The General Anesthetic Isoflurane Depresses Synaptic Vesicle Exocytosis

Hugh C. Hemmings Jr, Wayne Yan, Robert I. Westphalen, and Timothy A. Ryan

Departments of Anesthesiology (H.C.H., R.I.W., T.A.R.), Pharmacology (H.C.H., R.I.W.) and Biochemistry (W.Y., T.A.R.)
Weill Medical College of Cornell University, 1300 York Avenue, New York, New York 10021
Running title: Isoflurane depresses synaptic vesicle exocytosis

Correspondence should be addressed to:
Hugh C Hemmings Jr, MD PhD
Department of Anesthesiology, Box 50, LC-203
Weill Medical College of Cornell University
525 E. 68th Street
New York NY 10021
ph (212) 746-2714
f (212) 746-8316
hchemmi@med.cornell.edu

Figures: 6; Tables: 1; 24 pages; 37 references

Words in Abstract: 234
Words in Introduction: 448
Words in Discussion: 1492
Abstract

General anesthetics have marked effects on synaptic transmission, but the mechanisms of their presynaptic actions are unclear. We used quantitative laser scanning fluorescence microscopy to analyze the effects of the volatile anesthetic isoflurane on synaptic vesicle cycling in cultured neonatal rat hippocampal neurons monitored using either transfection of a pH sensitive form of green fluorescent protein fused to the lumenal domain of VAMP (synapto-pHlourin) or vesicle loading with the fluorescent dye FM 1-43. Isoflurane reversibly inhibited action potential-evoked exocytosis over a range of concentrations, with little effect on vesicle pool size. In contrast, exocytosis evoked by depolarization in response to an elevated extracellular concentration of KCl, which is insensitive to the selective Na\(^+\) channel blocker tetrodotoxin, was relatively insensitive to isoflurane. Inhibition of exocytosis by isoflurane was resistant to bicuculline, indicating that this presynaptic effect is not due to the well-known GABA\(_A\) receptor modulation by volatile anesthetics. Depression of exocytosis was mimicked by a reduction in stimulus frequency, suggesting a reduction in action potential initiation, conduction, or coupling to Ca\(^{2+}\) channel activation. There was no evidence for a direct effect on endocytosis. The effects of isoflurane on synaptic transmission are thus primarily due to inhibition of action potential-evoked synaptic vesicle exocytosis at a site upstream of Ca\(^{2+}\) entry and exocytosis, possibly due to Na\(^+\) channel blockade and/or K\(^+\) channel activation, with the possibility of lesser contributions from Ca\(^{2+}\) channel blockade and/or SNARE-mediated vesicle fusion.
Introduction

Despite intense interest and scrutiny, the detailed mechanisms by which general anesthetics alter neuronal function to produce amnesia, unconsciousness and immobility are unknown. Clinically relevant concentrations of general anesthetics preferentially affect synaptic transmission rather than axonal conduction (Larrabee & Posternak, 1952) by agent-specific postsynaptic and/or presynaptic mechanisms (MacIver, 1997). Ligand-gated ion channels are sensitive to clinical concentrations of many volatile and intravenous general anesthetics, and appear to underlie their postsynaptic effects (Franks & Lieb, 1994; Krasowski & Harrison 1999; Campagna et al., 2003). Most general anesthetics enhance inhibitory synaptic transmission by potentiation of postsynaptic GABA_A receptors (Tanelian et al., 1993), while specific anesthetics such as nitrous oxide, xenon and ketamine depress excitatory synaptic transmission by blocking NMDA-type glutamate receptors with little effect on GABA_A receptors (Lodge & Johnson, 1990; Mennerick et al., 1998; DeSousa et al., 2000; Yamakura & Harris, 2000). In contrast, the synaptic effects of volatile anesthetics are not fully explained by postsynaptic actions on ligand-gated ion channels.

Volatile anesthetics depress excitatory synaptic transmission in the CNS by poorly characterized presynaptic mechanisms with little apparent contribution of postsynaptic AMPA- and NMDA-type glutamate receptor antagonism at clinical concentrations, as indicated indirectly by electrophysiological measurements of postsynaptic responses (Perouansky et al., 1995; MacIver et al., 1996). Depression of glutamate release from isolated rat cerebrocortical nerve terminals evoked by pharmacological stimulation occurs at clinically relevant concentrations of volatile general anesthetics such as halothane and isoflurane (Schlame & Hemmings, 1995). Isoflurane also inhibits the release of GABA from isolated nerve terminals, but with slightly lower potency than for glutamate (Westphalen & Hemmings, 2003).

The small size of most nerve terminals in the CNS (diameter <1 µm) prohibits direct electrophysiological analysis of anesthetic effects on presynaptic action potentials and ion channel currents. The inability to directly monitor synaptic vesicle release further impedes detailed studies of presynaptic anesthetic mechanisms. Current electrophysiological and neurochemical techniques are inadequate for probing the effects
of general anesthetics on the exocytotic machinery. Analysis of a specialized giant brainstem auditory calyceal synapse in rat provided indirect evidence that isoflurane reduces exocytosis by suppressing presynaptic action potential amplitude modeled by reduced presynaptic current injections (Wu et al., 2004). However the proposed highly non-linear coupling to exocytosis made it difficult to rule out other possible sites of action. The effects of anesthetics on the endocytotic aspect of synaptic vesicle function are unknown. Genetic screening in C. elegans identified mutations in the three components of the core SNARE complex that alter anesthetic sensitivity complex, implicating SNARE mediated vesicle cycling as a target for presynaptic anesthetic effects (van Swinderen et al., 1999), although this has not been confirmed in mammals. We used a recently developed optical technique that involves transfection of the pH dependent fluorescent probe super-ecliptic pHlourin fused to the lumenal domain of the synaptic vesicle SNARE protein VAMP to simultaneously monitor vesicle exocytosis/endocytosis (Sankaranarayanan et al., 2000). This approach allowed us to determine the effects of the volatile anesthetic isoflurane on action potential-evoked synaptic vesicle cycling including both exocytosis and endocytosis in intact CNS neurons for the first time. Isoflurane at clinical concentrations inhibits action potential-evoked synaptic vesicle exocytosis in cultured rat hippocampal neurons without affecting endocytosis. This effect occurs primarily at a site upstream of Ca$^{2+}$ entry in stimulus-secretion coupling, and thus does not involve significant SNARE-mediated anesthetic actions.

Materials and Methods

Cell culture and experimental conditions. Hippocampal CA3-CA1 regions were dissected from 1-3 day old Sprague-Dawley rats, dissociated, and plated onto poly-ornithine coated glass cover-slips as previously described (Ryan, 1999). Cultures were maintained at 37°C in 95% air/5% CO$_2$ in a humidified incubator, and culture media was replaced every week. Super-ecliptic synapto-pHlourin was transfected into 6-8 day old cultures through calcium phosphate mediated gene transfer as previously described (Sankaranarayanan et al., 2000). Super-ecliptic synapto-pHlourin is a modified version of the original ecliptic pHlourin with enhanced optical properties but an identical pKa (Sankaranarayanan et al., 2000). Cells were used 14-21 days after plating (8-14 days after transfection). The coverslips were
mounted in a rapid switching, laminar-flow perfusion and stimulation chamber (volume ~75 µl) on the stage of a custom-built laser scanning confocal microscope. Cells were continuously perfused at a rate of 1-1.5 ml/min at room temperature (~25°C) in Perfusion Buffer containing 119 mM NaCl, 2.5 mM KCl, 2 mM CaCl₂, 2 mM MgCl₂, 25 mM HEPES (buffered to pH 7.4), 30 mM glucose, 10 µM 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; Research Biochemicals, Natick, MA) and 50 µM D,L-2-amino-5-phosphonovaleric acid (action potential; Research Biochemicals). Action potentials (action potentials) were evoked by passing 1 ms current pulses, yielding fields of ~10 V/cm, typically at 10 Hz for 20 sec (200 action potentials), through the chamber via platinum-iridium electrodes, which induces action potential firing with high fidelity (>90%). With stimulation of vesicle fusion, the pH-sensitive synapto-pHlorin, which is quenched by the low lumenal pH, is exposed to the extracellular solution generating an increase in fluorescence with exocytosis and a subsequent requenching of fluorescence with endocytosis. For dye studies, non-transfected cells were loaded with FM 1-43 (Molecular Probes, Eugene, OR) at a final concentration of 15 µM in Perfusion Buffer. The entire releasable pool of vesicles (RP) was labeled by stimulating for 40-45 s at 30 Hz (a stimulus shown to turn over the entire RP at both 25°C and 35°C) in the presence of the dye, followed by an additional 60 s of dye exposure to ensure labeling of all recycling membrane during endocytosis (Ryan & Smith, 1995). Following 10 min of rinsing in dye-free solution, the unloading phase consisted of episodes of fluorescence image acquisition continuously during action potential firing.

Optical measurements, microscopy and analysis. Laser-scanning fluorescence images were acquired using a custom-built laser-scanning microscope through a 40 x 1.3 numerical aperture Zeiss Fluor objective (Oberkochen, Germany). Specimens were illuminated with ~1.5-10 µwatts of the 488 nm line of an argon ion laser that was rapidly shuttered during all non-data acquiring periods using acousto-optic or electro-optic modulation. Time course of fluorescence responses of synapto-pHlorin and FM were measured from time-lapse images. SpH fluorescence emission was collected using a 498-538 nm band pass filter. FM 1-43 emission was collected with a 500 nm long pass filter. Quantitative measurements of fluorescence intensity at individual boutons were obtained by averaging 4 x 4 area pixels (0.4 x 0.4 µm) corresponding to the center of individual
puncta selected by hand. The same quantitative measurements were applied to the axonal surface, except that the 0.4 x 0.4 µm boxes spanned axonal areas in between individual boutons. Data are presented as the mean ∆F/F for control and drug treatments at each time point, and were analyzed by paired t test.

For FM dye experiments on non-transfected cells, each experiment corresponds to measurements from an individual cover-slip, which includes boutons from multiple neurons. For each cover-slip, a control experiment measured exocytosis without anesthetic, which was followed by reloading with FM dye, equilibration with a single concentration of isoflurane, and measurement of exocytosis in the presence of isoflurane. Reversibility of the isoflurane effect was confirmed by washout of isoflurane, reloading with FM dye, and measurement of exocytosis without anesthetic. For the synapto-pHlorin studies, a low transfection frequency (~1%) allows monitoring of a single neuron per high power field. Thus, each experiment refers to measurements made on a single neuron from a single culture, even if it involved multiple rounds of stimulation. This method permitted testing of multiple conditions per experiment, since return to baseline control response could be assessed without maximal stimulation for unloading and reloading of vesicles between each condition as in the FM dye experiments.

Preparation and analysis of isoflurane solutions. Perfusion Buffer was saturated with isoflurane (Abbott Laboratories, North Chicago, IL) by stirring an excess (10 ml/L buffer) for >12 h at room temperature (21-23°C) in an airtight glass bottle. The saturated solution (10-12 mM) was diluted with Perfusion Buffer into closed glass perfusion reservoirs to ~1.4-times the desired chamber concentration. In some experiments, bicuculline methiodide (Sigma Chemical Co., St. Louis MO) was added to both control and isoflurane containing Perfusion Buffer. The diluted isoflurane solutions were introduced to the perfusion chamber through polyethylene tubing from the closed glass reservoirs. Due the volatility of isoflurane and attendant losses (~30%), the final isoflurane concentrations exiting the perfusion chamber were determined by gas chromatography following extraction of the isoflurane into heptane (Ratnakumari & Hemmings, 1998). This resulted in some scatter in the actual concentrations of isoflurane present in each experiment. Except for the concentration-effect determination, a concentration of ~1 mM (~2.8 times the EC₅₀ for general anesthesia [MAC] in rat of 0.35 mM; Taheri et al., 1991), which was...
near the EC$_{50}$ for inhibition of exocytosis, was chosen for routine analysis. Concentration-effect data were fitted by least-squares analysis to estimate IC$_{50}$ and Hill slope (Prism v. 4.0; GraphPad Software, San Diego, CA). Data are reported as mean±SD.

Results

Isoflurane inhibits synapto-pHlourin responses to action potential firing

Transfection with a pH sensitive green fluorescent protein variant fused to the lumenal domain of the synaptic vesicle associated membrane protein VAMP (synapto-pHlourin, synapto-pHlorin) was used to optically measure synaptic vesicle exocytosis and endocytosis in cultured hippocampal neurons (Sankaranarayanan & Ryan 2000). This probe can be used to measure the recycling properties of VAMP at hippocampal axon terminals in real time (Sankaranarayanan & Ryan, 2000) since synapto-pHlorin fluorescence increases ~20-fold during transition from the acidic vesicle lumen to the neutral pH in the extracellular solution (Sankaranarayanan et al., 2000; Sankaranarayanan and Ryan, 2000). Since vesicle reacidification is rapid (Gandhi & Stevens, 2003; Sankaranarayanan & Ryan, 2000), changes in fluorescence during action potential (action potential) firing reflect the net accumulation of VAMP on the presynaptic surface, and changes during the post-stimulus period report the kinetics of endocytosis of VAMP.

The time course of fluorescence changes during a train of 200 action potentials averaged over a population of individual synaptic boutons from a single neuron transfected with synapto-pHlorin is shown in Figure 1. Recurrent excitation is avoided by blocking postsynaptic glutamate receptors with action potentialV and CNQX. A rapid increase in fluorescence due to exocytosis and externalization of synapto-pHlorin reached a peak that decayed following the stimulus due to endocytosis and vesicle re-acidification following action potential stimulation. We used this assay to determine the impact of the volatile anesthetic isoflurane on presynaptic function in intact cultured neurons. When superfused with Perfusion Buffer containing 0.85 mM isoflurane (2.4-times the EC$_{50}$ for general anesthesia), peak synapto-pHlorin responses to action potential firing were suppressed by ~40% compared to control (Fig. 1). The inhibition of synapto-pHlorin responses by isoflurane was fully reversible; the fluorescence response returned to control following superfusion of the neurons with Perfusion Buffer in the absence of isoflurane.
for 10 min. Given the prominent potentiating effect of most intravenous and volatile general anesthetics on GABA_A receptors (Franks & Lieb, 1994), it is important to rule out an indirect depressive effect on excitability mediated by this mechanism as the reason for depression of exocytosis. Addition to the perfusion buffer of 10 µM bicuculline methiodide, a specific antagonist of GABA_A receptors (Bai et al., 2001), did not prevent the depression of action potential-evoked exocytosis by isoflurane (data not shown).

SpH measurements are well suited for examining concentration-dependent effects of pharmacological agents since repeated assays can be carried out on the same cell at multiple drug concentrations. The effect of isoflurane on action potential-evoked synapto-pHlorin responses averaged from multiple boutons derived from a single transfected neuron was concentration-dependent (Fig. 2A). Similar measurements from additional neurons were used to assemble a concentration-effect curve for inhibition of synaptic vesicle cycling by isoflurane (Fig. 2B). Significant inhibition of synapto-pHlorin responses occurred at the clinically relevant concentration of 0.43 mM isoflurane and above: 11±5% inhibition was observed at 0.43 mM (1.2 times EC₅₀ for general anesthesia; p<0.05, n=63 boutons). The average effect of three experiments near 2 times the EC₅₀ (~ED₉₅) for general anesthesia was 27±3% inhibition by 0.75±0.02 mM isoflurane (p<0.05). Complete blockade of exocytosis was obtained at the highest isoflurane concentrations tested (1.9 mM). The data were fit to a sigmoidal concentration-effect curve with IC₅₀=1.0 mM and Hill slope=2.95 (r²=0.89).

Both exocytosis and endocytosis are slowed by isoflurane

The synapto-pHlorin signal reports a net balance of exocytosis and endocytosis (Sankaranaryanan & Ryan, 2001; Fernandez-Alfonso & Ryan, 2004). A net positive change in fluorescence during the stimulus period indicates that the rate of exocytosis exceeded the rate of endocytosis (Fernandez-Alfonso & Ryan, 2004). Thus, the reduction in peak fluorescence amplitude by isoflurane could result from suppression of exocytosis and endocytosis, suppression of exocytosis alone, or acceleration of endocytosis. Following stimulation, synapto-pHlorin fluorescence recovers following zero-order kinetics, i.e. the initial rate of internalization is independent of the amount of synapto-pHlorin to be internalized (Sankaranaryanan & Ryan, 2000) and endocytosis proceeds at a
constant rate both during and immediately after the stimulus period (Sankaranarayanan & Ryan, 2001). An appropriate measure of the speed of endocytosis is the initial rate of synapto-pHlorin fluorescence change following the stimulus period. We therefore analyzed the initial decay rate of synapto-pHlorin fluorescence for the first 3 time points post stimulus in the absence and presence of isoflurane. Isoflurane (1.04±0.5 mM) suppressed the synapto-pHlorin peak response by 54±2.7%, and slowed the post-stimulus endocytosis rate by 52±8% (p<0.05 for each by paired t-test, n=4, Fig. 3).

Since the synapto-pHlorin signal represents the net difference between exocytosis and endocytosis, isoflurane must inhibit exocytosis as well. We therefore examined the effect of isoflurane on the kinetics of FM 1-43 destaining, which should give a faithful measure of its impact on action potential-evoked exocytosis. Synaptic vesicles were labeled with FM 1-43 using repetitive electrical stimulation at 20 Hz to elicit rounds of exocytosis/endocytosis. Following washing, the dye released by exocytosis upon subsequent stimulation in the absence or presence of isoflurane was quantified by time-lapse fluorescence imaging of labeled boutons. Following a control dye loading/unloading experiment, the same terminals were reloaded with dye and superfused with buffer containing isoflurane during a second round of dye unloading (Fig. 4). Isoflurane at 0.84 mM strongly inhibited the rate of synaptic vesicle exocytosis without affecting the extent of exocytosis; the decay constant τ increased by 31±7% (from 15.3±0.46 to 21.7±2.4 sec, p<0.03 by Student’s t-test; n=4). This corresponds to a decrease in synaptic efficiency (expressed as percentage of the releasable pool released) from 0.65%/action potential to 0.46%/action potential. The effect of isoflurane was reversible: reloading the same terminals with dye followed by a third round of unloading in the absence of isoflurane showed complete recovery to control values (data not shown).

A major presynaptic target of isoflurane is upstream of Ca$^{2+}$ entry

Synaptic vesicle exocytosis and endocytosis are both Ca$^{2+}$-sensitive (Sanakarayanan & Ryan, 2001), thus potential targets for isoflurane include voltage-gated Ca$^{2+}$ channels and/or the driving force for gated Ca$^{2+}$ entry during stimulation, i.e. action potential driven membrane depolarization. We tested the possibility that inhibition of exocytosis by isoflurane arises directly from blockade of Ca$^{2+}$ entry by attempting to relieve the
blockade by stimulation in the presence of elevated external Ca$^{2+}$. Figure 5A shows an example of the synapto-pHlorin responses to 200 action potentials delivered in 2 mM external Ca$^{2+}$ in absence of presence of 1 mM isoflurane. This measurement was then performed in 3.5 mM external Ca$^{2+}$ in the same cell comparing controls to a similar isoflurane concentration. Although elevation of external Ca$^{2+}$ increased the size of the response by 24±0.05% (p<0.05, n=4), the degree of block by isoflurane was identical at 2 mM and 3.5 mM external Ca$^{2+}$ (mean block by 1.0 mM isoflurane was 49±5% for 2 mM Ca$^{2+}$ (p<0.05) vs. 51±1% block by 1.1 mM isoflurane for 3.5 mM Ca$^{2+}$; p<0.05 by Student’s t-test, n=4).

Evidence from isolated nerve terminals suggests that pharmacologically evoked glutamate release is inhibited by volatile anesthetics acting to block presynaptic voltage-gated Na$^+$ channels (Ratnakumari & Hemmings, 1996; Ratnakumari et al., 2000; Lingamaneni et al., 2001). Field electrical stimulation of exocytosis in cultured hippocampal neurons depends upon voltage-gated Na$^+$ channel function since it can be blocked by tetrodotoxin, a selective antagonist of neuronal voltage-gated Na$^+$ channels that prevents downstream activation of voltage-gated Ca$^{2+}$ channels for excitation-exocytosis coupling (T.A. Ryan, unpublished data). An alternate, Na$^+$ channel-independent stimulation of exocytosis is produced by elevated extracellular K$^+$ stimulation. Elevated extracellular KCl has been used extensively as a pharmacological method of evoking exocytosis in isolated nerve terminals (Nicholls, 1993) and cultured hippocampal neurons (Ryan et al., 1993). Exocytosis evoked by a pulse of 40 mM KCl in cultured hippocampal neurons was insensitive to 1 µM tetrodotoxin (T.A. Ryan unpublished data). Thus, in contrast to action potential-evoked exocytosis, activation of tetrodotoxin-sensitive Na$^+$ channels is not involved in KCl depolarization evoked release. We therefore compared the sensitivity to isoflurane of exocytosis evoked by a train of action potentials or by a pulse of elevated external KCl. In order to simplify the comparison, we chose a KCl concentration ([KCl]) that elicited a synapto-pHlorin response of similar magnitude to the peak response obtained using our standard test condition (200 action potential @ 10 Hz). Although the overall dynamic profile of intracellular Ca$^{2+}$ almost certainly differs for elevated KCl superfusion compared to action potential stimulation, the similar kinetics of sustained secretion indicate that the exocytic
machinery must be operating under similar kinetic constraints. While 1 mM isoflurane inhibited synapto-pHlorin responses driven by action potential stimulation (Fig. 5A), this effect was greatly diminished when exocytosis was driven by elevated [KCl] (Fig. 5B). Side-by side comparisons on the same neurons indicated that on average the inhibitory effect of 1 mM isoflurane was reduced by ~65%, from a mean of 56±3.7% inhibition with action potential stimulation to 19±4.7% inhibition with elevated [KCl] (p<0.05 by ANOVA, n=6; Fig. 5B). Since KCl-evoked exocytosis is less sensitive to isoflurane, the major presynaptic target for inhibition of exocytosis by isoflurane must lie upstream of Ca\(^{2+}\) entry through nerve terminal voltage-gated Ca\(^{2+}\) channels coupled to synaptic vesicle exocytosis.

If the principle target of isoflurane is action potential depression, the effect of isoflurane on synapto-pHlorin responses should be mimicked by a reduction in the action potential-firing frequency compared to control stimulus conditions (20 sec @ 10 Hz). In the next series of experiments we sought to test this hypothesis by comparing the time course of synapto-pHlorin responses during 10 Hz repetitive stimulation in the presence of isoflurane to synapto-pHlorin responses at the same synapses stimulated at lower frequency in the absence of isoflurane. In principle, even the slowing of post-stimulus endocytosis could result from reduced firing frequency, since that in turn would lead to lower total Ca\(^{2+}\) influx over a given stimulus period. Since endocytosis is also controlled by intracellular Ca\(^{2+}\), slowing firing rate should slow both exocytosis and endocytosis. The effect of isoflurane (0.94±0.03 mM leading to 42±1% inhibition; p<0.05, n=4) on the synapto-pHlorin peak response and on post-endocytic recovery to a 20 sec stimulation at 10 Hz was well matched by a 20 sec stimulation at an average rate of 6.8±0.1 Hz (n=4) (Table 1). A representative experiment is shown in Figure 6. Although the very late phase of endocytosis is somewhat slower in the presence of isoflurane at 10 Hz compared to a control at 7.3 Hz, the initial post-stimulus slopes (as defined in Fig. 3) were almost identical (ratio of the post-stimulus endocytosis slope in isoflurane to the frequency-shifted control=0.95±0.1; p>0.05 by paired t-test, n=4). Thus isoflurane inhibition of synapto-pHlorin responses is most consistent with an effective block of action potential firing.
Discussion

Our results demonstrate that isoflurane, a widely used polyhalogenated ether anesthetic, has profound inhibitory effects on action potential-evoked synaptic vesicle exocytosis in hippocampal neurons. This represents the first direct demonstration of presynaptic general anesthetic actions on action potential-evoked synaptic vesicle cycling in intact CNS neurons representative of most central synapses in mammalian brain. These findings indicate that the principal presynaptic target for anesthetic inhibition of synaptic transmission is reduced exocytosis due to action potential disruption. Other potential sites of action downstream of the action potential, including inhibition of Ca\(^{2+}\) channels coupled to vesicle exocytosis and direct effects on SNARE-mediated synaptic vesicle exocytosis, do not appear to be major presynaptic targets of isoflurane, but may contribute to the overall effect.

Genetic studies in *C. elegans* raised the intriguing possibility that volatile anesthetics may exert some of their presynaptic effects by interacting with key elements of the exocytotic protein machinery. Mutants with hypersensitivity or resistance to the immobilizing effects of volatile anesthetics harbor mutations in homologues of syntaxin, SNaction potential-25 or VAMP, consistent with an anesthetic effect on the vesicle fusion step regulated by these proteins (van Swinderen et al., 1999). Our observations that exocytosis evoked by elevated extracellular K\(^+\) is less sensitive to isoflurane compared to action potential-evoked exocytosis indicates that SNARE-mediated vesicle fusion is not the major presynaptic target for volatile anesthetic depression of exocytosis in the rat CNS. Similarly, Wu et al. (2004) concluded that reduction in excitatory postsynaptic currents at the rat calyx of Held is due primarily to reduction of presynaptic action potential amplitude with minor contributions due to targets downstream from terminal depolarization. The failure of elevated extracellular Ca\(^{2+}\) to rescue isoflurane inhibition of action potential-evoked exocytosis, which should antagonize Ca\(^{2+}\) channel mediated blockade, provides additional evidence that inhibition of action potential-evoked exocytosis does not involve Ca\(^{2+}\) entry through voltage-gated Ca\(^{2+}\) channels. Taken together, our findings that inhibition of exocytosis by isoflurane is equivalent to reducing the rate of action potential firing, that elevated external Ca\(^{2+}\) fails to relieve inhibition by isoflurane, and that exocytosis stimulated by elevated extracellular K\(^+\) is about one third as
sensitive to isoflurane as action potential-evoked exocytosis implicate action potential depression as the principal presynaptic action of isoflurane. Considerable evidence supports a role for Na\(^+\) channel blockade in the inhibition of synaptic vesicle exocytosis by volatile anesthetics (Ratnakumari & Hemmings, 1998; Lingamaneni et al., 2001; OuYang et al., 2003; Westphalen et al., 2003; Wu et al., 2004), but the current data do not rule out other potential targets. Putative anesthetic actions upstream of Ca\(^{2+}\) entry and vesicle fusion that may contribute to depression of exocytosis include activation of voltage-gated or two-pore domain K\(^+\) channels, some of which are sensitive to volatile anesthetics (Patel et al., 1999). The functions and subcellular localizations of the anesthetic-sensitive background two-pore domain K\(^+\) channels are not known, but a presynaptic localization could stabilize membrane potential and prevent nerve terminal depolarization and exocytosis via enhanced outward K\(^+\) current. Further studies will be required to investigate the intriguing proposal that anesthetic-activated two-pore domain K\(^+\) channels are present in presynaptic terminals and contribute to presynaptic anesthetic effects (Patel et al., 1999).

The available data cannot distinguish between anesthetic blockade of axonal Na\(^+\) channels that support axonal action potential conduction (Mikulec et al., 1998) from blockade of Na\(^+\) channels in the presynaptic bouton that are required for sufficient nerve terminal depolarization to activate the voltage-gated Ca\(^{2+}\) channels coupled to exocytosis (Nicholls, 1993). Evidence from isolated nerve terminals (Schlame & Hemmings, 1995; OuYang et al., 2003) and the calyx of Held (Wu et al., 2004) suggest that inhibition of Na\(^+\) channels in the presynaptic bouton is sufficient to inhibit transmitter release, though a contribution from depression of axonal action potential conduction may also be involved (Mikulec et al., 1998). The specific neuronal Na\(^+\) channel isoform(s) affected by isoflurane in cultured hippocampal neurons is not known. All major adult CNS Na\(^+\) channel isoforms are inhibited by isoflurane (Shiraishi and Harris, 2004); the sensitivities of neonatal splicing variants are unknown.

Previous studies have suggested anesthetic blockade of voltage-gated Ca\(^{2+}\) channels as a mechanism for inhibition of transmitter release. Halothane augments paired-pulse facilitation in hippocampal CA1 neurons, consistent with a reduction in presynaptic Ca\(^{2+}\) influx (MacIver et al., 1996; Kirson et al., 1998), and a study in isolated guinea pig nerve
terminals suggested inhibition of voltage-gated Ca\(^{2+}\) channels in the depression of glutamate release by volatile anesthetics (Miao et al., 1995), though this finding was not reproducible (Lingamaneni et al., 2001). However, pharmacological evidence indicates that the principal target for inhibition of glutamate release from isolated rat, mouse and guinea pig cortical nerve terminals occurs at a target upstream of the voltage-gated Ca\(^{2+}\) channels coupled to exocytosis (Ratnakumari & Hemmings, 1998; Lingamaneni et al., 2001; Westphalen et al., 2003). Electrophysiological studies in isolated rat neurohypophysial nerve terminals indicate that isoflurane potently inhibits presynaptic voltage-gated Na\(^{+}\) channels (OuYang et al., 2003) and action potential amplitude with a less potent effect on Ca\(^{2+}\) channels (Ouyang et al., 2005), consistent with our results in hippocampal neurons. In the calyx of Held synapse stimulated by intraterminal current injections, isoflurane inhibited exocytosis detected by presynaptic capacitance changes and reduced the amplitude of presynaptic action potentials (Wu et al., 2004). Voltage-gated N- and P/Q-type Ca\(^{2+}\) channels (Ca\(_v\) 2.1 and 2.2) have been implicated as the source of presynaptic Ca\(^{2+}\) entry in hippocampal synaptic transmission (Wheeler et al., 1994; Wu & Saggau, 1994). Despite findings that somatic and heterologously expressed N- and P/Q-type voltage-gated Ca\(^{2+}\) channels can be inhibited by volatile anesthetics (Study, 1994; Kamatchi et al., 1999), the available evidence (reduced sensitivity of KCl-evoked exocytosis, no Ca\(^{2+}\) rescue) does not support presynaptic Ca\(^{2+}\) channel blockade as the principal target for depression of transmitter release by volatile anesthetics.

This study supports the hypothesis that depression of excitatory synaptic transmission by volatile anesthetics can be accounted for largely by presynaptic mechanisms. Specifically, inhibition of exocytosis by the volatile anesthetic isoflurane occurs primarily upstream of Ca\(^{2+}\) influx. Our results can be explained by a reduction in nerve terminal excitation due to impaired action potential conduction within the presynaptic bouton resulting in impaired synaptic efficiency. In fact, the effects of isoflurane on synaptic vesicle cycling are mimicked by application of the selective Na\(^{+}\) channel blocker tetrodotoxin (data not shown) or by reducing the number of action potential stimuli. Pharmacological evidence in isolated nerve terminals indicates that blockade of presynaptic voltage-gated Na\(^{+}\) channels is the probable mechanism for this effect, though effects on K\(^{+}\) channels cannot be ruled out. Volatile anesthetics inhibit Na\(^{+}\) channel-
dependent depolarization-evoked glutamate release from isolated rat CNS nerve terminals
(Schlame & Hemmings, 1995; Lingamaneni et al., 2001; Westphalen & Hemmings, 2003), and also antagonize depolarization-evoked Na⁺ flux and batrachotoxinin-B binding
to Na⁺ channels (Ratnakumari & Hemmings, 1998). Although it has not been possible to
record Na⁺ currents from typical small CNS nerve terminals, volatile anesthetics block
somatic (Ratnakumari et al., 2000) and heterologously expressed (Rehberg et al., 1996;
Shiraishi & Harris, 2004) neuronal voltage-gated Na⁺ channels, as well as voltage-gated
Na⁺ channels in isolated neurohypophysial nerve terminals (OuYang et al., 2003).

Cultured neonatal rat hippocampal neurons are phenotypically heterogeneous; both
glutamatergic pyramidal neurons and GABAergic interneurons are represented in the
cultures. The synapto-pHlorin method selectively labels a single neuron per field due to
the low transfection efficiency, and thus provides data from a single neuron of unknown
phenotype. The FM 1-43 method labels active boutons of all functioning neurons present
in the culture, and provides an ensemble average of exocytosis from multiple neuron
types. These complementary methods indicate comparable sensitivity to isoflurane,
consistent with anesthetic suppression of synaptic vesicle exocytosis in both glutamatergic
and GABAergic terminals, which represent the bulk of terminals in this preparation (T.A.
Ryan, unpublished observations). We have also shown that isoflurane inhibits release of
both glutamate and GABA from isolated rat cortical nerve terminals by an independent
dual label isotopic method (Westphalen & Hemmings, 2003), though GABA release is
somewhat less sensitive than glutamate release. This heterogeneity may explain some of
the variation observed in sensitivity of exocytosis to isoflurane in individual neurons.

Considerable uncertainty has surrounded the mechanisms of action of general
anesthetics for more than a century (Franks & Lieb, 1994; Campagna et al., 2003). Recent
progress favors multiple agent–specific targets for anesthetics in the CNS: facilitation of
inhibitory synaptic transmission via GABA_A receptor potentiation by most intravenous
and volatile anesthetics, depression of excitatory synaptic transmission via blockade of
postsynaptic NMDA receptors by gaseous and dissociative anesthetics, and depression of
excitatory transmission via presynaptic inhibition of transmitter release by volatile
anesthetics. Our findings solidify the latter mechanism by demonstrating profound
inhibition of action potential-evoked synaptic vesicle fusion in intact cultured CNS
neurons. Our results implicate multiple presynaptic targets for depression of exocytosis by isoflurane: a major target upstream of Ca2+ entry, likely involving Na+ channel blockade and/or two-pore domain K+ channel activation, and a lesser contribution from Ca2+ channel blockade and/or an effect on SNARE-mediated fusion.
References

MacIver MB (1997) General anesthetic actions on transmission at glutamate and GABA synapses, in Anesthesia: Biological Foundations (Biebuyck JF, Lynch C III, Maze...

This article has not been copyedited and formatted. The final version may differ from this version.

Footnotes

This work was supported by grants from the National Institutes of Health (GM 58055 and GM 61925).

Reprints should be addressed to Hugh C. Hemmings Jr, Department of Anesthesiology, Weill Medical College of Cornell University, 1300 York Avenue, New York, New York 10021; hchemmi@med.cornell.edu
Legends for Figures

Figure 1. Action potential mediated exocytosis at hippocampal nerve terminals is inhibited reversibly by isoflurane. Synapto-pHluorin responses at hippocampal presynaptic terminals (for an ensemble of ~30 boutons from a single cell) were monitored during repetitive action potential stimulation. Isoflurane (0.85 mM; 2.4 MAC) reversibly depressed the response by ~40% compared to bracketing control assays (p<0.05).

Figure 2. Isofurane inhibits action potential-stimulated exocytosis at clinical concentrations. A) Representative experiment in which synapto-pHluorin responses to 200 action potential stimuli were monitored at the same boutons from a single neuron under control conditions (initial curves) or following equilibration with different concentrations of isoflurane (Iso1=1.77 mM, Iso2=0.79 mM, Iso3=0.47 mM, Iso4=0.4 mM). B) Compiled data for fractional block of exocytosis by various concentrations of isoflurane determined using synapto-pHluorin measurements. Each symbol type represents data from a single cell (30-40 boutons) experiment (n=7 cells total), each representing a different culture and transfection. All concentrations of isoflurane tested ≥0.43 mM significantly inhibited exocytosis versus the respective control values (Student’s paired t-test; p<0.05).

Figure 3. Isoflurane reduces the peak response and slows recovery of the synapto-pHlourin response following action potential stimulation. In addition to suppressing the peak synapto-pHluorin response, isoflurane also inhibits the post-stimulus rate of endocytosis, as determined by the initial slope in the post-stimulus period (dashed lines).

Figure 4. FM 1-43 destaining kinetics are slowed by isoflurane. Hippocampal synaptic terminals were preloaded with FM 1-43 using action potential stimulation. The rate of dye destaining either in the presence or absence of isoflurane was followed for the same boutons in sequential loading/unloading runs. The depression of FM 1-43 destaining was reversible upon washout of isoflurane (not shown).
Figure 5. Isoflurane block of action potential-mediated exocytosis occurs upstream of Ca2+ influx. A) Elevated external Ca2+ does not relieve isoflurane block. The degree of isoflurane block was measured for both 2 mM and 3.5 mM external Ca2+. Synapto-pHluorin responses to a 200 action potential stimulus in the presence and absence of 1.1 mM isoflurane (for 2 mM Ca2+) or 1.2 mM isoflurane (for 3.5 mM Ca2+) at the same synaptic terminals. The fractional block for each condition was very similar (51% for 2 mM Ca2+ and 53% for 3.5 mM Ca2+). B) Stimulation by high [KCl] is resistant to isoflurane block. The left panel shows an example of action potential-mediated synapto-pHluorin responses in the presence or absence of 1 mM isoflurane. In this example 1 mM isoflurane resulted in 56% block of exocytosis. The same cell was then stimulated using a pulse of 40 mM KCl in perfusion buffer (with an equivalent reduction in NaCl) in the presence or absence of 1 mM isoflurane (right panel). The peak responses were almost identical for action potential-induced and elevated [KCl]-induced exocytosis under control conditions. However, only the action potential-mediated responses are inhibited significantly by isoflurane.

Figure 6. Isoflurane block of synapto-pHluorin responses is equivalent to lowering firing frequency. Lowering the stimulus frequency mimicked the blocking effect of isoflurane on synapto-pHluorin responses. In the example shown here, the synapto-pHluorin response to a 10 Hz stimulus in the presence of 0.9 mM isoflurane was very similar to the synapto-pHluorin response obtained in the absence of isoflurane with a 7.3 Hz stimulus.
Tables

Table 1. Average values of the synapto-pHlorin responses to stimulation as well as the initial rate of post-stimulus synapto-pHlorin decay (endocytosis rate).

<table>
<thead>
<tr>
<th></th>
<th>Peak response (a.u.)</th>
<th>Endocytosis rate (a.u.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 Hz control</td>
<td>0.77±0.17</td>
<td>0.23±0.04</td>
</tr>
<tr>
<td>10 Hz isoflurane</td>
<td>0.43±0.09</td>
<td>0.12±0.02</td>
</tr>
<tr>
<td>Frequency match (mean 6.8±0.1 Hz)</td>
<td>0.40±0.13</td>
<td>0.13±0.03</td>
</tr>
</tbody>
</table>

Synapto-pHlorin responses were measured over an 8 sec period for 3 different stimulation conditions in each cell (mean±SEM, n=4 cells). Isoflurane (0.95±0.03 mM) led to a 42±1.7% reduction in peak response (p<0.05 by paired t-test) and a 51±3.4% reduction in endocytosis rate (p<0.05 by paired t-test) at a stimulus frequency of 10 Hz. At a lower stimulus frequency (6.8 Hz) where the peak response matched that for 10 Hz stimulation in isoflurane, endocytosis was identical (p>0.05 by paired t-test). a.u., arbitrary fluorescence units.
Figure 2
Figure 4
Figure 5

Panel A: Time course of synaptosomal pHLuorin secretion under various conditions. The graphs show the normalized fluorescence change (ΔF/F) over time in the presence of 2 mM and 3.5 mM Ca²⁺, with and without isoflurane.

Panel B: Comparison of synaptosomal pHLuorin secretion at 10 Hz and 40 mM KCl, with and without 1 mM isoflurane. The graphs illustrate the normalized fluorescence change (ΔF/F) over time.
Figure 6