Pharmacodynamics of the G-quadruplex-stabilizing telomerase inhibitor RHPS4 in vitro: activity in human tumor cells correlates with telomere length and can be enhanced, or antagonized, with cytotoxic agents

Jennifer C. Cookson, Fangping Dai, Victoria Smith, Robert A. Heald, Charles A. Laughton, Malcolm F. G. Stevens, and Angelika M. Burger*

Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, United Kingdom (J.C.C., R.A.H., C.A.L., M.F.G.S); and Institute for Experimental Oncology, D-79108 Freiburg, Germany (F.D., V.S., A.M.B).
Running Title: Biological effects of a G-quadruplex-stabilizing agent in tumor cells

Address correspondence to: Malcolm F. G. Stevens, Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, United Kingdom.

Email: malcolm.stevens@nottingham.ac.uk Tel.(+44)(0)1159513414; Fax (+44)(0)1159513412

Number of text pages: 27
Number of tables: 2
Number of figures: 5
Number of references: 40
Number of words in abstract: 231
Number of words in introduction: 730
Number of words in discussion: 1,406

ABBREVIATIONS: DMSO, dimethylsulfoxide; DSB, DNA double strand breaks; ED, effective dose; FBS, fetal bovine serum; GFP, green fluorescent protein; hTERT, human telomerase reverse transcriptase; IC50, inhibitory concentration 50%; kb, kilobase; mt, mutant; MWM, molecular weight markers; NSCL, non-small cell lung; PBS, phosphate-buffered saline; PD, population doubling; RHPS4, 3,11-difuoro-6,8,13-trimethyl-8H-quino[4,3,2-kl]acridinium methosulfate; SRB sulforhodamine B; TAE, tris-acetate-EDTA; TRAP, telomeric repeat amplification protocol; TIN2, TRF1 interacting protein 2; TRF, terminal restriction fragment; TRF1 or 2, telomeric repeat binding factor 1 or 2; wt, wild-type.
ABSTRACT
Telomeric integrity is required to maintain the replicative ability of cancer cells and is a target for the G-quadruplex-stabilising drug, RHPS4. We report a senescent-like growth arrest in MCF-7 breast cancer cells, within 14-17 days, and a reduction in telomere length (5.2→4.7 and 4.3 kb after 17 days treatment at 0.5 and 1 μM respectively). These effects occurred at non-acutely toxic doses compatible with chronic drug dosing. The telomere length of cancer cells influences their sensitivity to growth inhibition by RHPS4: mt-hTERT expressing MCF-7 cells (short TRF-length 1.9 kb; IC₅₀ 0.2 μM) were 10-times as sensitive to RHPS4 compared to wt-hTERT expressing vector transfected control cells (longer TRF-length 5.2 kb; IC₅₀ 2 μM) in the 5 day SRB assay. This relationship was corroborated in a panel of 36 human tumor xenografts grown in vitro showing a positive correlation between telomere length and growth inhibitory potency of RHPS4 (15 day clonogenic assay, r = 0.75). These observations are consistent with loss of the protective capping status of telomeres mediated by RHPS4 G-quadruplex-stabilisation, thus leading to greater susceptibility of cells with shorter telomeres. In combination studies, taxol, adriamycin and the Hsp90-inhibitory experimental therapeutic agent 17-AAG conferred enhanced sensitivity in RHPS4 treated MCF-7 cells, whereas the DNA-interactive temozolomide and cisplatin antagonized the action of RHPS4. Our results support the combined use of certain classes of cytotoxic anticancer agents with RHPS4 to enhance potential clinical benefit.
Introduction

Telomeric repeat sequences at the chromosome termini confer protection against exonucleases and ligases, thus maintaining chromosomal stability and preventing end-joining or fusion (Blackburn, 1991). Telomerase counteracts the progressive telomere shortening which occurs with each cell division due to the end-replication problem and ultimately leads to replicative senescence or apoptosis (Counter et al., 1992). Telomerase activation is considered the single most frequent alteration found with malignancy (Kim et al., 1994) – it is essential in the propagation of the immortal phenotype and to the survival and proliferation of cancer cells. Moreover, expression of mutant telomerase catalytic subunit (hTERT) has been shown to inhibit tumor growth hence validating the enzyme as a target for the development of new anti-cancer drugs (Hahn et al., 1999).

The discovery that interference with telomere architecture and maintenance (telomere capping) can rapidly initiate senescence, has alleviated fears that benefits of telomerase inhibition would involve a substantial lag-time necessary to shorten telomeres to a critical length in order to realise a reduction in tumor burden (Karlseder et al., 2002). The telomere capping model proposes that an uncapped telomere state evokes cell cycle arrest and senescence through, in part, a DNA damage signal (Blackburn, 2000). Consistent with this hypothesis is the observation that G-quadruplex stabilizing agents, which disrupt telomere maintenance, rapidly induce senescence in melanoma (Leonetti et al., 2004) and prostatic tumor cells (Incles et al., 2004). The human telomeric DNA sequence has a propensity to form an intramolecular G-quadruplex structure in vitro due to its guanine-rich nature (Wang and Patel, 1993; Parkinson et al., 2002); however, the non-folded, single-stranded telomeric overhang is required for optimal access to the telomerase machinery. G-quadruplex DNA structures formed within the telomeric repeat sequence have been shown to inhibit telomerase activity (Zahler et al., 1991), and ligands stabilizing these higher-ordered isoforms are...
effective inhibitors of telomerase and exert growth inhibitory effects on tumor cells \textit{in vitro} and \textit{in vivo} (Burger et al., 2005; Grand et al., 2002; Gowan et al., 2002; Riou et al., 2002).

A series of pentacyclic acridines synthesized at Nottingham, U.K. showed preference for binding to, and stabilizing, G-quadruplex DNA isoforms over duplexes (Gavathiotis et al., 2003). The lead compound, RHPS4 (3,11-difluoro-6,8,13-trimethyl-8\(H\)-quino[4,3,2-\(kl\)]acridinium methosulfate, Fig. 1) was found to be a potent telomerase inhibitor in the TRAP assay (IC\(_{50}\) 0.33 \(\mu\)M) and to cause irreversible cessation of growth after long-term culture at non-cytotoxic concentrations in cancer cells with relatively short telomeres, but not in a cell line with longer telomeres (Gowan et al., 2001): this effect was accompanied by an increase in cells in the G\(_2\)/M phase of the cell cycle, a reduction in cellular telomerase activity, and a lower expression of the hTERT gene. A recent study in melanoma cell lines showed induction of apoptosis as well as generation of a senescent phenotype following challenge with RHPS4 (Leonetti et al., 2004). In addition, the occurrence of telomere dysfunction in terms of presence of telomeric fusions, polynucleated cells, and anaphase bridges were seen. Since the latter effects occurred at acute toxic doses after short-term exposure to drug, they were proposed to result from telomere-capping alterations. However, previously published studies describing the biological effects of RHPS4 have failed to demonstrate telomere length reduction in tumor cells by this drug (Gowan et al., 2001, Leonetti et al., 2004).

We now report the following new features of the \textit{in vitro} pharmacodynamics of RHPS4 which will aid the design of \textit{in vivo} animal studies:

(i) We show that breast MCF-7 tumor cells rapidly exhibit a senescent phenotype when challenged even with non-cytotoxic doses of the drug, consistent with effects on telomere maintenance; (ii) For the first time with this class of drugs, we show a strong relationship between telomere length and potency of RHPS4 in a panel of 36 different patient-derived
xenografts and human tumor cell lines grown as xenografts in vitro. We further used the breast cancer cell line MCF-7 (TRF length 5.2 kb) and an isogenic subclone MCF-7 c81 that expresses mt-hTERT (TRF-length 1.9 kb) as a model to dissect subtle effects on telomere length, and to evaluate whether such drug-induced changes are concomitant with effects on proliferation, and induction of cellular senescence; (iii) We have explored if the consequences of telomere capping alteration following short term exposure to cytotoxic concentrations of RHPS4 could sensitize tumor cells to anticancer agents that act via disparate mechanisms, in order to identify a possible clinical strategy involving combination chemotherapy.
Materials and Methods

Drugs. RHPS4 was synthesized in our lab as described (Heald et al., 2002) (Fig. 1). 17-AAG was kindly provided by the US-National Cancer Institute Central Repository, Biological Testing Branch, Developmental Therapeutics Program. All other drugs were purchased as clinical formulation from the University of Freiburg Hospital Pharmacy. RHPS4 stock solutions were prepared in PBS, 17-AAG in DMSO, and the clinical formulations were used as provided.

Cell culture. MCF-7, MCF-7 vector control, and MCF-7 c81 cells were grown in 25 cm² tissue culture flasks in RPMI 1640 tissue culture medium supplemented with L-glutamine and 10% fetal bovine serum and maintained at 37°C, 5% CO₂ in a humidified atmosphere. MCF-7 vector control and MCF-7 c81 cultures were cultured in the presence of G418 (300 µg/ml).

Long-term effect of RHPS4 on cell proliferation/population doubling. 3x10⁴ MCF-7 cells were seeded per 25 cm² flask in 10 ml of tissue culture medium and drug was added to a final concentration of 0, 0.2, 0.5 or 1 µM RHPS4. After seven days, dead cells in the supernatant were discarded, and viable attached cells were harvested with trypsin, counted using a haemocytometer and the original seeding density then passaged on in the same manner and recounted after a further 7 days until there were less than 3x10⁴ cells available for re-seeding. From the total cell count the number of population doublings that had occurred over the seven days (n) could be calculated from the equation:

\[n = \frac{\log P_n - \log P_0}{\log 2} \]

where \(P_n \) is the number of cells after n doublings; \(P_0 \) is the initial seeding density i.e. 3x10⁴. The cumulative number of population doublings was plotted against time. The data represent the extent of proliferative/replicative capacity of viable MCF-7 cells in the presence of RHPS4.
Senescence associated β-galactosidase staining. Senescence was assayed with the β-galactosidase expression procedure (Dimri et al., 1995). 10,000 cells were seeded in 6-well plates in either 5 ml of vehicle control (containing PBS in a concentration equal to the highest drug dose) or RHPS4 in concentrations ranging from 0.0001-1 µM for 15 days. Drug and medium were replaced every 4 days. At day 15, cells were washed with PBS, fixed in 2% formaldehyde/0.2% glutaraldehyde and stained. The total number of β-galactosidase positive (blue-green) cells per well and the total number of cells per well were counted. The mean value of 3 wells was generated and the number of β-galactosidase positive cells/100 cells was calculated.

Telomere length. Mean telomere restriction fragment length (TRF-length) was determined using the Telo-TAGGG-telomere length kit from Roche (Penzberg, Germany), following the manufacturer’s instructions. Genomic DNA was isolated from pellets of permanent cell lines and primary cells grown in culture with 0.5 and 1 µM RHPS4 for 15 days and cells grown in vehicle treated medium (PBS). DNA (2 µg) digested with HinfI and RsaI (2h 37°C), was separated on a 0.8% agarose gel in 1xTAE buffer. Telomere length for tumors available as xenograft material only, was measured using DNA derived from primary cultures.

Creation of mutant hTERT and transfection of MCF-7 cells. Mt-hTERT (dominant negative) was generated from the full-length hTERT gene provided as TERT-pcDNA3.1-Myc-His plasmid by Dr. G. Hagen, Leverkusen (Wick et al., 1999). Point mutations in the essential telomerase catalytic subunit hTERT were created in its reverse transcriptase (RT) motif 5 (DD/868-869 to AA/868-869) as described (Zhang et al., 1999). Mt-hTERT containing the C-terminal Myc/His tags was then sub-cloned into pIRESneo plasmid (Clontech). Empty and mt-hTERT vectors were transfected into logarithmically growing MCF-7 cells using LipofectAMINE™ 2000 following the manufacturer’s protocol.
Positive clones were selected with G418-containing media (300 µg/ml) and confirmed by GFP detection and His-tag expression.

Clonogenic assay. The clonogenic assay was performed with xenograft tissues only. Xenografts growing s.c. in nude mice were removed when an average diameter of 1.5 cm was reached, they were mechanically disaggregated and subsequently incubated with collagenase (123U/ml), DNase (375U/ml) and hyaluronidase (290U/ml) in RPMI 1640 at 37°C for 30 minutes. Cells were washed and passed through sieves. The clonogenic assay was performed in 24-well plates according to a modified two-layer soft agar assay (Hamburger and Salmon, 1977). Cells were added in 0.2 ml ISCOVES medium/20% FBS containing 0.4% agar and plated on top of the base layer (0.75% agar). After 24h drug was added (0.01-100 µM) in additional 0.2 ml of medium. Cultures were incubated at 37°C, 7% CO₂ for 15 days and monitored closely for colony growth. Vital colonies were stained with 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-phenyltetrazolium chloride (1 mg/ml) 24 hours prior to evaluation and colonies > 50 µm were counted with an automated image analysis system (OMNICON FAS IV, Biosys GmbH). Drug effects were assessed in terms of growth inhibitory concentrations 50 and 70% (IC₅₀ and IC₇₀ values).

COMPARE and Statistics. The Freiburg cancer drug screening program has developed a COMPARE algorithm based on the differential activity of drugs against human tumor cell lines and human tumors growing in soft agar in vitro analogous to the National Cancer Institute-DTP COMPARE computer program (Phillips et al., 2000; Paull et al., 1989). This tool was used to compare TRF length in human tumor cell lines and xenografts in relation to their in vitro sensitivity by employing the Spearman rank coefficient test (Sachs, 1997). The significance of drug effect in growth assays was tested using the Student T-test.

Sulforhodamine B (SRB) short term (5d) proliferation assay and combination studies. 2,000 cells were seeded into 96-well plates in 0.1 ml RPMI 1640 medium
supplemented with 10% fetal calf serum. Cells were grown overnight at 37°C/5% CO₂ and RHPS4 was added in 0.1 ml of medium to obtain final drug concentrations between 0.01-10 µM. Cell proliferation was determined 5 days after continuous exposure to drug by SRB staining (Skehan et al., 1990). The plates were read at 515 nm with a Millipore Cytofluor 2350-microplate reader. For combination studies, IC₅₀ values from SRB data for the individual combination partners were calculated and divided resulting in a drug A versus B ratio. Drugs were then combined at this fixed ratio in 6 concentrations, ranging from 0.01 to 10 µM for RHPS4, and assays performed as described above. The plates were incubated for 72 hours at 37°C/ 5% CO₂, fixed and stained with SRB. Fractions of affected cells were calculated from the readouts and entered into the CalcuSyn program (Chou and Talalay, 1984); combination index values were extracted.
Results

RHPS4 induces a senescent-like growth arrest in MCF-7 cells. The cumulative anti-proliferative effect exerted by RHPS4 on the MCF-7 tumor cell line over 14-21 days in passage at doses with non acute cytotoxicity: ≤ 1 µM is illustrated in Fig. 2. Our observations are consistent with a cytostatic rather than cytotoxic mode of action at the doses examined: lack of detaching or floating cells, and occurrence of senescence-like changes in morphology (enlarged, flattened cells with a higher ratio of cytoplasm to nucleus and increased granularity, see Fig. 3B) (Campisi, 2001). The experiment manifested an anti-proliferative effect of RHPS4 with the challenging of 3x10^4 cells to re-populate every seven days: as the proportion of the population that is viable decreases, a higher re-seeding density would be required to maintain a viable/growing population. At RHPS4 concentrations of 1.0 and 0.5 µM MCF-7 cells could not be maintained beyond 14 days in culture (Fig. 2). Induction of the senescent phenotype was confirmed by positive β-galactosidase staining accompanying complete cessation in growth of MCF-7 cells treated with nonacute toxic doses of RHPS4 (≤ 1 µM) for 15 days (Fig. 3). The extent of β-galactosidase positive cells was highest at 1 µM (Fig. 3B-C), but significant fractions of senescent cells were also observed at 0.1-0.01 µM (Fig. 3C).

RHPS4 induces a telomere length reduction at sub-toxic doses. A reduction in TRF length of 0.5 kb and 0.9 kb was observed in MCF-7 cells treated for 17 days with 0.5 µM and 1 µM RHPS4 respectively (Fig. 4A). It was not possible to collect cell material beyond that period of time under continuous exposure to 0.5 and 1 µM RHPS4, because the cells ceased growth. With a population doubling time of one day, the observed TRF shortening over 17 PD corresponds to loss of 30-50 bp per round of cell division.
Telomere length correlates with sensitivity of human tumor cells to RHPS4.

Stably mt-hTERT-transfected MCF-7 cells, possessing short telomeres were 10-fold more sensitive to RHPS4 (mt-hTERT, TRF 1.9 kb, IC₅₀ 0.2 µM) as their vector only-transfected MCF-7 counterparts possessing longer telomeres (wt-hTERT, TRF 5.2 kb, IC₅₀ 2 µM) in the short term SRB proliferation assay (Fig. 4B-C). Compared to parental MCF-7 cells, mt-hTERT transfected MCF-7 were 3-fold more sensitive (IC₅₀ 0.2 versus 0.6 µM respectively) (Fig. 4B-C). The differences in sensitivity of mt-hTERT expressing MCF-7 cells to RHPS4 versus vector control and parental cells were statistically significant with a p<0.0003 in the case of mt-hTERT/vector and p<0.05 for mt-hTERT/parental MCF-7 (Fig. 4C). There was no statistical difference between the effect of RHPS4 on parental and vector trasfected MCF-7 (p>0.1). This suggested to us, a not surprising relationship between short telomeres and greater sensitivity to RHPS4. To corroborate the latter conclusion, tumor cell growth inhibition by RHPS4 was assessed for concentrations ranging from 0.01-200 µM across a panel of 36 permanent human tumor cell lines grown as xenografts and patient-derived xenograft tissues in vitro using the long-term soft agar colony-forming assay (15 days); telomere lengths of 15 lines could be determined (Tab. 1, examples shown in Fig. 5A).

RHPS4 showed a markedly differential sensitivity profile in this panel in the clonogenic assay with a mean IC₅₀ over all 36 tumors of 11.3 µM and for individual lines with IC₅₀ values ranging from 20 nM to 155 µM. For the 15 available comparisons of TRF length and clonogenic assay response, low IC₅₀ values correlated with shorter telomeres resulting in a Spearman rank coefficient of 0.75 (Fig. 5B, Tab. 1). This can be illustrated by, for example, the sensitive human prostate cancer cell line PC3 (IC₅₀ 20 nM) which possesses short telomeres (average TRF 2.5 kb) compared to the resistant small cell lung tumor LXFS 650 (IC₅₀ 155 µM) which possesses longer telomeres (average TRF 5.7 kb) (Fig. 5A-B, Tab. 1, note PC3 was assayed from tumor cells grown as xenografts in mice).
Combination studies with RHPS4. To explore the potential for interaction of RHPS4 with clinically used cytotoxic agents, RHPS4 was combined with adriamycin (ADR), gemcitabine (Gem), cisplatin (CDDP), temozolomide (TMZ), 17-allylanogeldanamycin (17-AAG), and paclitaxel (taxol). Drugs were added at a fixed ratio deduced from their respective IC$_{50}$ values in MCF-7 cells. Combination indices (CI) at doses effecting 50% and 75% reduction in cell viability (ED$_{50}$ and ED$_{75}$ respectively) were calculated according to the mathematical algorithm that allows prediction of synergism, additive effects or antagonistic effects based on the CI value (Chou and Talalay, 1984). A CI < 1 is considered to reflect synergistic effects, CI = 1 is additive and if > 1, the drugs might act antagonistically. Four independent experiments were performed for each combination of RHPS4; the results are summarized in Table 2. Gemcitabine, cisplatin and temozolomide showed a CI average, at both ED$_{50}$ and ED$_{75}$, greater than 1, which indicates that they antagonize RHPS4 activity; adriamycin was, to the contrary, additive with RHPS4; 17-AAG was on average at least additive with RHPS4, but slight synergism CI < 1 (=0.96) was found at the mean ED$_{75}$ (Tab. 2). Taxol however was synergistic at both ED$_{50}$ and ED$_{75}$ with CI values of 0.88 and 0.41 respectively (Tab. 2).
Discussion

Previous work has confirmed the affinity and selectivity of the pentacyclic acridinium salt RHPS4 for G-quadruplex DNA, and its ability to inhibit telomerase in the TRAP assay at concentrations more than a log-fold below those producing acute cytotoxicity (Gowan et al., 2001; Heald et al., 2002). Here, we examined molecular and cellular effects of RHPS4 at concentrations inhibiting telomerase without causing acute cell death (≤ 1 µM) hence modelling pharmacodynamics of chronic drug dosing that is a putative scenario in the translation of telomerase inhibitors and/or telomere modulating agents into clinical application. Nonetheless, it has to be emphasized that chronic toxicities can be as problematic as acute toxicities in cancer patients. Because chronic exposure to RHPS4 is likely to be needed in order to demonstrate any anti-cancer efficacy; animal models and clinical studies will finally have to show whether chronic RHPS4 administration has a therapeutic window and can reach pharmcodynamically active plasma concentrations.

Our studies of RHPS4 biological effects in tumor cells in vitro showed that the drug exerts cumulative anti-proliferative effects in MCF-7 breast cancer cells; that a senescence-like growth-arrest is induced (positive senescence associated-β-gal staining and morphological changes) and that a reduction in telomere length is seen. Telomere shortening is an important observation providing good evidence of telomerase inhibition and/or displacement of the enzyme from the telomere after G-quadruplex stabilisation by RHPS4 in these cells (Burger et al., 2005).

We further observed an influence of telomere length on sensitivity to the antiproliferative effect of RHPS4, which is strongly suggested by the increased sensitivity of mt-hTERT cells (possessing short telomeres) to the acute cytotoxic effects of RHPS4 compared to the wild type and parental cells (relatively longer telomeres) in the SRB assay. Further confirmation of the positive correlation between telomere length and resistance to
RHPS4 growth inhibitory properties is indicated in a long-term soft agar growth assay across a panel of cell line-derived and patient-derived human tumor xenografts.

These results support a model wherein an equilibrium between G-quadruplex and canonical DNA forms in telomeric DNA naturally exists, perhaps as a means to regulate telomerase activity and telomere length, and is shifted by RHPS4 in favour of G-quadruplex formation, through enhanced stability of such structures. Consequently, access of telomerase and telomere-binding proteins to the telomeres is impeded. This would progressively precipitate uncapping and invoke a growth arrest, the nature of which would depend on the genetic/checkpoint status of the cell. It has been shown that antibodies specific for telomeric G-quadruplex DNA reacted specifically with Stylonychia lemmae macronuclei (Schaffitzel et al., 2001), providing experimental evidence that the telomeres of the macronuclei adopt, in vivo, a G-quadruplex structure, and thus suggesting a role in telomere functioning. Support for a G-quadruplex-induced displacement of telomere-binding proteins comes from electrophoretic mobility shift assay studies in our laboratories, in which increasing concentrations of RHPS4 progressively mediate the loss of protein binding to the telomeric DNA sequence in vitro (data not shown). Moreover, Leonetti and co-workers have proposed that short-term effects in human melanoma cell lines such as telomeric fusions, polynucleated cells and occurrence of anaphase bridges elicited by acute cytotoxic RHPS4 drug concentrations, are consistent with telomere capping alterations (Leonetti et al., 2004). Telomere targeting and uncapping have emerged as viable concepts for cancer treatment. The G-quadruplex-interactive agent, BRACO19, which produced growth arrest and senescence in long-term cell assays and showed antitumor activity in vivo (Gowan et al., 2002; Incles et al., 2004; Burger et al., 2005), is proposed to elicit telomere uncapping: the formation of the G-quadruplex complex disrupting D- and T-loops, exposing 3’ telomere ends, and triggering senescence (Harrison et al., 2003, Burger et al., 2005). Telomere dysfunction, rather than
telomere length, has also been proposed as the principal determinant governing the enhanced chemosensitivity of acute myeloid leukemic cells to certain DSB-inducing agents by pretreatment with the G-quadruplex-interactive agent, telomestatin, as such effects were observed before telomere shortening (Sumi et al., 2004).

A role for telomerase in suppressing or processing DNA damage in the genome has been suggested, favouring cell survival and proliferation: the presence of telomerase activity signals cells to continue dividing (Blasco, 2002). Therefore, although the molecular mechanisms are not yet identified, telomerase inhibition may be a useful tool to sensitize cancer cells to other agents. Chemotherapeutic responses in normal and neoplastic cells derived from telomerase RNA null mice (mTERC(-/-)) were assessed (Lee et al., 2001) and telomere dysfunction, rather than telomerase per se, found to be the principal determinant governing chemosensitivity, specifically to agents that induced DSB such as adriamycin. Enhanced chemosensitivity in the telomere dysfunctional cells was linked to therapy-induced fragmentation and multi-chromosomal fusions, whereas telomerase reconstitution restored genomic integrity and chemoresistance.

To investigate whether RHPS4 can sensitize tumor cells to DNA damaging drugs, we combined the drug with the antimetabolite gemcitabine, the cross-linking agent cisplatin, the alkylating agent temozolomide and the DSB-inducing agent adriamycin. In addition, we examined the efficacy of combining RHPS4 with the experimental therapeutic agent 17-AAG currently in phase I/II clinical trials, which has been reported to inhibit telomerase activity by depleting Hsp90, an essential chaperone for the telomerase catalytic subunit (Holt et al., 1999; Villa et al., 2003). Among the DNA-interactive agents, only the DSB-inducing drug adriamycin was effectively combined with RHPS4 in MCF-7 cells (additive effects). Gemcitabine, cisplatin, and temozolomide appeared to antagonize RHPS4 activity; 17-AAG, however, was additive to synergistic with RHPS4. This latter observation is in agreement with
our findings that MCF-7 cells expressing a dominant negative form of hTERT (mt-hTERT), and hence which lack or have little functional telomerase activity, were also more sensitive to RHPS4 when compared to wt-hTERT cells. Taxol acts clearly synergistic with RHPS4. Owing to its mechanism as a microtubule stabilizing agent, it is possible that taxol enhances the mitotic defects, which have been reported to be caused by RHPS4 such as telophase bridges and telomeric fusions (Schiff PB and Horwitz, 1980; Leonetti et al., 2004).

Antagonistic drug effects observed between RHPS4 and cisplatin or temozolomide, are perhaps unsurprising considering that all three agents prefer to react with guanine-rich tracts of DNA, albeit by different mechanisms – RHPS4 in G-quadruplex stabilization, cisplatin by cross-linking guanines, and temozolomide by methylation of DNA at the O^6 position of guanine. With this sharing of potential target sites, the action of one drug could be sterically preventing the action of the other. Thus guanine residues methylated at the guanine O^6-position by temozolomide would be unable to participate in G-quadruplex formation due to impaired Hoogsteen hydrogen bonding within the G-quartets: equally, one may anticipate protection of G-quadruplex-involved guanines from the methylating effects of temozolomide, which prefers to methylate guanine residues in runs of three or more guanines (Clark et al., 1995; Arrowsmith et al., 2002).

The pharmacodynamic properties of RHPS4 reported here, in relation to the modulation of its target, the telomeric G-quadruplex, and with respect to its interaction with other anticancer agents, convey important conclusions: (i) RHPS4 can shorten telomeres and its cellular effects are consistent with an alteration of the telomere capping status; (ii) human tumors with a shorter mean telomere length are more susceptible to RHPS4 treatment, and this could be used as a criteria for tumor model selection for preclinical in vivo studies; (iii) certain cytotoxic anticancer agents that are currently used in the clinic (taxol, adriamycin and 17-AAG) show enhanced activity if combined with RHPS4, but drug combinations with
RHPS4 require careful consideration of the particular mechanistic class of cytotoxic because antagonism might occur (e.g. with cisplatin and temozolomide). Moreover, the outcome of the combination studies might be different in cultured cells compared to animal models and man. The Chou and Talalay combination index used for our short term *in vitro* tests, is not an applicable experimental design for *in vivo* studies, other statistical approaches need to be used (Tan et al., 2003). Hence, synergism for taxol and additive effects of RHPS4 with adriamycin and 17-AAG warrant confirmation in carefully designed xenograft experiments (Tan et al., 2003).

Our results, together with recently reported studies (Gowan et al., 2001; Grand et al., 2002; Leonetti et al., 2004; Incles et al, 2004; Burger et al., 2005) represent an accumulating body of evidence supporting G-quadruplex interactive agents as potentially exciting anti-cancer compounds to take into clinical trial. To this end we have recently completed a pharmaceutical profiling of RHPS4 and related pentacyclic acridinium salts, confirming that this novel agent possesses suitably robust pharmaceutical properties for potential parenteral use in animals and clinical trials (Cookson et al., 2005).
Acknowledgments

We thank Mrs. Sibyll Driever for excellent technical support and Prof. Heiner Fiebig, Freiburg, for kindly providing xenograft models for clonogenic assay experiments. We also thank Dr. Ming Tan for his help with the statistical data analysis and with the interpretation of our data.
References

List of Footnotes:

Footnote to title:

Source of financial support

JCC, RAH, CAL and MFGS are funded by Cancer Research UK. This work was a collaborative effort of the European Organisation for Research and Treatment of Cancer (EORTC) Pharmacology and Molecular Mechanism (PAMM) Group Drug Development Committee and was supported by grants to AMB and MFGS, and the European Commission (QLG1-1990-01341) to AMB.

This article is part 18 in a series entitled Antitumor Polycyclic Acridines; for part 17, see Cookson et al., 2005.

*AMB’s current address: Marlene and Stewart Greenebaum Cancer Center, Department of Pharmacology and Experimental Therapeutics, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.
Figure Legends

Fig. 1. RHPS4 molecular structure

Fig. 2. Effect of RHPS4 on long-term proliferation of MCF-7 cells. The cumulative number of population doublings was calculated every 7 days (see Materials and Methods). Each value shows the mean and standard deviation of 3 independent experiments. Cessation of growth on day 14 at 0.5 and 1 µM and reduction in proliferative capacity/PD at 0.2 µM RHPS4 is caused by replicative senescence.

Fig. 3. Staining for induction of senescence by RHPS4. A., Untreated MCF-7 control cells do not express senescence associated β-galactosidase. B., β-galactosidase staining at 1 µM RHPS4 after 15 days in culture (mean = 41 β-galactosidase positive cells/100 cells). Magnification 100x. C., Number of β-galactosidase positive (blue-green) cells/100 cells in a 6-well format for MCF-7 cells treated with 0.0001-0.1 µM RHPS4. The ± standard errors for no treatment = 0.4; 0.0001 µM = 1.4; 0.001 µM = 3.3; 0.01 µM = 0.4; 0.1 µM = 3; 1 µM = 14.

Fig. 4. A., TRF-length analysis by southern blot of MCF-7 cells treated with non acute toxic RHPS4 concentrations for 17 days. Dose dependent telomere shortening is seen under RHPS4 treatment. The average TRF-length (indicated by a horizontal line in lanes 3-5) of MCF-7 cells decreased from 5.2 Kb to 4.7 Kb (0.5 µM) and 4.3 Kb (1 µM) respectively. Lane 1, MWM; lane 2, low molecular weight standard; lane 3, control MCF-7; lane 4, MCF-7 + RHPS4 0.5 µM, 17d; lane 5, MCF-7 + RHPS4 1 µM, 17d. B., TRF length of wt-hTERT and mt-hTERT MCF-7 cells measured by Southern blot. Lanes 1 and 2, mt-hTERT MCF-7 clone 81; lanes 3 and 4, wt-hTERT MCF-7 vector transfected; lane 5, parental MCF-7 cell line; lane
6, high molecular weight TRF standard; lane 7, MWM; C., Growth inhibition by RHPS4 in relation to TRF-length in isogenic MCF-7 cells with short (mt-hTERT) and long (wt-hTERT: vector control and parental lines) telomeres, measured by SRB assay.

Fig. 5. Tumors with shorter telomeres are more sensitive to RHPS4. A., Southern blot detection of mean telomere length in human tumor cell lines and xenografts. The arrow in lane 2 indicates residual mouse telomere signal from a xenograft primary culture, which contained mouse fibroblasts. The mean TRF length of the human telomere signal was determined relative to a molecular weight standard and taken as the mean of the high density telomere smear (e.g. indicated in lane 5 as a horizontal line). MWM, molecular weight marker; lane 1, Low TRF standard; lane 2, LXFA 289; lane 3, RXF 393; lane 4, OVF 899; lane 5, UXF 1138; lane 6, LXFL 529; lane 7, DU145. B., Correlation between telomere length and chemosensitivity to RHPS4. Mean TRF values and IC₅₀ values were ranked for available comparisons, Spearman rank analyses were performed, r = 0.75, r = correlation coefficient. Because of the wide range of actual IC₅₀ values (Tab. 2), the correlation analysis had to be performed using the Spearman rank statistics. The Spearman rank correlation coefficient is also a better indicator that a relationship exists between two variables when the relationship is non-linear. The data are presented as scatterplot with regression line.
Table 1. Telomere restriction fragment length (TRF) in human tumor cells versus potency of RHPS4 in the clonogenic assay.

<table>
<thead>
<tr>
<th>Tumor Designation</th>
<th>Tumor Type</th>
<th>Tumor Origin</th>
<th>IC50 [µM]</th>
<th>TRF [Kb]</th>
<th>Rank</th>
<th>IC50 [µM]</th>
<th>Rank</th>
<th>TRF [Kb]</th>
</tr>
</thead>
<tbody>
<tr>
<td>CXF 1103</td>
<td>Colon</td>
<td>Patient</td>
<td>111</td>
<td>5.5</td>
<td>14</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LXFA 289</td>
<td>Lung</td>
<td>Patient</td>
<td>100</td>
<td>3.8</td>
<td>13</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LXFL 529</td>
<td>Lung</td>
<td>Patient</td>
<td>2.93</td>
<td>5.9</td>
<td>9</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LXFS 650</td>
<td>Lung</td>
<td>Patient</td>
<td>155</td>
<td>5.7</td>
<td>15</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAXF 401</td>
<td>Breast</td>
<td>Patient</td>
<td>2.37</td>
<td>3.9</td>
<td>7</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAXF 857</td>
<td>Breast</td>
<td>Patient</td>
<td>6.91</td>
<td>3.9</td>
<td>11</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCF-7</td>
<td>Breast</td>
<td>Cell Line</td>
<td>6.81</td>
<td>5.2</td>
<td>10</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OVXF 899</td>
<td>Ovary</td>
<td>Patient</td>
<td>8.11</td>
<td>3.5</td>
<td>12</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAXF 736</td>
<td>Pancreas</td>
<td>Patient</td>
<td>0.44</td>
<td>3.7</td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DU145</td>
<td>Prostate</td>
<td>Cell Line</td>
<td>1.9</td>
<td>3.7</td>
<td>5</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PC3M</td>
<td>Prostate</td>
<td>Cell Line</td>
<td>2.3</td>
<td>3.2</td>
<td>6</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PC3</td>
<td>Prostate</td>
<td>Cell Line</td>
<td>0.02</td>
<td>2.5</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RXF 944</td>
<td>Renal</td>
<td>Patient</td>
<td>2.7</td>
<td>7</td>
<td>8</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UXF 1138</td>
<td>Uterus</td>
<td>Patient</td>
<td>0.2</td>
<td>2.5</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GXF 251</td>
<td>Stomach</td>
<td>Patient</td>
<td>1.2</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

XF, xenograft established in Freiburg; PC3M is a metastatic subclone of PC3, established by the US-National Cancer Institute; LXFA, adenocarcinoma of the lung; LXFL, large cell lung cancer; LXFS, small cell lung cancer.
Table 2. Combination indices (CI) for RHPS4 and anticancer agents in MCF-7 cells.

<table>
<thead>
<tr>
<th>Drug Combination (fixed ratio)</th>
<th>CI at ED$_{50}$ mean ± SD</th>
<th>CI at ED$_{75}$ mean ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>RHPS4 + ADR (12.5:1)</td>
<td>1.0 ± 0.15</td>
<td>1.0 ± 0.17</td>
</tr>
<tr>
<td>RHPS4 + Gem (25:1)</td>
<td>1.9 ± 0.7</td>
<td>1.9 ± 0.6</td>
</tr>
<tr>
<td>RHPS4 + CDDP (1:4)</td>
<td>1.2 ± 0.27</td>
<td>1.3 ± 0.13</td>
</tr>
<tr>
<td>RHPS4 + TMZ (1:750)</td>
<td>1.6 ± 0.16</td>
<td>1.16 ± 0.11</td>
</tr>
<tr>
<td>RHPS4 + 17-AAG (20:12)</td>
<td>1.0 ± 0.32</td>
<td>0.96 ± 0.24</td>
</tr>
<tr>
<td>RHPS4 + TX (250:1)</td>
<td>0.88 ± 0.05</td>
<td>0.41 ± 0.01</td>
</tr>
</tbody>
</table>

ADR, adriamycin; Gem, gemcitabine; CDDP, cisplatin; TMZ, temozolomide; 17-AAG, 17-allylamino-geldanamycin; TX, taxol. CI, combination index; ED$_{50}$, dose effecting 50% reduction in cell viability; ED$_{75}$, dose effecting 75% reduction in cell viability.
Fig. 1.
Fig. 2.

![Graph showing population doublings over time for different concentrations of a substance.]
Fig. 3.
Fig. 4.

A

B

C

mt- / wt-

hTERT

Kb

RHP54 [µM]

% Control [O.D. 515 nm]

MCF-7 vector control
MCF-7 mt-hTERT
MCF-7 parental

p = 0.003
p = 0.05

Molecular Pharmacology Fast Forward. Published on September 8, 2005 as DOI: 10.1124/mol.105.013300
Fig. 5.

A

B

{Graph showing the relationship between Rank TRF and Rank IC50 with a linear regression line. The correlation coefficient r = 0.75 (Spearman corr. coef.) is indicated.}