Expression of the Retinoic Acid Metabolizing Enzyme, CYP26A1 Limits Programmed Cell Death.

Makoto Osanai and Martin Petkovich

Department of Biochemistry and Pathology, Division of Cell Biology and Genetics, Cancer Research Institute, Queen’s University, Kingston, Ontario, Canada.
Running title: Retinoic acid bioavailability and apoptosis.

Abbreviations: RA, all-trans-retinoic acid; TNF, tumor necrosis factor; TRAIL, TNF-related apoptosis-inducing ligand; RAR, retinoic acid receptor; RXR, retinoid X receptor; RARE, retinoic acid response element; APL, acute promyelocytic leukemia; EGFP, enhanced green fluorescent protein; DAPI, (4′,6-diamidino-2-phenylindole)-methanol; PI, propidium iodide; ECL, enhanced chemiluminescence; RT, reverse transcriptase.

Corresponding author:
Martin Petkovich, PhD.
Department of Biochemistry and Pathology, Division of Cell Biology and Genetics, Cancer Research Institute, 10 Stuart Street, Queen’s University, Kingston, Ontario, Canada K7L 3N6.
Phone: 613-533-6791; Fax: 613-533-6830.
e-mail: petkovic@post.queensu.ca

Manuscript information:
Number of text page: 37; table, 0; figures, 5; references, 39.
Number of words in the Abstract, 174; Introduction, 559; Discussion, 1535.
ABSTRACT

Vitamin A deficiency has been associated with increased incidence of certain types of cancer, however the mechanisms by which vitamin A depletion promotes tumorigenesis are poorly understood. In addition all-trans-retinoic acid (RA), the most active form of vitamin A metabolites, has been shown to limit carcinogenesis in animal models, and trigger programmed cell death (apoptosis) in certain types of tumor cells. Conversely, we show here that various cell lines overexpressing CYP26A1, a cytochrome P450 enzyme specifically involved in the catabolic inactivation of RA, exhibit increased resistance to various apoptogenic factors including death receptor ligands such as tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL). This resistance could be reversed by pre-treatment with ketoconazole, a broad-spectrum inhibitor of cytochrome P450 enzymes. Also, synthetic retinoids Am80 and Am580 which are resistant to CYP26A1 metabolism can restore the sensitivity of these cells to apoptogens. Thus, these findings support the idea that CYP26 expression levels may play a role in determining cellular commitment to apoptosis, and increased RA metabolism may be at least partially responsible for these observed effects.
INTRODUCTION

The regulation of programmed cell death (also known as apoptosis) is a process critical for both normal embryonic development and turnover of healthy tissue in the adult. In a number of disease states, however, the pivotal balance between pro-apoptotic and cell survival signals is disrupted, leading to loss of healthy cells as in neurodegenerative disorders or failure to eliminate genetically damaged cells leading to cancer (Evan and Vousden, 2001; Green and Evan, 2002). The mechanisms controlling cellular self-destruction programs are tightly controlled and many physiological growth control signals that govern cell proliferation and tissue homeostasis are linked to apoptosis (Evan and Vousden, 2001; Gozani et al., 2002; Green and Evan, 2002). Apoptosis pathways can be activated in a cell specific manner by a diversity of distinct triggers including death receptor ligands such as tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), Fas and TNF-α, retinoids, genotoxins, oxidative stress, nutrient deprivation and anoikis (anchorage dependence-mediated cell death).

The vitamin A metabolite, all-trans-retinoic acid (RA) is an essential signaling molecule in embryonic development and throughout life; a potent regulator of cell differentiation, proliferation and apoptosis in various cell types (Durston et al., 1989; Means and Gudas, 1995). RA acts through specific RA nuclear receptors (RARα, β & γ) and their heterodimeric counterparts, the retinoid-X-receptors (RXRα, β & γ) to positively or negatively regulate expression of RA target genes by binding to their respective response elements (RAREs) (Kastner et al., 1995; Mangelsdorf and Evans, 1995). Disruptions in retinoid signaling through mutations in nuclear receptors RARs and RXRs have been found in certain types of tumor cells.
Vitamin A deficiency has been linked to increased susceptibility to carcinogenesis in animal models and appears to be causally associated with tumor formation and progression (First reported by Wolbach and Howe, 1925; for review see Lotan, 1996).

While essentially all cell types express nuclear retinoic acid receptors, cellular responsiveness is determined by RA bioavailability regulated by the coordinated balance between vitamin A nutritional status and RA biosynthesis, and catabolism. We and others have previously demonstrated that expression of the RA metabolizing cytochrome P450s, CYP26A1, B1 and C1, protect cells and tissues from exposure to RA (generated by retinaldehyde dehydrogenase enzymes) during embryogenesis by restricting RA access to transcriptional machinery by converting RA to rapidly excreted oxo-derivatives (4-OH RA, 4-oxo RA, 18-OH RA) (White et al., 1997; MacLean et al., 2001; Abu-Abed et al., 2001; Tahayato et al., 2003; Taimi et al., 2004). CYP26 enzymes may play a similar but separate role in limiting the consequences of fluctuations in nutritional vitamin A. The possibility that pathological conditions such as cancer might involve aberrant expression of CYP26A1 has recently emerged from several studies. Elevated CYP26A1 expression and RA catabolic activity have been detected in breast epithelial adenocarcinoma cells in culture (Van heusden et al., 1998), leukemic cells from patients with acute promyelocytic leukemia (APL) (Ozpolat et al., 2002) and cells derived from squamous cell carcinoma from head and neck cancers (Klaassen et al., 2001), however, the relevance of elevated CYP26A1 activity in tumor cells remains to be fully clarified. In the present study, by overexpressing CYP26A1 in various cell lines, we wanted to generate a state of RA deficiency in cultured cells to examine whether RA was an obligatory component of
apoptosis signaling pathways. We demonstrate that CYP26A1 expression can modify cellular sensitivity to various apoptogens.
MATERIALS AND METHODS

Cell line and culture. All cell lines were maintained in DMEM (Gibco BRL, Burlington, ON) supplemented with 10% FBS, 10 mM HEPES, 100 U/ml penicillin and 100 µg/ml streptomycin at 37°C in a humidified 5% CO₂ atmosphere unless otherwise specified.

Construction of expression vector and transfection. Full length human CYP26A1 cDNA was amplified by reverse transcriptase (RT) - polymerase chain reaction (PCR) from 1 µg total RNA extracted from RA-treated MCF-7 cells, which was reported to be CYP26A1-inducible after 1 µM RA treatment (White et al., 1997), using an EcoRI site-tagged forward primer (5’-GAATCCATGGGGCTCCCGGCGCTGCT-3’) and a BamH1 site-tagged reverse primer (5’-GGATTCTCAGATTTCCCCATGGAAAT-3’). After subcloning into a TA-cloning vector (pCR® II) using a TA cloning kit (Invitrogen, Burlington, ON), the digested 1505 bp EcoRI-BamHI fragment was ligated into the response plasmid, pEGFP (enhanced green fluorescent protein)-C1 (Clontech, Palo Alto, CA) designated as pEGFP-C1-CYP26A1 plasmid. The integrity of the final pEGFP-C1-CYP26A1 construct was confirmed by sequence analysis. As a control vector, pCMS-EGFP-CYP26A1 plasmid, which has separate transcription cassettes containing EGFP and CYP26A1 cDNA, was made by the same method except in using an EcoRI site-tagged forward primer (5’-GAATCCGCCCCACCACCATGGGGCTCCCGGCGCGTCTG-3’) and a XbaI-tagged reverse primer (5’-TCTAGATCAGATTTCCCCATGGAAAT-3’) for PCR and pCMS-EGFP as an expression vector (Clontech).
pEGFP-C1-CYP26A1 alone (5 µg), or plasmid mixture of pCMS-EGFP-CYP26A1 (5 µg) plus pcDNA3.1(-) (1 µg) were transfected into a number of different cell lines containing HeLa, human cervical cancer cells; MCF-7, human breast cancer cells; A549, non-small cell lung cancer cells; and Hep3B, human hepatocellular carcinoma cells, using Lipofectoamine™ reagent (Gibco BRL). G418 (800 µg/ml, Sigma-Aldrich, Oakville, ON)-resistant clones were screened by immunofluorescence microscopy followed by culturing on glass coverslips (Fisher Scientific, Toronto, ON) to confirm expression of EGFP or EGFP fusion proteins. Stably transfected clones were also screened both by Northern blot analysis for CYP26A1 mRNA expression and metabolic assay for measuring the metabolism of radiolabelled RA (³H-RA) as described previously (White et al., 1997).

Cell death analyses. Cells were plated at 1 x 10⁵ cells per 6 well plates and incubated for 24 h prior to 5 min pulse-treatment of 0.1 µM RA or various concentrations as indicated, and were washed twice with phosphate buffered saline (PBS) followed by replacement with DMEM supplemented with 10% charcoal-dextran treated FBS. To avoid the significant accumulation of RA metabolites, RA treatment was very short (5 min), which is known to be sufficient to switch on the RARE-driven transcriptional machinery. Subsequently, apoptosis was stimulated with TRAIL (R&D Systems, Minneapolis, MN) at a dose range of 0 to 20 ng/ml for 0.5 h up to 24 h. These cells were also treated with various death-inducing agents including agonistic Fas antibody (0.025 to 10 µg/ml, clone CH-11, Panvera, Madison, WI), TNF-α (1 to 100 ng/ml, R&D Systems), H₂O₂ (50 or 100 µM), cisplatin (CDDP, 10 µg/ml), etoposide (VP16, 50 µM), heat shock at 42°C for 30 min and γ-irradiation (20 Gy). In some experiments, ketoconazole (0.5
µM to 10 µM, Sigma-Aldrich) was added 4 h before apoptotic stimulation and then maintained throughout the experiments.

Apoptotic assays and quantification were previously described in detail (Osanai et al., 1997). Briefly, floating dead cells were pelleted by centrifugation and washed with PBS. The pellet was resuspended in lysis buffer containing 10 mM Tris-HCl (pH 8.0), 10 mM EDTA and 0.5% Triton X-100, and centrifuged at 12,000 xg for 10 min at 4°C. Each supernatant, which preferentially contains low molecular weight cellular DNA, was once extracted with phenol/chloroform (1:1) and the fragmented DNA was ethanol-precipitated. Gel electrophoresis of the DNA samples was performed on 2.5% agarose gels and ladder formation due to fragmentation was visualized with ethidium bromide under ultraviolet illumination.

The DNA fragmentation rate was also quantified by the method as described (Osanai et al., 1997). Briefly, total cells in the tissue culture wells were harvested, washed with PBS and lysed with lysis buffer containing 5 mM Tris-HCl (pH 8.0), 20 mM EDTA, and 0.5% Triton X-100 for 15 min at 4°C. The cells were then centrifuged at 12,000 xg for 20 min at 4°C to separate intact chromatin in the pellet from DNA fragments in the supernatant. The DNA amounts in each pellet and supernatant were determined using a diphenylamine reagent and the fragmentation rate (%) was expressed as (fragmented DNA / total DNA) x 100.

DAPI staining. Cells grown on glass coverslips for confocal microscopy were washed once with PBS and then incubated in DAPI (4',6-diamidino-2-phenylindole)-methanol) (1 µg/ml; Molecular Probes, Eugene, OR) solution for 15 min at 37°C.
Cell counting, Giemsa staining and mitotic index measurement. These assays were performed as described in detail elsewhere (Hsu et al., 1999). The mitotic index was estimated by counting at least 1000 cells of each treatment at x 400 magnification by light microscopy. The percentage of mitotic cells was calculated.

Cell cycle analysis by flow cytometry. Cells on 100 mm tissue culture dishes were treated with 0.5 µM RA for 5 min prior to harvesting by centrifugation, and permeabilized with ice-cold 70% ethanol for at least 30 min. After washing with PBS, cells were treated with PBS containing 100 µg/ml DNase free-RNase A at 37°C for 30 min. After centrifugation, cells were suspended in PBS containing 50 µg/ml propidium iodide (PI) and stained at 37°C for 30 min. DNA content was analyzed by FACScan (Becton Dickinson).

Western blot analysis. EGFP and EGFP fusion protein, Bcl-XL, caspase-3, cytochrome c, p21Waf1 and β-actin protein levels were examined by Western blot analysis. Cell fractionation and mitochondrial isolation were performed as previously reported (Yang et al., 1997). From 1 x 10^7 intact cells for each sample, mitochondrial supernatants (called cytosolic fraction) and the resulting pellets containing mitochondria (designated as mitochondrial fraction) was aliquoted and subjected to Western blot analysis for cytochrome c. Whole cell lysates or fractionated lysates were run on 12-15% polyacrylamide gels containing sodium dodecyl sulfate (SDS) and electroblotted onto nitrocellulose filters. These were then blocked with 5% non-fat dry milk in PBS with 0.5% Tween 20 (PBST) and then immunoblotted with antibodies against EGFP (Clontech), Bcl-XL (PharMingen, Mississauga, ON), caspase-3 (PharMingen), cytochrome c
(PharMingen), p21Waf1 (Santa Cruz Biotechnology, Santa Cruz, CA) and β-actin (Santa Cruz) protein. After extensive washing in PBST, the filters were reacted with peroxidase-labeled corresponding secondary antibodies in PBST and again washed; finally, the immunoreactions were visualized by using an enhanced chemiluminescence (ECL) system (Amersham, Barie d’Urfé, PQ).

For densitometric analysis, signals in western blot from at least triplicate independent experiments were quantitated using Scion Image 1.62 (Scion Corporation, Frederic, MD) and the data presented as mean ± s.d.

Semiquantitative RT-PCR and Southern analysis. Total RNA (1 µg) from each specimen was reverse-transcribed using poly-T oligonucleotide and M-MuLV reverse transcriptase (Roche, Tokyo, Japan). For analysis of RARα expression, RARα was amplified from 100-times diluted cDNA using sense (5’-CAAATCATCCGGCTACCACT-3’) and antisense (5’-TTGAGGAGGGTGATCTGGTC-3’) primers for 25 cycles at 96°C for 10 s, 52°C for 5 s, and 72°C for 30 s. Electrophoresed DNA from the agarose gel was transferred to the Hybond N+ nylon membrane (Amersham Biosciences, Tokyo, Japan). Full length cDNA of RARα was used as a probe labeling with [32P]dCTP to a specific activity of approximately 1 x 109 cpm/µg using a random priming-based cDNA labeling kit (Nippon Gene, Tokyo, Japan). We examined various cycling parameters for each PCR experiment to define optimal conditions for linearity to allow for semiquantitative analysis of signal intensity (data not shown).
cDNA array analysis. Total RNA was extracted from wt HeLa cells and its CYP26A1 transfectants using TRIzol reagent (GIBCO), and aliquots of RNA (5 µg) were processed to generate cDNA probes. cDNA microarray analysis was performed to analyze the apoptosis-specific signaling pathway by GEArray according to a manufacturer’s instruction and mRNA levels were quantitated by GEArrayAnalyzer software (SuperArray Inc., Bethesda, MD). The relative amount of a given gene was normalized to the signals derived from GAPDH on the same membrane and expressed in arbitrary units (therefore the expression of GAPDH is 1 arbitrary unit), in order to consider the possible variation in RNA quantification between samples. Finally, average signal intensities of each gene were calculated from at least two independent experiments and the gene-expression levels in CYP26A1 overexpressing cells were divided by the values from that observed in wt cells to represent the change of gene expression in the event of the CYP26A1 overexpression.

Statistical analysis. Unless otherwise specified, all data represent the mean ± s.d. of at least 3 independent experiments, each in triplicate wells. Statistical differences were analyzed using the paired t test, and were considered statistically significant when p<0.05.
RESULTS

Increased resistance of TRAIL-induced cell death by CYP26A1 expression. In the present study, we established a human cervical cancer cell line HeLa, constitutively overexpressing human CYP26A1, designated as HeLaCYP26A1. To facilitate detection of CYP26A1 expression, we used a fusion construct comprising the entire coding region of the CYP26A1 cDNA linked to the EGFP encoding gene (pEGFP-C1-CYP26A1). We first determined the differential sensitivity of these cells to a 24 h exposure to TRAIL, which activates cell-death response through the death receptor mediated pathway. Prior to treatment with TRAIL, cells were briefly exposed to a pulse of 0.1 \(\mu \text{M} \) RA. RA increased the sensitivity of HeLa cells to TRAIL-induced apoptosis in wt cells, however, HeLaCYP26A1 cells showed significant resistance to synergistic apoptotic effects of TRAIL in the range of 0.025 ng/ml to 20 ng/ml with 0.1 \(\mu \text{M} \) RA (Fig. 1A, left panel). To exclude the possible artifacts of the EGFP-CYP26A1 fusion protein, we also examined the control vector, pCMS-EGFP-CYP26A1, which expresses EGFP and CYP26A1 from different transcription cassettes. Cells transfected with this plasmid showed effects similar to those obtained with the pEGFP-C1-CYP26A1 construct (Fig. 1A, right panel). We also observed TRAIL resistance in the HeLaCYP26A1 cells in experiments performed with serial time points after TRAIL treatment (Fig. 1B). Furthermore, HeLaCYP26A1 cells required approximately 10-fold higher concentrations of RA to observe the same degree of death in wt cells in the range from 0.01 to 10 \(\mu \text{M} \) (Fig. 1C). DNA fragmentation analysis and morphological studies at 24 h also confirmed time dependent activation of apoptosis by TRAIL in wt cells, and reduced apoptotic induction in HeLaCYP26A1 cells (Fig. 1D and E).
To evaluate how general the suppressive effect of CYP26A1 expression was on TRAIL signaling, we stably transfected other cell lines including MCF-7, A549 and Hep3B cells, with the same construct to establish overexpressing clones. Although these cell types were responsive to TRAIL-mediated apoptosis, CYP26A1 expression had similar suppressive effects on cell responsiveness with or without pretreatment of RA (Fig. 1F and data not shown).

We also overexpressed another cytochrome P450, CYP24 involved in the metabolism of 1α, 25-dihydroxyvitamin D3, in both HeLa and A549 cells, however, we were unable to detect any effect of CYP24 on the apoptotic potential of these cells (data not shown), suggesting that the antiapoptotic effect is CYP26 specific.

Apoptotic suppression by CYP26A1 is not specific for TRAIL-mediated apoptosis. We next determined whether the suppressive role played by CYP26A1 was applicable to other apoptogenic stimuli including oxidative stress, heat shock, genotoxic agents and γ-irradiation. CYP26A1 expression resulted in the appreciable inhibition of apoptotic cell death against these stimuli (Fig. 2A and B), suggesting that the protective role of CYP26A1 against apoptosis could be observed following exposure to a broad range of cell stressors.

Direct interactions between RA metabolism and the susceptibility of apoptotic cell death. Ketoconazole, a broad-spectrum inhibitor of cytochrome P450s which we have previously shown can inhibit CYP26A1 activity (Chithalen et al., 2002), was next employed to establish whether the effect of CYP26A1 on cell death inhibition was mediated by its role in conversion of RA into polar metabolites. Expression data of HeLa CYP26A1 cells is shown, in which CYP26A1-EGFP
fusion protein could be clearly detected by Western blot analysis using EGFP antibody, revealing strong catabolic activity of RA that was inhibited by ketoconazole treatment (Fig. 3A and B). Ketoconazole alone did not significantly affect cell viability. While other members of the TNF family such as Fas and TNF-α could induce apoptosis in wt cells, the cells overexpressing CYP26A1 were also protected from these apoptogenic factors (Fig. 3C). Pretreatment of CYP26A1 transfected cells with ketoconazole, however, restored sensitivity of these cells to cell death stimuli, suggesting that the catalytic activity of this enzyme was important for its antiapoptotic effect on these cells.

The RARα-selective compounds Am80 (4[(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-naphthalenyl)carbamoyl]benzoic acid) and Am580 (4(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-naphtamido)benzoic acid), which are resistant to metabolism by CYP26A1, were reported to stimulate apoptosis in susceptible cells as efficiently as RAR-panactive retinoids including RA (Schneider et al., 2000; Luu et al., 2001). We used these reagents to further demonstrate the direct relationship between CYP26A1-mediated RA catabolism and apoptosis resistance. In a dose range from 0.5 to 10 nM, a clear dose dependence of apoptosis was found in cells that were treated with Am80 and Am580 (data not shown). The treatment of cells with these reagents in combination with death receptor ligand abrogated the inhibitory effect of CYP26A1 expression on TRAIL-, Fas- or TNF-α-mediated apoptosis in HeLa CYP26A1 cells (Fig. 3D). Am80 was not as effective as Am580 in inducing apoptosis in HeLa cells, requiring approximately 5-fold higher concentrations to produce similar effects. These data strongly indicate that RA metabolism is associated with the suppression of apoptotic responsiveness in CYP26A1 expressing cells.
To confirm that the pro-apoptotic effects of RA were indeed mediated through a RAR signaling pathway, we examined the expression level of RARα. HeLa and HeLa^{CYP26A1} cells were clearly expressed RARα, but not RARβ or RARγ, and RA could induce mRNA expression in wt HeLa cells approximately 6-fold (Fig. 3E and data not shown), which is consistent with previous literature (Daly et al., 1989; Geisen et al., 1997). Together with our observation that the cells respond comparably to RA under all conditions even when CYP26A1 is overexpressed as well as Am80/Am580, this result indicates that the gain-of-function effects of CYP26A1 on apoptosis could be mediated through a RAR mechanism of action.

The apoptosis sensitizing effect of RA has been demonstrated in a number of different experiments. Although the effect may be less than that observed for Am80 and Am580, it is consistent and significant. We have observed the RA effect on pro-apoptogenic agents in many different cell lines and observed different levels of response. The difference between the RA-response observed in Fig. 3C (comparing top and bottom panels) reflects differences in cell type. Why some cell lines respond better than others may reflect inherent differences in the induction of endogenous CYP26A1, B1 and/or C1. HeLa cells, for example, are known to express CYP26A1 and B1, and both enzymes are inducible by RA (our unpublished result).

CYP26A1 overexpression mediates aberrant mitotic progression. Many lines of evidence indicate that apoptosis is linked to cell cycle events (Evan and Vousden, 2001). To determine the potential association of CYP26A1 expression with cell cycling, we investigated the differences of cell growth rates, cell cycle analysis and mitotic index between CYP26A1 expressing and non-expressing cells (Fig. 4). CYP26A1 expression had a slight promoting effect
on cell proliferation (Fig. 4A), but had a much greater effect on mitotic index (Fig. 4B). The effect of RA was minimal on cell growth; however, mitotic index was significantly suppressed by RA treatment in wt cells. By contrast, a decrease in mitotic index induced by RA was significantly abrogated in HeLa CYP26A1 cells even when both TRAIL and RA were added to the cultures (Fig. 4B). Cell cycle analyses clearly indicated that RA-induced G1 arrest and a concomitant decrease in S-phase fractions were partially abrogated in HeLa CYP26A1 cells, suggesting that CYP26A1-induced RA catabolism involves the G1/S phase transition and allows cells to escape from RA-mediated specific cell cycle checkpoints (Fig. 4C).

Altered gene-expression profile provides anti-apoptotic state in CYP26A1 expressing cells.

In order to explore the molecular mechanisms of the apoptotic suppression due to CYP26A1 expression, we screened the gene-expression profile with the GEArray system. Total RNA was isolated from wt and HeLa CYP26A1 cells that had been cultured for 24 h with or without 1 µM RA and aliquots of 5 µg total RNA was reverse-transcribed into cDNA, labeled with 32P and hybridized to GEArray apoptosis pathway-specific gene array membranes. Some differences of gene-expression profile between wt and HeLa CYP26A1 cells were observed without RA stimulation, however, the differences were more apparent in the presence of RA (Fig. 5A). Although CYP26A1 overexpression induces upregulation of apoptosis-inhibitory genes such as bcl-x, bcl-w and bcl-2 and conversely downregulation of apoptosis-inducing genes such as bad, bax and bak, we observed more marked changes in inhibitor of apoptosis protein (IAP) family genes including survivin, IAP-1 and -2, and XIAP. CYP26A1 expression also upregulates a number of TNF ligand family members, however, its expression concomitantly decreases a
larger set of apoptosis-associating genes including caspase family (caspase-1 to -10, -13 and -14),
TNF receptor family (TNFR2, CD40, OX40, Fas, DR3, DR5, DcR1 and DcR2), death domain family
(CRADD, FADD and DAP kinase 2), death effector domain family (CASPER), p53 and ATM pathway genes (ATM, Rad53, mdm2, p63 and p53). These gene-expression alterations are consistent with CYP26A1-mediated apoptotic suppression in HeLa cells.

To further investigate the potential role of $bcl-2$ family members played in mediating the antiapoptotic activity of CYP26A1 overexpression, we focused on the Bcl-X$_{L}$ and investigated protein expression levels by Western blot analysis (Fig. 5B). Bcl-X$_{L}$ protein was detectable in wt HeLa cells and both RA and H$_{2}$O$_{2}$-mediated protein decreases were observed following 24 h treatment with H$_{2}$O$_{2}$ in combination with or without RA in wt cells. In contrast, RA and H$_{2}$O$_{2}$, either alone or in combination could induce up-regulation of Bcl-X$_{L}$ protein levels in HeLa CYP26A1 cells. No cleaved forms of Bcl-X$_{L}$ were observed under any condition. These results are consistent with findings using the gene-expression array analysis, and suggest that certain Bcl-2 family proteins are modulated by CYP26A1 expression.

Cytochrome c is normally located in the intermembrane space of mitochondria and its release is known to be one of the upstream mitochondrial events that can contribute to caspase activation (Ferri and Kroemer, 2001). Once the cytochrome c is released into the cytosol in response to apoptotic stimulation, it initiates a caspase activation cascade (Ferri and Kroemer, 2001). We next examined whether CYP26A1 expression affects cytochrome c release (Fig. 5B). We found that cytochrome c was largely located in the mitochondria in both wt and HeLa CYP26A1 cells. This protein was slightly increased in the mitochondrial compartment following RA treatment but further enhanced by co-treatment with H$_{2}$O$_{2}$. In wt cells, this protein shifted from
the mitochondria to cytosol and rapidly accumulated to significant levels by 24 h of treatment. We, however, observed less alteration in cytochrome c protein levels and/or minimal compartmental shifts in response to either RA or H\textsubscript{2}O\textsubscript{2} in HeLaCYP26A1 cells. These results suggest that the abrogation of RA-induced Bcl-X\textsubscript{L} upregulation in CYP26A1 expressing cells may at least partially contribute to the suppression of cytochrome c induction and/or redistribution.

Caspase-3 is a key effector caspase in the proteolytic cascade that results in cell death (Ferri and Kroemer, 2001). Caspase-3 expression was also examined by Western blot analysis (Fig. 5B). Both RA and H\textsubscript{2}O\textsubscript{2}-induced apoptosis was accompanied by activation of caspase-3, indicated by the presence of activated caspase-3 p17 fragment, at 24 h after treatment. Only the inactive pro-caspase (p32) was detectable in HeLaCYP26A1 cells, suggesting that the expression of CYP26A1 could inhibit the activation of effector caspases through the modulation of the death signals upstream of caspase-3. This result is also supported by the data obtained from the gene-expression signature of HeLaCYP26A1 cells showing that death signaling was significantly suppressed at both the receptor and effector levels, which resulted in the inhibition of caspase cascade activation.

Apoptosis may be linked to cell cycle events, and several cell cycle regulators might be involved in responses that lead to apoptosis (Evan and Vousden, 2001). Since our preliminary study showed that expression of p21Waf1, a cycline dependent kinase (cdk) inhibitor involved in the regulation of apoptosis in a number of carcinoma cells, was altered due to CYP26A1 overexpression, we next examined corresponding protein expression levels. Western blot analysis showed that protein levels of p21Waf1 were increased in wt cells challenged with cell
stressors such as RA and H$_2$O$_2$; this upregulation was abrogated by the overexpression of CYP26A1 in HeLa cells even in the presence of both RA and H$_2$O$_2$ (Fig. 5B), which is consistent with the data of growth properties of HeLa$_{CYP26A1}$ cells showing the marked abrogation of cell stress-mediated mitotic index decrease even those initiated by synergistic effects of RA and H$_2$O$_2$ (Fig. 4).
DISCUSSION

Apoptosis is an evolutionarily conserved process in normal embryogenesis, tissue homeostasis and regulation of the immune system (Fisher, 1994; White, 1996). Many studies have implicated RA as an important regulator of this process and certain types of tumor cells apoptose following RA treatment (Fisher, 1994; White, 1996). RA has been shown to enhance sensitivity of certain cells to a number of pro-apoptogenic factors, including death receptor ligands such as TRAIL. Our present studies show that the expression of the RA metabolizing enzyme CYP26A1 significantly abrogates the proapoptotic activity of RA and its synergistic activity with apoptosis-inducing factors, resulting in the suppression of cellular response to several differently acting triggers of apoptosis. We also observed a reversal of the cytostatic effects of RA in CYP26A1 overexpressing cells as measured by changes in cell growth and mitotic index. Cultured cells overexpressing CYP26A1 gain significant resistance to apoptosis signaling possibly due to a state of reduced RA bioavailability caused by metabolic inactivation of RA. However, we cannot exclude the possibility that forced expression of CYP26A1 may have some additional interesting but as yet uncharacterized effects on the cells.

One possible alternative explanation for effect of CYP26A1 overexpression on apoptosis is that RA metabolites generated by CYP26A1 may have anti-apoptotic activities. However, this is unlikely since ketoconazole can partially restore the RA enhanced sensitivity to proapoptotic agents suggesting that RA but not its metabolites are likely responsible for this enhancement effect. In addition, synthetic retinoids (such as Am80 and Am580) that are not metabolized by CYP26A1 can also enhance sensitivity to proapoptotic agents, these findings support one
possibility that the catalytic activity of CYP26A1 is causally related to the altered response of CYP26A1 overexpressing cells to combinations of RA and proapoptotic treatments. However, we noted here that ketoconazole treatment did not fully restore apoptosis in HeLa CYP26A1 cells to the level seen in wt. This observation was consistent in 3 different clones of HeLa CYP26A1 as well as in A549 cells (Fig. 3C). We cannot presently explain this observation, however, one possibility is that the period of time required for clonal expansion in RA-free conditions (due to CYP26A1 overexpression) may have limited the ability of these cells to respond to apoptotic stimuli presented in the media. Moreover, western blot analysis of apoptosis relating proteins collectively indicates that there may be an effect of CYP26A1 expression on the levels of certain proteins, in the absence of exogenously added RA. It is possible that there may be a secondary effect of CYP26A1 overexpression due to possible changes in cell phenotype associated with clonal expansion of CYP26A1 expressing cells; such cells are grown under conditions which would be avoid of any RA or its precursor, retinal. Although genetic studies support that RA is clearly a substrate for CYP26A1, there may be other as yet unidentified compounds in the cell that are activated or catabolized by CYP26A1. No direct proof exists to support this latter possibility.

Loss of responsiveness to inducers of cell death is a contributing factor in the progression of a cell toward a malignant phenotype, because it is now believed that impaired or decreased susceptibility to respond to various apoptotic signals has been associated with oncogenic transformation rather than enhanced cell growth (Evan and Vousden, 2001; Green and Evan, 2002; Gozani et al., 2002). CYP26A1 overexpression is sufficient to desensitize cells to a number of different apoptogenic agents, an effect which is not seen in cells overexpressing
CYP24. If increased RA metabolism is solely responsible for the apoptogen desensitizing effect we have observed, our results would imply that in a state of RA deficiency, cells may be less susceptible to apoptosis following the acquisition of DNA damage. In corollary, individuals suffering from vitamin A deficiency might accumulate DNA damage with higher frequency. This is consistent with observations in experimental animals indicating a link between vitamin A deficiency and increased tumor formation. This may also provide a plausible explanation for the increased incidence and higher risk of development of cancer observed in vitamin A deficient individuals (Wolbach and Howe, 1925; Lotan, 1996). In addition, enhanced RA metabolism has been observed in several types of cancer including head and neck squamous cell carcinomas along with elevated levels of CYP26 enzymes in a number of cancer cell types (Van heusden et al., 1998; Klaassen et al., 2001; Ozpolat et al., 2002). Whether RA metabolism contributes to tumor formation and/or progression remains to be determined.

Because of the strong antiproliferative and differentiation-, and apoptosis-inducing effects on cancer cells both in vitro and in vivo, retinoids show promise in the treatment and chemoprevention of epithelial carcinogenesis and in cancer differentiation therapy (Lotan, 1996; Hong and Sporn, 1997; Hansen et al., 2000). In this regard, the most striking chemical use of retinoids is for differentiation therapy of APL based on the ability of retinoids to induce differentiation of leukemic promyelocytes and a growing body of evidence indicates that a high proportion of patients with APL achieve complete remission after short-term treatment with RA (Huang et al., 1988; Muindi et al., 1992; Fenaux and Degos, 1997). However, this high rate of remission is brief and relapse occurs in most cases; patients gain progressive clinically acquired resistance to further treatment with RA (Fenaux and Chomienne, 1996). Several lines of
evidence suggest that clinically acquired resistance to RA treatment may be partially due to increased RA metabolism and we have also previously shown that NB4 cells derived from APL patients exhibit inducible expression of CYP26A1 after RA pretreatment (White et al., 1997). Increased RA catabolism may not only reduce cell sensitivity to RA but also as a consequence reduce effectiveness of proapoptotic agents whether endogenous or therapeutic; thus blocking RA catabolism in conjunction with treatment with proapoptotic agents may be an effective therapeutic strategy to treat malignancies where CYP26 enzymes are expressed. Imidazole derivatives (ketoconazole, liarozole) have been shown to potentiate the apoptotic effects of cell death-inducing agents in a variety of cancers and showed clinical effectiveness in treatment of cancer patients, although the underlying mechanisms of how these agents could induce proapoptotic effects are not fully understood (Mahler et al., 1993; Wang et al., 2002). Whether at least part of the effectiveness of combining P450 inhibitors with apoptogenic agents is due to blocking RA catabolism remains to be determined. Since we have shown that synthetic retinoids resistant to metabolism can restore sensitivity of CYP26A1 expressing cells to apoptogenic agents, such retinoids might also be useful for therapeutic strategies involving combination therapy. These studies also demonstrate for the first time that retinoids can synergize with γ-irradiation, suggesting that retinoids and/or RA metabolism inhibitors may also be used to enhance the efficiency of radiation therapy.

Gene-expression profiles have demonstrated that a large number of signaling pathways are associated with the suppression of apoptotic cell death due to CYP26A1-mediated RA depletion. Previous studies have shown that two major pathways exist in transmitting the death signals to the apoptosis-executing compartment (Scaffidi et al., 1998). In “type I” cells,
triggering an initiator caspase (e.g. caspase-8) as a consequence of death-receptor ligation can kill cells by stimulating the producing an effector caspase such as caspase-3 (extrinsic pathway). The “type II” cell types show optimal formation of death ligand-death ligand receptor complex, initiating a caspase cascade directly through activation of the mitochondrial pathway controlled by Bcl-2 family members (intrinsic pathway). Our results may be explained by the possibility that CYP26A1 expression affects both of these pathways. In addition, Bcl-2 is a member of an expanding family of related proteins. Some of these are antiapoptotic (Bcl-2, Bcl-XL), some are pro-apoptotic (Bax, Bak). The importance of Bcl-2 family stemmed from observations that one mechanism for inducing apoptosis is associated with down-regulated expression of Bcl-2 or the altered equilibrium between these arbitrary two subsets to form homo- and hetero-dimers, which helps determine the susceptibility of the cells to death signal. One model is proposed that anti-apoptotic Bcl-2 molecules are “guarding the mitochondria gate” from the pro-apoptotic Bcl-2 members that might otherwise “gain access” following a death signal (Gross et al., 1999).

Highlighting the importance of Bcl-2 family in CYP26A1-mediated apoptotic inhibition, we found that CYP26A1 overexpression is clearly involved in the signaling cascades from death receptors, which converge on the Bcl-2 family as a target relevant to epithelial cell survival.

Finally, our present study shows that many of the genes involved in apoptotic pathways are modulated to favor cell survival when CYP26A1 is overexpressed. It is possible that both during embryogenesis and in the adult, CYP26 enzymes may play a role in modulating cell sensitivity to RA and thus apoptogenic factor, which influence the sculpting process of tissue morphogenesis. This is supported by CYP26A1 knockout mouse experiments, which show animals lacking CYP26A1 suffering severe caudal agenesis and embryonic lethality (Abu-Abed
et al., 2001). The gain-of-function effect of CYP26A1 on apoptosis is also demonstrated through the analysis of CYP26A1 null embryo revealed enhanced apoptosis at a very early stage of tailbud development (our unpublished observation). Conversely, recapitulation of CYP26A1 expression in cancer cells would provide a selective growth advantage to these cells and thus evade normal apoptotic mechanisms. Therefore, strategies that decrease activity of CYP26A1 may be an important means of increasing the sensitivity of cancer cells to proapoptotic therapies.
ACKNOWLEDGMENTS

Am80 and Am580 were kindly gifted from Drs. Yuichi Hashimoto (Faculty of Pharmaceutical Sciences, University of Tokyo, Japan) and Hiroyuki Kagechika (School of Biomedical Science, Tokyo Medical and Dental University, Tokyo, Japan). We thank Ali Tahayato, Glenn MacLean and Katie Stewart (Department of Biochemistry and Pathology, Cancer Research Institutes, Queen’s University) for critical comments on the manuscript.
REFERENCES

FOOTNOTES

This work was supported by grants (to Martin Petkovich) from the National Cancer Institute of Canada (NCIC) and the Canadian Institutes for Health Research (CIHR).
FIGURE LEGENDS

Fig. 1. CYP26A1 overexpression provides resistance to TRAIL-induced apoptosis. A, Cell death was examined after 24 h in the presence or absence of various concentrations of TRAIL with or without 0.1 μM RA pretreatment in wt and HeLa cells transfected with two different CYP26A1 expression constructs (pEGFP-C1-CYP26A1 and pCMS-EGFP-CYP26A1). Inset shows the Giemsa staining of cell culture plate treated for 24 h with either 5 ng/ml TRAIL (T) and/or 0.1 μM RA in wt and HeLa CYP26A1 (CYP26) cells. *, p<0.05 vs wt cells with or without RA treatment. B and C, The death of wt (filled symbol) and HeLa CYP26A1 (open symbol) cells with (circle) or without (square) 0.1 μM RA pretreatment at the indicated time points up to 24 h (B) and various concentrations of RA after 24 h (C) in the presence of 5 ng/ml TRAIL. D, DNA laddering analysis to examine the type of cell death at the indicated time points after 5 ng/ml TRAIL treatments in wt and HeLa CYP26A1 (CYP26) cells. Molecular marker is shown in the leftmost lane (Mr). E, Nuclear morphology of wt and HeLa CYP26A1 (CYP26) cells stained by DAPI after culturing glass coverslips with or without either 5 ng/ml TRAIL or 0.5 μM RA. Arrow indicated the fragmented nuclei, note the differential background cell densities. Bar, 50 μm. F, Other cell lines including MCF-7, A549 and Hep3B overexpressing CYP26A1 were assayed the sensitivity of cell death against stimulation of 0.1 μM RA and/or 5, 10 or 25 ng/ml TRAIL, respectively. White column, wt; black column, CYP26A1 overexpressing cells. *, p<0.05 vs wt cells.
Fig. 2. CYP26A1 expression protects cells from various pro-apoptotic cell stresses. A, The representative gel image to examine the differential sensitivity of wt and HeLa CYP26A1 (CYP26) cells in the response to various apoptogenic stimuli. B, The cell deaths were quantitated after 24 h in the presence or absence of 0.1 µM RA pretreatment with or without various death stimuli used in the experiment of (A). *, p<0.05 vs wt cells with or without RA treatment.

Fig. 3. Preferential interactions between RA metabolism and the susceptibility of apoptosis. A, HeLa CYP26A1 cells express EGFP-CYP26A1 fusion protein (83 kDa, lane 3), which has different motility in SDS-PAGE compared with the cells transfected with EGFP expressing vector only (27 kDa, lane 2) or wt cells (lane 1). Asterisk (*) denotes non-specific band. B, Metabolic assay in HeLa and HeLa CYP26A1 cells using [3H]-RA as a substrate showed that EGFP-CYP26A1 fusion protein has a catabolic activity to detect conversion of RA to water-soluble metabolites (lane 2) compared with wt cells (lane 1). This metabolic activity was suppressed with the pretreatment of 1 µM (lane 3) or 5 µM (lane 4) ketoconazole, a chemical inhibitor of CYP26A1. C, Partial re-sensitization of CYP26A1-mediated apoptotic suppression by 5 µM ketoconazole (keto) in the response to either TRAIL (5 ng/ml), Fas (2.5 µg/ml) or TNF-α (25 ng/ml) alone or in combination with 0.1 µM RA in HeLa CYP26A1 and A549 CYP26A1 cells. D, The absence of inhibitory effect of TRAIL-, Fas- or TNF-α-mediated apoptosis in the presence of either Am80 (10 nM) or Am580 (2.5 nM) alone or in combination with TRAIL (5 ng/ml), Fas (2.5 µg/ml) or TNF-α (25 ng/ml) in wt and HeLa CYP26A1 (C26) cells. E, RARα expression in HeLa and HeLa CYP26A1 cells with or without 1 µM treatment. Equal loading is demonstrated by ribosomal RNA.
We also show the densitometric analysis of the RAR\(\alpha\) signals on the blot from triplicate independent experiments. *, p<0.05 vs cell without RA treatment.

Fig. 4. RA depletion-induced aberrant mitotic progression by CYP26A1 overexpression. A, Cell proliferation assay in wt (filled symbol) and HeLa\(^{\text{CYP26A1}}\) (open symbol) cells with (circle) or without (square) 0.5 \(\mu\)M RA treatment at the indicated time points up to day 7. Both types of cells were plated at day 1 \((5 \times 10^3 \text{ cells})\) and cell numbers were counted every day. B, Mitotic index estimated by counting at least 1000 cells of each treatment at x 400 magnification by light microscopy and the percentage of mitotic cells was calculated. Wt and HeLa\(^{\text{CYP26A1}}\) cells were subjected to this assay in the presence or absence of 2.5 ng/ml TRAIL for 3 h with or without 0.1 \(\mu\)M RA. *, p<0.05 vs cells without RA treatment. C, Flow cytometry analysis of PI labeled wt (left column) and HeLa\(^{\text{CYP26A1}}\) (right column) cells after 5 min of pretreatment with (bottom panel) or without (upper panel) 0.1 \(\mu\)M RA. The percentage of cells in each cell cycle fraction is indicated below the histogram.

Fig. 5. CYP26A1 overexpression is sufficient to induce anti-apoptotic state in HeLa cells. A, Total RNA was extracted from the wt and HeLa\(^{\text{CYP26A1}}\) cells that had been exposed 1 \(\mu\)M RA for 24 h and aliquots of 5 \(\mu\)g RNA was reverse-transcribed to cDNA in the presence of \(^{32}\)P-dATP. Labeled cDNA was hybridized to apoptosis-pathway specific gene-expression array membranes. After normalization of the mRNA levels of a given gene with average value of GAPDH (GAPDH Av) on the same membrane, gene-expression levels in CYP26A1 overexpressing cells were calculated in arbitrary units divided by the values from that in wt cells. Data represents
mean value from independent two hybridization experiments from two independent RNA samples. B, Western blot analysis of apoptosis-related proteins including Bcl-X\textsubscript{L}, cytochrome c, caspase-3 and p21Waf1 in wt and CYP26A1 overexpressing HeLa cells treated with 25 \mu M H\textsubscript{2}O\textsubscript{2} for 24 h in combination with or without of 1 \mu M RA in the media supplemented with 10% charcoal-dextran treated FBS. We also examined the subcellular localization of cytochrome c to separate into mitochondria and cytosolic fractions. Equal loading is demonstrated by \beta-actin expression. We also show the densitometric analysis of Bcl-X\textsubscript{L} and p21Waf1 signals on the blot from triplicate independent experiments.
Figure 1

A. Apoptosis (%) vs. TRAIL (ng/ml) with pEGFP-C1-CYP26A1 transfection.

B. Apoptosis (%) vs. Time (h) with pCMS-EGFP-CYP26A1 transfection.

C. Apoptosis (%) vs. RA (µM) with pCMS-EGFP-CYP26A1 transfection.

D. Western blot images showing wt, wt + RA, wt + RA + TRAIL, CYP26 + RA, CYP26 + RA + TRAIL conditions.

E. Differential staining for wt, wt + RA, wt + RA + TRAIL, CYP26 + RA, CYP26 + RA + TRAIL conditions.

F. Apoptosis (%) for different cell lines (MCF-7, A549, Hep3B) with RA and RA + TRAIL treatments.

* * * ** ** **

HeLa CYP26A1 cells, RA-treated wt cells, RA-treated HeLa CYP26A1 cells.
Figure 2
Figure 3

A

B

C

D

E

This article has not been copyedited and formatted. The final version may differ from this version.
Figure 4

A

B

C

Cell numbers (x 10^4)

G1-G0: 57.0
S: 20.4
G2-M: 22.0

G1-G0: 65.9
S: 16.4
G2-M: 16.6

G1-G0: 79.2
S: 11.0
G2-M: 7.7

G1-G0: 66.7
S: 15.1
G2-M: 15.4

wt CYP26

wt CYP26

wt CYP26

wt cells
HeLa CYP26A1 cells
RA-treated wt cells
RA-treated HeLa CYP26A1 cells

Mitotic index (%)

- RA
G1-G0: 66.7
S: 15.1
G2-M: 15.4

G1-G0: 57.0
S: 20.4
G2-M: 22.0

+ RA
G1-G0: 79.2
S: 11.0
G2-M: 7.7

G1-G0: 65.9
S: 16.4
G2-M: 16.6

- Trail + Trail

0 4 8 12 16 20

Downloaded from molpharm.aspetjournals.org at ASPET Journals on April 2, 2017
Figure 5

Expression levels relative to wild-type cell (Arbitrary units)