the isotype-matched antibody had no effect on CD38 levels in basal 
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and TNFα-treated cells. As shown in Figure 2B, neutralizing anti-TNFR2 antibody (20 

µg/ml, 1 hr as used in (Amrani et al., 2001)) had little effect on CD38 induction by 

TNFα. Collectively, these data show that TNFα stimulates CD38 expression in ASM 

cells mainly by activating TNFR1.  

CD38 induction by TNFα requires the autocrine activation of the JAK/STAT 

pathways. Evidence from our laboratory showed that TNFα can activate the JAK/STAT 

signaling molecules via the autocrine action of endogenous IFNβ (Tliba et al., 2003). 

Because type I IFNs can stimulate CD38 expression in other cell types (Bauvois et al., 

1999), we next examined whether endogenous IFNβ modulated TNFα-induced CD38 

expression and cADPr production. As shown in Figure 3, neutralizing anti-IFNβ antibody 

significantly suppressed TNFα-induced CD38 expression by more than 85% at both 

protein (Fig. 3A) and mRNA (Fig. 3B) levels. In contrast, the sheep serum, the antibody 

diluent, did not have any effect on TNFα-induced CD38 expression. Neutralizing anti-

IFNβ antibody also completely abolished TNFα-induced cADPr production at 24 hr 

(95% inhibition, data not shown).  

The involvement of JAK/STAT pathways was confirmed by using the recently 

described inhibitor of IFN-receptor associated kinases JAK1 and Tyk2, 2-(1,1-

Dimethylethyl)-9-fluoro-3,6-dihydro-7H-benz-[h]imidaz[4,5f]isoquinolin-7-one) (DBI) 

(Thompson et al., 2002). We found that DBI at 25 nM was effective in inhibiting IFNγ-

coupled signaling pathways as shown by the dose-dependent inhibition of IFNγ-induced 

STAT1 phosphorylation (Fig. 4A). At this particular concentration, we also found that 

DBI abrogated TNFα-induced increases in CD38 protein (Fig. 4B) and mRNA (Fig. 4C). 
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Taken together, these results suggest that the JAK/STAT pathways play an essential role 

in the transcriptional activation of CD38 gene induced by TNFα. 

CD38 induction by TNFα requires the synergistic cooperation of endogenous 

IFNβ. Although autocrine IFNβ (as shown above) mediated TNFα-induced CD38 

expression, the mechanisms by which endogenous IFNβ regulates CD38 expression are 

not clear. In ASM cells treated with exogenous IFNβ  at concentrations believed to be 

released by TNFα-treated ASM cells (100-IU/ml in (Tliba et al., 2003)), there was no 

effect on CD38 expression while only a modest stimulatory effect was observed at higher 

concentrations such as 1000 UI/ml (1.48 + 0.3 fold increase, n=3, data not illustrated). In 

addition, another type I IFN, IFNα had no effects on CD38 expression at either 100, 500 

or 1000 UI/ml (data not shown). In contrast, there was a significant increase in CD38 

levels in ASM cells treated with a combination of ineffective concentrations of TNFα 

(0.1 and 1 ng/ml as shown in Fig. 1) and IFNβ (100 IU/ml, see above). CD38 expression 

was increased by 6.1 + 0.3 and 7.2 + 0.2 fold when combining 100 IU/ml IFNβ with 0.1 

and 1 ng/ml TNFα, respectively (Fig. 5A). RT-PCR analyses of cytokine-treated ASM 

cells revealed that the synergistic action of TNFα and IFNβ combination was also 

observed that the mRNA level (Fig. 5B). Together, these results suggest that the 

induction of CD38 gene by both TNFα and IFNβ is likely to involve cooperative 

mechanisms that synergistically increase CD38 gene transcription.  

cADPr antagonist differentially modulates TNFα-induced gene expression. In 

previous reports, the use of 8-Br-cADPr, a cell permeant cADPr antagonist (Walseth et 

al., 1997), allowed us to demonstrate the physiological role of cADPr in ASM cells in the 

presence or the absence of TNFα (Deshpande et al., 2003; White et al., 2003). Here, we 
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found that 8-Br-cADPr differentially regulates TNFα-induced IL-6 and RANTES 

secretion while cell surface induction of ICAM-1 expression was not affected. As shown 

in Figure 6A, 8-Br-cADPr significantly enhanced IL-6 secretion induced by TNFα. IL-6 

levels were increased from 3823 + 120 to 5231 + 180 pg/ml in cells treated with TNFα 

alone or with 8-Br-cADPr, respectively. In addition, 8-Br-cADPr considerably 

suppressed by 50% TNFα-induced RANTES secretion. RANTES levels were decreased 

from 11900 + 523 pg/ml to 5843 + 120 pg/ml in cells treated with TNFα alone or with 8-

Br-cADPr, respectively (Figure 6B). Interestingly, 8-Br-cADPr had no effect on ICAM-1 

induction by TNFα treated cells (Figure 6C). These data suggest that activation 

CD38/cADPr pathway differentially regulates TNFα-induced expression of inflammatory 

genes in ASM cells.  
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Discussion 

Recent reports from our laboratories suggest that CD38 expression and activation 

by inflammatory cytokines in ASM may represent a key molecular mechanism for the 

development of bronchial hyper-responsiveness, a defining feature of asthma (Amrani et 

al., 2000a). The present work provides the unique demonstration that activation of 

CD38/cADPr pathways by TNFα occurs via the autocrine action of endogenous IFNβ 

and differentially regulates the expression of different inflammatory genes.  

Growing evidence shows that binding of TNFα to TNFR1 in ASM activates 

multiple signaling pathways and genes that may be critical to the pathogenesis of asthma 

(Amrani et al., 2000a). TNFR1 engagement promotes bronchial hyper-responsiveness by 

altering Ca2+ homeostasis in ASM, the main effector tissue that regulates bronchomotor 

tone (Amrani et al., 2000a; Hunter et al., 2003; Parris et al., 1999). Activation of TNFR1 

in ASM may also regulate airway inflammation, another major characteristic of 

asthmatics, by promoting the secretion and/or expression of different inflammatory 

molecules including cytokines and chemokines (Amrani et al., 2001; Amrani et al., 

2000b). In the present study, we found that TNFα binding to TNFR1 stimulated the 

expression of CD38 in human ASM cells, in a manner that was concentration (inducible 

at 10ng/ml), time (detectable at 12 hr) and protein synthesis (blockade by cycloheximide) 

dependent. Although a similar finding has been also described in human myometrium 

cells where induction of CD38 protein by TNFα was associated with an increased cADPr 

cyclase activity (Barata et al., 2004), the nature of TNFα receptor type involved in CD38 

expression was not investigated. This is an important question since ASM cells express 

both TNFR1 and TNFR2 that mediate some TNFα-induced cellular responses such as 
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RANTES expression (Amrani et al., 2001). Other reports performed in Hela and 293 cells 

also showed the contribution of both TNFR2 and TNFR1 in TNFα-induced cellular 

function including apoptotic responses (Fotin-Mleczek et al., 2002) or antiviral activities 

(Chan et al., 2003). Our present findings suggest that activation of CD38 gene solely 

involves TNFR1-associated signaling molecules, although the nature of these pathways 

remains unknown. 

The recently described JAK inhibitor DBI (Thompson et al., 2002) and present 

study, completely blocked the induction of CD38 expression induced by TNFα, 

suggesting the contribution of the JAK/STAT pathway. In a recent report, we showed 

that TNFα, via the autocrine action of IFNβ, activates different members of the 

JAK/STAT pathways including the kinases JAK1 and Tyk2, as well as the transcription 

factors STAT1 and STAT2 (Tliba et al., 2003). The observations that neutralizing 

antibodies completely blocked increased CD38 expression (at both protein and mRNA 

levels) and activity (cADPr production) suggest that TNFα effect on CD38 occured at the 

transcriptional level via the secretion of endogenous IFNβ. Even though CD38 gene 

induction by TNFα has also been observed in other excitable cell types such as human 

myometrium (Barata et al., 2004) as well as mesangial cells (Yusufi et al., 2001), our 

study is the first demonstration of a role of the autocrine action of IFNβ in TNFα-induced 

CD38/cADPr both expression and activation. The effect of exogenous Type I IFNs on 

CD38 induction remains controversial; CD38 is induced by Type I IFNs in some cell 

types, such as leukemic B cells and resting B lymphocytes (Bauvois et al., 1999; Galibert 

et al., 1996) but not in others such as hairy leukaemia cells (Hassan et al., 1991). We also 

found that exogenous IFNγ (Deshpande et al., 2003), or IFNβ alone (present study) failed 
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to effectively increase CD38 levels; however, IFNβ strongly enhanced CD38 steady state 

mRNA and protein levels when combined with ineffective concentrations of TNFα (0.1 

and 1 ng/ml, Figure 5). Interestingly, the magnitude of CD38 expression induced by the 

combination of subthreshold concentrations of TNFα and 100 IU/ml exogenous IFNβ 

was greater than that induced by the effective concentration of TNFα alone (Fig. 3). This 

apparent discrepancy in CD38 induction may be due to the delayed effects of endogenous 

IFNβ on TNFα-induced CD38 expression, which is only secreted and functional after 3 

hr (Tliba et al., 2003). Alternatively, exogenous and endogenous IFNβ may also manifest 

different cellular effects due to access to different cellular compartments. A previous 

article showed that endogenous IFNβ induced intracellular signaling events without being 

secreted and consequently may act differently from exogenous IFNβ (Rousseau et al., 

1995). Our observation in Figure 5 underscores the cooperative action between TNFα 

and IFNβ receptor-coupled signaling pathways to achieve maximal CD38 gene 

expression. Interestingly, CD38 promoter contains binding sites for multiple transcription 

factors including IRF-1 (Ferrero and Malavasi, 1997), known to be activated by TNFα or 

type I IFNs (Tliba et al., 2003). It is plausible that CD38 induction by TNFα and IFNβ 

may occur by increasing promoter activation through a synergistic action of IRF-1 with 

other transcription factors including NF-κB or STAT1 as described previously (Hiroi and 

Ohmori, 2003; Saura et al., 1999). The transcriptional cooperation observed between 

subeffective concentrations of TNFα and IFNβ may also involve an increased STAT 

phosphorylation either on tyrosine residues that augment STAT activity or on serine 

residues required for maximal transcription of the target gene. We found that 100 IU/ml 

IFNβ-induced STAT1 phosphorylation on two key residues, tyrosine 701 and Serine 727, 
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were not affected by subeffective concentrations of TNFα (Amrani, unpublished 

observation), suggesting that additional mechanisms may explain the synergistic 

induction of CD38 gene by both cytokines. Such transcriptional cooperation may explain 

the functional synergism induced by the combination of TNFα and IFNβ found in other 

cells such as the inhibition of cell proliferation in human tumor-derived cell lines and 

murine macrophages (Hamilton et al., 1996; Onozaki et al., 1988), and in the 

enhancement of the anti-viral activity in human fibroblasts (Reis et al., 1989). Whether 

the failure of TNFα to promote CD38 expression in monocytes (Musso et al., 2001) or in 

endothelial cells (Favaloro, 1993) is due to the lack to induce IFNβ in these cells is an 

interesting hypothesis that remains to be explored.  

Our laboratories showed that CD38 enzymatic activity was increased by 3.7 fold 

in TNFα-treated cells when compared to unstimulated cells (Deshpande et al., 2003). We 

now confirm that the increased CD38 expression by TNFα is associated with a 1.37 fold 

increase in the production of cADPr. The functional consequence of cADPr accumulation 

on ASM function has not been completely investigated, but our earlier studies showed 

that cADPr-dependent pathways are playing a critical role in mediating cytokine effects 

on agonist-evoked Ca2+ signals (Deshpande et al., 2004; Deshpande et al., 2003). We 

now show that ASM cells treated with TNFα in the presence of 8-Br-cADPr, a 

membrane permeant antagonist of cADPr (Walseth et al., 1997; White et al., 2003), 

released more IL-6 and produced less RANTES. Moreover, the effect of 8-Br-cADPr 

seems to be gene-specific since no effect was observed in TNFα-induced ICAM-1 

expression. Interestingly, CD38 ligation using monoclonal antibodies can regulate the 

expression of different inflammatory mediators including IL-2, IL-10, IL-6 in a variety of 
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lymphoid cells such as T cells, B cells, NK cells (reviewed in (Deaglio et al., 2001)). Our 

study, however, is the first to implicate CD38/cADPr pathways in the differential 

induction of inflammatory cytokines in response to a physiological stimulus TNFα. The 

fact that autocrine IFNβ (Tliba et al., 2003) and 8 -Br-cADPr elicited similar modulatory 

effects on TNFα-inducible inflammatory genes (increased IL-6, reduced RANTES) 

suggests that the transcriptional cooperation induced by endogenous IFNβ and TNFα 

occurs, at least in part, via the activation of CD38/cADPr pathways.  

Our data shows for the first time that activation of CD38/cADPr pathways by 

TNFα involves the autocrine action of IFNβ and differentially regulates the expression of 

inflammatory genes in human ASM cells. Further studies are needed to delineate the 

molecular mechanisms underlying CD38 expression by TNFα as well as the CD38-

associated signaling pathways that regulate inflammatory gene expression. 
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Figure legends 

Fig. 1. TNFα induces CD38 expression. ASM cells were incubated with 10 ng/ml of 

TNFα for the indicated time (left panel: A) or for 24 h at the indicated concentrations 

(right panel: B). ASM cells were also treated with cycloheximide (CHX, 10 µg/ml) 

added 1 h prior TNFα for 24 hr. CD38 expression was assessed by flow cytometry as 

described in Materials and Methods. The results are expressed as mean of fold increase 

over basal ± SEM of three separate experiments. *P < 0.05 and **P < 0.05 compared 

with untreated cells. #P < 0.05 compared with cells treated with TNFα alone. 

Fig. 2: TNFR1 mediates TNFα-induced CD38 expression. A, human ASM cells were 

incubated for 24 h with either TNFα (10 ng/ml), agonistic antibody to TNFR1 (5 µg/ml) 

or the isotype-matched antibody. B, human ASM cells were incubated for 24 h with 

TNFα (10 ng/ml) in the presence or the absence of neutralizing antibody to TNFR2 or the 

isotype-matched antibody (10 µg/ml, 1 h prior cytokine). CD38 expression was then 

assessed by flow cytometry as described in Materials and Methods. The results are 

expressed as mean of fold increase over basal + SEM of three separate experiments. *P < 

0.05 compared with untreated cells.  

Figure 3. TNFα, via the autocrine action of secreted IFNβ, induces CD38 gene 

expression. Cells were stimulated for 24 h with TNFα (10 ng/ml) in the presence or 

absence of neutralizing anti-IFNβ (5 µg/ml) or sheep serum (control) added 15 min 

before. A, CD38 protein expression was analyzed by flow cytometry as described in 

Materials and Methods. The results are expressed as mean of fold increase over basal ± 

SEM of three separate experiments. *P < 0.05 compared with untreated cells. #P < 0.05 

compared with cells treated with TNFα alone. B, Cells were lysed, total mRNA was 
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isolated, and RT-PCR was performed as described in Materials and Methods using 

specific primers for CD38. The lower panel is the scanning densitometric of the 

representative gel (upper panel) with each value normalized over the mean density of the 

corresponding GAPDH PCR products. 

Figure 4. TNFα induced CD38 expression via the JAK/STAT pathways. A, human ASM 

cells were treated IFNγ (100UI/ml) for 15 min in the presence or absence of the indicated 

concentration of JAK inhibitor (called DBI) added 30 min before. Cells were then lysed, 

and nuclear extracts were prepared and assayed for the phosphorylated and 

nonphosphorylated forms of STAT1 by immunoblot analysis as described in Materials 

and Methods. Results are representative of three separate blots. B-C, Human ASM cells 

were stimulated with 10 ng/ml of TNFα in the presence or absence of the JAK inhibitor I 

(DBI) (25 nM) or DMSO 0.1% added 30 min before. B, CD38 protein expression was 

analyzed by flow cytometry as described in Materials and Methods. The results are 

expressed as mean of fold increase over basal ± SEM of three separate experiments. *P < 

0.05 compared with untreated cells. #P < 0.05 compared with cells treated with TNFα 

alone. C, Representative agarose gel showing the CD38 PCR products stained with 

ethidium bromide. Cells were lysed, total mRNA was isolated, and RT-PCR was 

performed as described in Materials and Methods using specific primers for CD38. 

Below is the scanning densitometric of the representative gel with each value normalized 

over the mean density of the corresponding GAPDH PCR products.  

Figure 5. Synergistic activation of CD38 gene by TNFα and IFNβ. Cells were stimulated 

for 24 h with the indicated concentration of TNFα and IFNβ (100 U/ml) alone or in 

combination. A. CD38 protein expression was analyzed by flow cytometry as described 
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in Materials and Methods. The results were expressed as mean of fold increase over basal 

± SEM of three separate experiments. *P < 0.05 compared with untreated cells. B, 

Representative agarose gel showing the CD38 PCR products stained with ethidium 

bromide. Cells were lysed, total mRNA was isolated, and RT-PCR was performed as 

described in Materials and Methods using specific primers for CD38. Below is the 

scanning densitometric of the representative gel with each value normalized over the 

mean density of the corresponding GAPDH PCR products. 

Figure 6. 8-Br-cADPr differentially regulates TNFα-induced expression of IL-6, 

RANTES and ICAM-1. Cells were stimulated for 24 h with TNFα (10 ng/ml) in the 

presence or absence of 8-Br-cADPr (100 µM, added 15 min). Secretion of IL-6 (A) and 

RANTES (B) or expression of ICAM-1 (C) were analyzed as described in Materials and 

Methods. Values shown are mean ± SEM of three separate experiments. *P < 0.05 

compared with untreated cells. #P < 0.05 compared with cells treated with TNFα alone. 

NS, non-significant when compared with cells treated with TNFα alone.  
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