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Abstract 

Lysophosphatidylserine (LPS) may be generated after phosphatidylserine-specific 

phospholipase A2 activation. However, the effects of LPS on cellular activities and the 

identities of its target molecules have not been fully elucidated. In this study, we observed 

that LPS stimulates an intracellular calcium increase in L2071 mouse fibroblast cells, and 

that this increase was inhibited by 1-[6-((17β-3-Methoxyestra-1,3,5(10)-trien-17-

yl)amino)hexyl]-1H-pyrrole-2,5-dione (U-73122) but not by pertussis toxin, suggesting that 

LPS stimulates calcium signaling via G-protein coupled receptor-mediated phospholipase C 

activation. Moreover, LPS-induced calcium mobilization was not inhibited by the 

lysophosphatidic acid receptor antagonist, (S)-Phosphoric acid mono-{2-octadec-9-

enoylamino-3-[4-(pyridine-2-ylmethoxy)-phenyl]-propyl} ester (VPC 32183), thus indicating 

that LPS binds to a receptor other than lysophosphatidic acid receptors. It was also found that 

LPS stimulates two types of mitogen-activated protein kinase, namely, extracellular signal-

regulated protein kinase (ERK) and p38 kinase, in L2071 cells. Furthermore, these LPS-

induced ERK and p38 kinase activations were inhibited by pertussis toxin, which suggests 

the role of pertussis toxin-sensitive G-proteins in the process. In terms of functional issues, 

LPS stimulated L2071 cell chemotactic migration, which was completely inhibited by 

pertussis toxin, indicating the involvement of pertussis toxin-sensitive Gi protein(s). This 

chemotaxis of L2071 cells induced by LPS was also dramatically inhibited by 2-(4-

Morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002) and by 2′-Amino-3′-

methoxyflavone (PD98059). This study demonstrates that LPS stimulates at least two 

different signaling cascades, one of which involves a pertussis toxin-insensitive but 

phospholipase C-dependent intracellular calcium increase, and the other, a pertussis toxin-

sensitive chemotactic migration mediated by phosphoinositide 3-kinase and ERK.  
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Introduction 

Lyso-type phospholipid molecules, such as, lysophosphatidic acid, sphingosine 1-

phosphate (S1P), lysophosphatidylcholine (LPC), and sphingosylphosphorylcholine (SPC) 

have attracted the attentions of researchers for over two decades. In particular, the 

identification of lysophosphatidic acid as a cell proliferating factor in serum proved to be a 

landmark event, and the involvement of S1P in angiogenesis has been intensively studied 

(van Corven et al., 1989; Tigyi et al., 1994; Lee et al., 1999). Moreover, the discovery of the 

EDG family of G-protein-coupled receptors (GPCR) of lysophosphatidic acid and S1P 

triggered a variety of pathophysiological studies on lysophospholipids in many cell and tissue 

types (Hla and Maciag, 1990; Lee et al., 1998; Fukushima et al., 1998). Moreover, the OGR1 

GPCR family has been reported to contain SPC, LPC, and psychosine receptors, although the 

GPCRs were recently re-evaluated and found to be composed largely of proton-sensing 

GPCRs (Xu et al., 2000; Zhu et al., 2001). In addition, GPR23, GPR12, and GPR119 have 

been suggested to be lysophosphatidic acid, SPC, and LPC receptors, respectively (Noguchi 

et al., 2003; Ignatov et al., 2003; Soga et al., 2005). However, in contrast to the many studies 

that have demonstrated the pivotal roles of the above-mentioned lysophospholipids in 

biological responses, the roles of other lysophospholipids, like lysophosphatidylserine (LPS), 

have not been elucidated.  

Lysophosphatidylserine (LPS) is generated by activated platelets (Sato et al., 1997). 

Moreover, previous studies have demonstrated that platelets contain serine-phospholipid-

selective phospholipase, which is secreted by activated platelets and specifically acts on 

phosphatidylserine to induce LPS production (Sato et al., 1997). High concentrations of LPS 

have also been found in the ascites of ovarian cancer patients and in lacrimal fluid after 

corneal injury (Xu et al., 1995a; Liliom et al., 1998). LPS has also been reported to induce a 
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transient increases in intracellular calcium in ovarian and breast cancer cell lines (Xu et al., 

1995a), to stimulate IL-2 production in Jurkat T cells, and to inhibit Jurkat cell proliferation 

(Xu et al., 1995b). Furthermore, LPS treatment enhanced NGF-induced histamine release in 

rat mast cells and the NGF-induced differentiation of PC12 cells (Kawamoto et al., 2002; 

Luorenssenand Blennerhassett, 1998). Although the target molecules of LPS have not been 

identified, its actions are believed not to be mediated via the known GPCRs of 

lysophosphatidic acid, S1P, or LPC.  

In this study, we investigated LPS-induced cell migration and its signaling pathways 

in L2071 mouse fibroblasts, and found that this effect is mediated by two separate 

signaling pathways with the involvement of pertussis toxin-sensitive trimeric G proteins.  

 

Materials and methods 

Cell line and reagents 

 L2071 mouse fibroblasts were cultured in RPMI 1640 medium with 10% FBS, 1% sodium 

bicarbonate buffer, and 1% HEPES buffer. 1-acyl-2-hydroxy-sn-glycero-3-phospho-L-serine, 

1-acyl-2-hydroxy-sn-glycero-3-phosphoethanolamine, S1P, lysophosphatidic acid, 

leukotriene B4, and (S)-Phosphoric acid mono-{2-octadec-9-enoylamino-3-[4-(pyridine-2-

ylmethoxy)-phenyl]-propyl} ester (Ammonium Salt) (VPC 32183) were purchased from 

Avanti Polar Lipids, Inc. (Alabaster, Alabama). Fura-2 pentaacetoxymethylester (fura-2/AM) 

and 1,2-bis(o-Aminophenoxy)ethane-N,N,N′,N′-tetraacetic Acid Tetra(acetoxymethyl) Ester 

(BAPTA/AM) were purchased from Molecular Probes (Eugene, OR). 1-[6-((17β-3-

Methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl]-1H-pyrrole-2,5-dione (U-73122), 1-[6-

((17β-3-Methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl]-2,5-pyrrolidinedione (U-73343), 

and 2-(4-Morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002) were purchased from 
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Calbiochem (San Diego, CA). Enhanced chemiluminescence reagents from Amersham 

Biosciences (Piscataway, NJ), Phospho-ERK1/2, phospho-p38 and ERK2 antibodies were 

purchased from New England Biolabs (Beverly, MA). Phospho-Akt antibody, Akt antibody, 

fibrinogen, and fibronectin were purchased from Sigma (St. Louis, MO). 2′-Amino-3′-

methoxyflavone (PD98059) and 4-(4-Fluorophenyl)-2-(4-methylsulfonylphenyl)-5-(4-

pyridyl)-1H-imidazole (SB203580) were obtained from Biomol (Plymouth Meeting, PA) and 

were dissolved in dimethyl sulfoxide before being added to the cell culture. The final 

concentrations of dimethyl sulfoxide in culture were 0.1% or less.  

 

Ca2+ measurement 

Intracellular calcium concentration was determined by Grynkiewicz's method using fura-

2/AM (Grynkiewicz et al., 1985; Bae et al., 2001). Briefly, prepared cells were incubated 

with 3 µM fura-2/AM at 37oC for 50 min in fresh serum free RPMI 1640 medium with 

continuous stirring. 2 x 106 cells were aliquoted for each assay into Locke's solution (154 

mM NaCl, 5.6 mM KCl, 1.2 mM MgCl2, 5 mM HEPES, pH 7.3, 10 mM glucose, 2.2 mM 

CaCl2, and 0.2 mM EGTA). Fluorescence was measured at 500 nm at excitation wavelengths 

of 340 nm and 380 nm.  

 

Stimulation of cells with LPS for Western blot analysis 

Cultured cells (2 x 106) were stimulated with the indicated concentrations of LPS for the 

predetermined lengths of time. After stimulation, the cells were washed with serum free 

RPMI 1640 medium and lysed in lysis buffer (20 mM Hepes, pH 7.2, 10% glycerol, 150 mM 

NaCl, 1% Triton X-100, 50 mM NaF, 1 mM Na3VO4, 10 µg/ml leupeptin, 10 µg/ml 

aprotinin, and 1 mM phenylmethylsulfonyl fluoride). Detergent insoluble materials were 

pelleted by centrifugation (12,000 x g, 15 min, at 4oC), and the soluble supernatant fraction 
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was removed and stored at either -80oC or used immediately. Protein concentrations in the 

lysates were determined using Bradford protein assay reagent. 

 

Electrophoresis and immunoblot analysis 

Protein samples were prepared for electrophoresis then separated using a 10% SDS-

polyacrylamide gel and the buffer system described previously (Kim et al., 2003). Following 

the electrophoresis, the proteins were blotted onto nitrocellulose membrane, which was 

blocked by incubating with TBST (Tris-buffered saline, 0.05% Tween-20) containing 5% 

non-fat dried milk. The membranes were then incubated with anti-phospho-ERK antibody, 

anti-phospho-p38 kinase antibody or anti-ERK antibody and washed with TBST. Antigen-

antibody complexes were visualized after incubating the membrane with 1:5000 diluted goat 

anti-rabbit IgG or goat anti-mouse IgG antibody coupled to horseradish peroxidase using the 

enhanced chemiluminescence detection system. 

 

Transient transfection of regulators of G-protein signaling (RGS)4 

HA tagged human wild type RGS4 cDNA was obtained from UMR cDNA Resource Center 

(Rolla, Mo). Transfections were performed using LipofectAMINE reagents (Invitrogen 

Corporation) according to the manufacturer’s instructions. The cells were harvested 48 h after 

transfection and expression of HA-tagged RGS4 protein was examined by Western blotting 

using monoclonal anti-HA antibody (Sigma) (data not shown).  

 

Chemotaxis assay 

Chemotaxis assays were performed using multiwell chambers (Neuroprobe Inc., 

Gaithersburg, MD) as described previously (Bae et al., 2003). Briefly, polycarbonate filters (8 

µm pore size) were precoated with 20 µg/ml of BSA, 20 µg/ml of fibrinogen, or 20 µg/ml of 
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fibronectin in HEPES-buffered RPMI 1640 medium. A dry coated filter was placed on a 96-

well chamber containing different concentrations of peptides. L2071 cells were suspended in 

RPMI at a concentration of 1 x 106 cells / ml, and 25 µl of the cell suspension were placed 

onto the upper well of the chamber. After incubation for 4 h at 37oC, non-migrating cells were 

removed by scarping, and cells that migrated across the filter were dehydrated, fixed, and 

stained with hematoxylin (Sigma, St. Louis, MO). The stained cells in three randomly chosen 

high power fields (HPF, 400 x) were then counted for each well.  

 

Statistics 

The results are expressed as means ± SE of the number of determinations indicated. 

Statistical significance of differences was determined by ANOVA. Significance was accepted 

when P<0.05.  

 

Results 

LPS stimulates calcium mobilization in L2071 mouse fibroblast cells  

 The activations of some lysolipids GPCRs, such as S1P2 or LPA3, are associated with 

phospholipase C activation, subsequent inositol-1,4,5-trisphosphate production, and 

intracellular calcium elevation (Kon et al., 1999; An et al., 1998). To examine whether L2071 

cells express GPCR(s) for LPS, we examined the effects of LPS on intracellular calcium in 

L2071 cells. As shown in Figure 1A, the stimulation of L2071 with 2 µM LPS caused an 

intracellular calcium elevation in the presence or absence of extracellular calcium. However, 

lysophosphatidylethanolamine, which has a chemical structure resembling that of LPS, did 

not affect intracellular calcium concentrations in these cells (Fig. 1A). We also investigated 

the concentration-dependency of this LPS-induced intracellular calcium increase, and 
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observed this effect after treating L2071 cells with 10 nM of LPS; maximal activity was 

observed at 0.5 -1 µM (Fig. 1B).  

 

LPS-stimulated calcium mobilization is U-73122-sensitive but pertussis toxin-insensitive 

Phospholipase C-dependent inositol-1,4,5-trisphosphate-mediated response is a well-known 

mechanism of intracellular calcium increase in the absence of extracellular calcium (Noh et 

al., 1995). To determine the role of phospholipase C on LPS-induced intracellular calcium 

elevation, we pretreated L2071 cells with the specific phospholipase C inhibitor U-73122, or 

with its inactive analogue U-73343. Figure 2A demonstrates that U-73122, but not U-73343, 

completely inhibited LPS-induced intracellular calcium increase, indicating that LPS 

stimulates intracellular calcium elevation via phospholipase C activation in L2071 cells.  

We also investigated the role of pertussis toxin-sensitive G-proteins on LPS-induced 

intracellular calcium elevation. Cultured L2071 cells were preincubated with 100 ng/ml of 

pertussis toxin prior to being stimulated with 2 µM LPS. However, this pertussis toxin 

pretreatment did not block intracellular calcium elevation by LPS (Fig. 2B), demonstrating 

that LPS induces intracellular calcium elevation in a pertussis toxin-insensitive manner.  

To confirm whether pertussis toxin sufficiently inhibits Gαi-mediated signaling, we 

examined the effect of pertussis toxin on leukotriene B4-induced intracellular calcium 

elevation in L2071 cells. As shown in Fig. 2B, leukotriene B4 also stimulated calcium 

increase in L2071 cells, and this increase was completely inhibited by pertussis toxin, 

indicating that leukotriene B4 induces intracellular calcium elevation in a pertussis toxin-

sensitive manner in these cells (Fig. 2B). We also examined the effect of pertussis toxin at 

various concentrations on LPS-induced cytosolic calcium increases, and observed that the 

presence of pertussis toxin had no effect on LPS-induced cytosolic calcium increases (Fig. 
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2C), which suggests that LPS induces pertussis toxin-insensitive phospholipase C activation 

and cytosolic calcium increase. 

 

LPS-induced intracellular calcium elevation is inhibited by lysophosphatidic acid or 

S1P 

Lysophosphatidic acid and S1P are known to upregulate intracellular calcium in a pertussis 

toxin-insensitive manner in mouse fibroblasts (van Corven et al., 1989; Im et al., 1997). 

Thus, we suspected that LPS utilizes the GPCRs of lysophosphatidic acid or S1P to elicit this 

Ca2+ response. As shown in Figure 3A, the stimulation of L2071 cells with LPS desensitized 

cells to a second LPS stimulation, indicating homologous desensitization. This was also 

observed for lysophosphatidic acid and for S1P. However, LPS-desensitized L2071 cells 

responded to lysophosphatidic acid and to S1P (Fig. 3A). Conversely, lysophosphatidic acid- 

or S1P-desensitized L2071 cells did not respond to LPS, indicating heterologous 

desensitization. These results suggest that LPS shares lysophosphatidic acid or S1P receptors 

or that the downstream signaling pathways converge or interact with those of 

lysophosphatidic acid or S1P.  

We examined the possibility that LPS acts on lysophosphatidic acid or S1P receptors in 

L2071 cells. Pretreatment with a maximal concentration of LPS (2 µM) did not significantly 

affect lysophosphatidic acid- or S1P-induced calcium release in L2071 cells (Fig. 3C and 

3D). The above results suggest that LPS does not bind to lysophosphatidic acid or S1P 

receptors. 

 

LPS interacts with a unique receptor not shared with lysophosphatidic acid  

In order to determine whether LPS has its own unique cell surface receptor, we utilized the 
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lysophosphatidic acid receptor-selective antagonist, VPC 32183. As shown in Fig. 4A, 

lysophosphatidic acid-induced intracellular calcium increase was completely inhibited by 

preincubating L2071 cells with 1 µM of VPC 32183. However, LPS-induced calcium 

signaling was unaffected by VPC 32183 (1 µM) (Fig. 4B). LPS-induced calcium rises by 

several concentrations were not significantly inhibited by 1 µM of VPC 32183 (Fig. 4C). 

These results strongly indicate that LPS acts at a unique cell surface receptor.  

 

LPS stimulates ERK and p38 kinase in L2071 cells  

Mitogen-activated protein kinase (MAPK) has been reported to mediate extracellular signals 

that target the nucleus in several cell types (Johnson and Lapadat, 2002). In this study, we 

used Western blot analysis with anti-phospho-specific antibodies against each enzyme to 

examine whether LPS stimulates MAPKs. When L2071 cells were stimulated with 2 µM of 

LPS for different times, ERK phosphorylation levels were transiently increased, and showed 

maximal activity 2-5 min after stimulation (Fig. 5A) and returned to baseline 10 min after 

stimulation (Fig. 5A). Another important MAPK, p38 kinase, was also transiently activated 

by LPS stimulation in a time course resembling that of ERK activation (Fig. 5A). In addition, 

we also examined the concentration-dependencies of LPS-induced ERK and p38 kinase 

activations. When L2071 cells were stimulated with various concentrations of LPS, ERK and 

p38 kinase were found to be activated in a concentration-dependent manner (Fig. 5B). In the 

case of ERK activation, LPS caused significant activation at 500 nM and maximal activation 

at 1-2 µM (Fig. 5B). p38 kinase was also activated by 500 nM LPS and this peaked at 1-2 

µM LPS (Fig. 5B).  

 

MAPK activation by LPS is mediated by pertussis toxin-sensitive G-protein 
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Here, we examined the effect of pertussis toxin, a specific inhibitor of Gi type G proteins, on 

LPS-induced MAPK phosphorylation. When L2071 cells were preincubated with 100 ng/ml 

of pertussis toxin, prior to being stimulated with 2 µM LPS, LPS-induced ERK and p38 

kinase phosphorylations were found to be almost completely inhibited (Fig. 6A), thus 

indicating that LPS stimulates MAPK activation via a pertussis toxin-sensitive pathway. To 

further support the role of Gi on LPS-induced signaling in L2071 cells, we examined the 

effect of the overexpression of RGS4 overexpression (RGS4 is a negative regulator of Gi) on 

LPS-stimulated ERK phosphorylation. As shown in Fig. 6B, RGS4 overexpression 

dramatically inhibited LPS-induced ERK phosphorylation. Since RGS4 inhibits signaling via 

Gi and Gq/11 (Berman et al., 1996; Huang et al., 1997), and because LPS-induced ERK 

phosphorylation was almost completely inhibited by pertussis toxin (Fig. 6A), our results 

indicate that LPS stimulates ERK phosphorylation via Gi.  

 

LPS stimulates Akt activity in a pertussis toxin-sensitive manner  

Akt has been reported to play important roles in the regulation of several cellular responses, 

such as, cell migration and cell survival (Morales-Ruiz et al., 2001). Here, we used Western 

blot analysis with anti-phospho-specific antibodies against Akt to determine whether LPS 

stimulates Akt. When L2071 cells were stimulated with 2 µM LPS for different times, Akt 

phosphorylation was transiently increased, showing maximal activity after 2-5 min of 

stimulation (Fig. 7A) and return to baseline 10 min after stimulation (Fig. 7A). In addition, 

we also examined the concentration-dependency of LPS-induced Akt activation. When L2071 

cells were stimulated with different concentrations of LPS, Akt was activated in a 

concentration-dependent manner (Fig. 7B). At 100 nM LPS caused significant Akt activation 

and maximal activation was observed at 2 µM (Fig. 7B).  
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We also examined the effect of pertussis toxin on LPS-induced Akt phosphorylation. 

When L2071 cells were preincubated with 100 ng/ml of pertussis toxin prior to being 

stimulated with 2 µM LPS, LPS-induced Akt phosphorylation was found to be almost 

completely inhibited (Fig. 7C). The preincubation of L2071 cells with 100 ng/ml of pertussis 

toxin prior to stimulation with several concentrations of LPS for 2 min also completely 

inhibited Akt phosphorylation (Fig. 7D). These results indicate that LPS stimulates Akt 

activation via a pertussis toxin-sensitive pathway.  

 

LPS induces mouse fibroblast chemotaxis  

Since intracellular signaling through several chemoattractant receptors is required for the 

activation of several integrins involved in leukocyte adhesion and migration (Wang et al., 

2002), we investigated the effect of LPS on fibroblast migration on several specific 

extracellular matrices. It was found that LPS induced the chemotactic migration of mouse 

fibroblasts on fibronectin but not on fibrinogen or BSA (Fig. 8A). Fig 7B shows the 

concentration-responsive curve of LPS-induced mouse fibroblast migration, and shows 

maximal activity at 2-5 µM (Fig. 8B). To distinguish between LPS-induced chemotaxis and 

chemokinesis, we performed migration assays in the absence or presence of LPS in the upper 

wells of Boyden chambers as described previously (Bae et al., 1999).
 
As shown in Table 1, 

the addition of LPS (5 µM) to the upper chamber reduced the LPS-induced migrations of 

L2071 cells to the lower well, thus demonstrating that LPS induces mouse fibroblast 

chemotaxis.  

 

LPS induces mouse fibroblasts chemotaxis via pertussis toxin-sensitive G-proteins, 

ERK, and phosphoinositide 3-kinase (PI3K)-dependent signaling  
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Since LPS-induced MAPK and Akt phosphorylations were inhibited by pertussis toxin in 

L2071 cells, we examined the effect of pertussis toxin on LPS-induced mouse fibroblast 

chemotaxis. When L2071 cells were preincubated with 100 ng/ml of pertussis toxin prior to 

chemotaxis assays, the numbers of cell migrating toward LPS was reduced by > 95% (Fig. 

9A), which strongly suggested the involvement of pertussis toxin-sensitive G proteins. 

Several reports have shown that several chemoattractants stimulate PI3K-mediated Akt 

activity and that the PI3K pathway is involved in the chemotaxis of leukocytes stimulated by 

these chemoattractants (Haribabu et al., 1999; Lachance et al., 2002). Since we observed that 

LPS treatment caused a rapid increase in Akt phosphorylation in L2071 cells (Fig. 7), we 

investigated whether the PI3K pathway is required for LPS-induced L2071 chemotaxis. The 

preincubation of cells with LY294002 (50 µM), a well-known PI3K inhibitor, for 15 min at 

37oC prior to stimulation with LPS, was found to affect cellular chemotaxis (Fig. 9B), 

indicating that LPS activates the PI3K pathway and that this signaling is required for the 

LPS-induced chemotaxis of L2071 mouse fibroblast cells. 

We also examined the roles of ERK and p38 kinase on LPS-induced L2071 chemotaxis. 

When L2071 cells were preincubated with PD98059 (50 µM) or SB203580 (20 µM) prior to 

chemotaxis assays, LPS-induced L2071 chemotaxis was found to be significantly blunted by 

PD98059, but not by SB203580 (Fig. 9B), implying that ERK-mediated signaling is involved 

in LPS-induced L2071 chemotaxis.
 

 

Discussion 

Fibroblast migration is associated with damaged tissue remodeling. In response to 

tissue damage or inflammation, fibroblasts migrate into inflammatory sites along cross-linked 

fibrin and fibronectin in the extracellular matrix (Hotary et al., 2002; Wilberding et al., 2001). 
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Fibroblast migration is important for the remodeling of the provisional extracellular matrix, 

as fibroblasts provide a fibrous attachment for growing tissue, and wound healing (Hotary et 

al., 2002; Wilberding et al., 2001), and thus the modulation of chemotactic migration is an 

important aspect of the cell biology of fibroblasts. Several groups have reported that various 

extracellular stimuli are involved in the regulation of fibroblast chemotactic migration 

(Kundra et al., 1994; Hama et al., 2004). However, the role of LPS in chemotaxis has not 

been studied. In the present study, we found for the first time that LPS, a lysophospholipid, 

stimulates the chemotactic migration of mouse fibroblast L2071 cells. This finding suggests 

that LPS has a potential role in tissue remodeling, wound healing, and various functional 

aspects related to fibroblast migration.   

Here, we found that LPS induces intracellular calcium elevation in a unique way, i.e., 

LPS-induced Ca2+ response was desensitized by pretreating with LPS, S1P, or 

lysophosphatidic acid, but S1P- or lysophosphatidic acid-induced Ca2+ response was not 

desensitized by LPS pretreatment (Fig 3). These findings suggest that LPS has 

lysophosphatidic acid or S1P receptors or that LPS receptor(s) can be heterologous 

desensitized by lysophosphatidic acid or S1P in mouse fibroblasts. Several reports have 

suggested that LPS might have a unique cell surface receptor, i.e., one that differs from those 

of other lysolipids, such as S1P or lysophosphatidic acid (An et al., 1998; Bandoh et al., 

1999; Okamoto et al., 1999; Gonda et al., 1999). An et al, found that LPS failed to stimulate 

serum responsive element-driven luciferase expression in LPA1 or LPA2-transfected Jurkat 

cells (An et al., 1998), and Bandoh et al, reported that LPS failed to stimulate intracellular 

calcium increases in LPA3-transfected Sf9 cells (Bandoh et al., 1999). These findings suggest 

that LPS is not a ligand for the three known lysophosphatidic acid receptors; LPA1, LPA2 and 

LPA3 (An et al., 1998; Bandoh et al., 1999). It has also been reported that LPS failed to 

inhibit the binding of [32P] S1P to S1P receptors or S1P-induced intracellular calcium 
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increases in S1P receptors-transfected cells (Okamoto et al., 1999; Gonda et al., 1999). In this 

study, we found that LPS-induced calcium signaling is not affected by VPC 32183, a 

lysophosphatidic acid receptor-selective antagonist (Fig 4). However, lysophosphatidic acid-

induced intracellular calcium increases were completely inhibited by VPC 32183 (Fig. 4). 

These results strongly indicate that LPS has a unique cell surface receptor, and that it differs 

from lysophosphatidic acid receptors.  

Furthermore, previously Xu et al. reported that pretreatment with 

lysophosphatidylglycerol (LPG), which has been shown to prevent the binding of 

lysophosphatidic acid to a putative cell-surface receptor, inhibited the calcium release 

induced by lysophosphatidic acid, but not that induced by LPS, in Jurkat T cells and HEY 

ovarian cancer cells (Xu et al., 1995a; Xu et al., 1995b), which also strongly suggests that 

LPS binds to a unique receptor different from lysophosphatidic acid receptors in Jurkat T 

cells and ovarian cancer cells. Taken together, it is evident that LPS has a unique cell surface 

receptor, which can be heterologously desensitized by lysophosphatidic acid or S1P receptor 

activation. We also investigated the effect of pertussis toxin, which specifically blocks the 

coupling of GPCRs to Gi, on LPS-induced signaling. When L2071 cells were treated with 

100 ng/ml of pertussis toxin for 24 h prior to LPS stimulation, LPS-induced intracellular 

calcium elevation was not inhibited (Fig. 2B and 2C). However, the activations of ERK or 

p38 kinase and LPS-induced chemotactic migration were completely inhibited by pertussis 

toxin treatment, as shown in Figs. 6A and 9A. These results also imply that LPS utilizes 

pertussis toxin-sensitive G-protein-coupled receptor. In addition, we found that the 

overexpression of RGS4, a negative regulator of Gi and Gq, dramatically inhibited LPS-

induced ERK phosphorylation, thus suggesting the crucial involvement of trimeric G-proteins 

in the ERK phosphorylation (Fig. 6B). Taken together, it appears that LPS stimulates at least 

two different G-protein-coupled signalings, i.e., pertussis toxin-insensitive G-protein-
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mediated phospholipase C activation and intracellular calcium increase, and pertussis toxin-

sensitive G-protein-mediated chemotactic migration via ERK and PI3K. To our knowledge 

this is the first report to demonstrate the role of trimeric G-proteins or G-protein coupled 

receptors in the LPS-induced stimulation of fibroblasts.  

Our investigation of signals triggering LPS-induced chemotaxis in L2071 cells using 

specific inhibitors, such as, pertussis toxin, PD98059, LY294002 and Western blot analysis, 

identified the critical roles of pertussis toxin-sensitive G-proteins, ERK, and PI3K.The 

concentration-dependency of LPS-induced L2071 chemotaxis correlates well with the LPS-

induced ERK and Akt phosphorylations. However, though phospholipase C-mediated 

calcium signaling pathway was not found to be involved in LPS-induced chemotaxis (data 

not shown), it might modulate the EC50 values for chemotaxis and calcium release by LPS. 

In view of the fact that calcium signaling regulates various kinds of cellular physiologies and 

that LPS dramatically stimulates phospholipase C-mediated intracellular calcium increase, it 

would be interesting to determine the other functional roles of LPS in L2071 cells in relation 

to calcium signaling-dependent processes. This type of future work would probably reveal 

other important lipid-mediating roles of LPS.  

In conclusion, the present study shows that LPS induces the chemotactic migration of 

L2071 mouse fibroblasts by modulating the activities of several intracellular signaling 

molecules like ERK and Akt, and of transmembrane signaling molecules, such as, pertussis 

toxin-sensitive trimeric G proteins and phospholipase C. Since this study is the first to 

describe the role of LPS in mouse fibroblast chemotaxis, further studies on the pathologic and 

physiologic roles of LPS and on its specific cell surface receptor(s) are required. 
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Figure legends 

Fig. 1. The effect of LPS on intracellular calcium elevation in L2071 cells. L2071 cells were 

stimulated with 2 µM of LPS or 2 µM of LPE and intracellular calcium levels were 

determined fluorometrically using fura-2/AM. Relative intracellular calcium concentrations 

are expressed as fluorescence ratios (340:380 nm). Data are representative of five 

independent experiments (A). L2071 cells were stimulated with various concentrations of 

LPS or LPE, and peak intracellular calcium levels were recorded. Results are presented as 

means ± SE of three independent experiments performed in duplicate (B). * Statistically 

significant (P < 0.05) from the control (0.1 nM treated). 

 

Fig. 2. LPS-induced Ca2+ signaling is U-73122-sensitive but pertussis toxin-insensitive in 

L2071 cells. L2071 cells were pretreated with 5 µM of U73122 or 5 µM of U73343 prior to 2 

µM of LPS, and intracellular calcium levels were determined (A). L2071 cells were 

preincubated in the absence or presence of 100 ng/ml of pertussis toxin for 24 h, loaded with 

fura-2/AM, and intracellular calcium levels were determined fluorometrically after adding 2 

µM of LPS or 1 µM of leukotriene B4 (B). L2071 cells were preincubated in the absence or 

presence of 100 ng/ml of pertussis toxin for 24 h, and intracellular calcium levels were 

determined fluorometrically after adding various concentrations of LPS (C) Relative 

intracellular calcium concentrations are expressed as fluorescence ratios (340:380 nm). Data 

are representative of four independent experiments (A, B, C).  

 

Fig. 3. LPS induces intracellular calcium elevation via unique receptor(s) in L2071 cells. 

Intracellular calcium concentrations were determined fluorometrically using fura-2/AM, as 

described in “Materials and methods.” Cells were challenged with 2 µM LPS or 5 µM LPA 
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(A), and fura-2/AM loaded L2071 cells were challenged with 2 µM LPS or 2 µM S1P at the 

times indicated (B). L2071 cells were pretreated with 2 µM LPS for 3 min and then 

stimulated with various concentrations of LPA (C) or S1P (D). Relative intracellular calcium 

concentrations are expressed as fluorescence ratios (340:380 nm). The tracings shown are 

from one experiment representative of at least four separate experiments (A, B). Results are 

presented as means ± SE of three independent experiments performed in duplicate (C, D).  

 

Fig. 4. LPS-induced intracellular calcium increases are not inhibited by lysophosphatidic 

acid receptor antagonist. Intracellular calcium concentrations were determined 

fluorometrically using fura-2/AM, as described in “Materials and methods.” Cells were 

challenged with vehicle (DW), 1 µM LPA, or 1 µM VPC 32183 (A), and fura-2/AM loaded 

L2071 cells were challenged with vehicle (DW), 1 µM LPS, or 1 µM VPC 32183 at the times 

indicated (B). Cells were stimulated with vehicle (DW) or 1 µM VPC 32183 before adding 

LPS (C). Relative intracellular calcium concentrations are expressed as fluorescence ratios 

(340:380 nm). The tracings shown are representative of at least four separate experiments (A, 

B). Results are presented as the means ± SE of three independent experiments performed in 

duplicate (C).  

 

Fig. 5. LPS stimulates MAPK phosphorylation in L2071 cells. L2071 cells were stimulated 

with 2 µM LPS for various times (A), and then stimulated with various concentrations of LPS 

for 2min (B). Samples (30 µg of protein) were subjected to 10% SDS-PAGE, and 

phosphorylated ERK or p38 kinase levels were determined by immunoblotting using anti-

phospho-ERK antibody or anti-phospho-p38 kinase antibody. The results shown are 

representative of at least three independent experiments. 
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Fig. 6. LPS-induced MAPKs phosphorylation is mediated by pertussis toxin-sensitive G-

protein. L2071 cells, preincubated in the absence or presence of 100 ng/ml of pertussis toxin 

for 24 h, were stimulated with 2 µM LPS for 5 min (A). Vector- or HA-tagged human RGS-4-

transfected L2071 cells were treated with 2 µM LPS for various times (B). Immunoblot 

analysis with anti-phospho-ERK antibodies was performed on lysates, and immunoblot 

analysis with anti-ERK antibody was used to confirm equal protein loadings. The results 

shown are representative of at least three independent experiments. 

 

Fig. 7. LPS stimulates Akt phosphorylation in a pertussis toxin-sensitive manner in L2071 

cells. L2071 cells were stimulated with 2 µM LPS for various times (A), and then stimulated 

with various concentrations of LPS for 5min (B). L2071 cells, preincubated in the presence 

of 100 ng/ml of pertussis toxin for 24h, were stimulated with either 2 µM of LPS for various 

times (C) or with various concentrations of LPS for 5min (D). Samples (30 µg of protein) 

were subjected to 10% SDS-PAGE, and phosphorylated Akt levels were determined by 

immunoblotting using anti-phospho-Akt antibody. The results shown are representative of at 

least three independent experiments. 

 

Fig. 8. LPS induces L2071 cell chemotaxis. Assays were performed using a modified Boyden 

chamber assay as described in “Materials and methods”. The polycarbonate membrane of a 

96-well chemotaxis chamber was precoated with BSA (2%), fibrinogen (20 µg/ml), or 

fibronectin (20 µg/ml) in carbonate buffer (500 mM sodium bicarbonate, pH 8.5) overnight at 

room temperature. Cultured L2071 cells (1x106 cells/ml in serum free RPMI) were added to 

the upper well of the 96-well chemotaxis chamber and migration across a polycarbonate 
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membrane of 8 µm pore size was assessed in the presence of 2 µM LPS for 4 h at 37oC (A). 

Various concentrations of LPS were used to examine chemotactic migration using fibronectin 

(20 µg/ml) precoated polycarbonate membranes (B). Migrated cell numbers were counted in 

3 high power fields (400x). Data are presented as the means ±
 

SE of three independent 

experiments performed in duplicate. * Significantly different (P < 0.05) from the control 

(vehicle treated). 

  

Fig. 9. LPS-induced L2071 chemotaxis is mediated by pertussis toxin-sensitive G-proteins, 

PI3K, and ERK. The polycarbonate membrane of a 96-well chemotaxis chamber was 

precoated with fibronectin (20 µg/ml) in carbonate buffer (500 mM sodium bicarbonate, pH 

8.5) overnight at room temperature. L2071 cells, preincubated in the absence or presence of 

100 ng/ml of pertussis toxin for 24 h, were subjected to chemotaxis assays at LPS 

concentrations of 0, 2, and 5 µM (A). * Significantly different (P < 0.05) from the control (-

pertussis toxin). L2071 cells were treated with vehicle (DMSO), PD098059 (50 µM), 

SB203580 (20 µM), or LY294002 (50 µM) for 15 min, and then subjected to chemotaxis 

assays in the presence of 2 µM LPS for 4 h (B). Migrated cell numbers were counted in 3 

high power fields (400x). Data are presented as the means ± SE of three independent 

experiments performed in duplicate (A, B). * Significantly different (P < 0.05) from the 

control (DMSO treated). 
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Table 1. The Migration of L2071 cell across a Polycarbonate Membrane after LPS treatmenta 

 

Below Membrane (µM)   

Above Membrane (µM)  0                0.1                 1                  2                  5  

                  0                             28 ± 4          26 ± 7          32 ± 5         29 ± 3          31 ± 8 

                  5                           131 ± 18      125 ± 26        87 ± 11       54 ± 8           34 ± 3 

 

a L2071 cell migration was analyzed for 4 h across a fibronectin-coated polycarbonate 

membrane (8 µm pore size). Different LPS concentrations were placed in the lower 

compartment in the absence or presence of LPS (5 µM) in the above compartments. Data are 

represent the means ± SE of migrated L2071 cell numbers in 3 high power fields (400x) 

counted in triplicate for two independent experiments. 
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