Rescue of p53 blockage by the A$_{2A}$ adenosine receptor via a novel interacting protein, Translin-associated protein X

Chung-Nan Sun1, Hsiao-Chun Cheng1, Jui-ling Chou1, Shen-Yang Lee, Ya-Wen Lin, Hsing-Lin Lai, Hui-Mei Chen, Yijuang Chern

Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei 115, Taiwan (CNS, HCC, JIC, YWL, HLL, HMC, YC); Institute of Neuroscience, National Yang-Ming University, Taipei 112, Taiwan (HCC, JIC, YWL, YC); Institute of Life Sciences, National Defense Medical Center, Taipei 104, Taiwan (CNS, YC); and Department of Medical Technology, Yuanpei University of Science and Technology, Hsinchu 300, Taiwan (JIC).
MOL 21261

a) Running Title: TRAX mediates A2A-R’s action of suppressing proliferation

b) Corresponding Author:
Dr. Yijuang Chern, Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan,
Tel: 886-2-26523913, Fax: 886-2-27829143, Email: bmychern@ibms.sinica.edu.tw

c) Manuscript information:
Number of text pages = 41
Number of figures = 9
Number of references = 70
Word count for Abstract = 235
Word count for Introduction = 675
Word count for Discussion = 1419

d) Abbreviations:
NGF, nerve growth factor; A2A-R, A2A adenosine receptor; TRAX, translin-associated protein X;
EGF, epidermal growth factor; GPCR, G protein-coupled receptor; FK, forskolin; FBS, fetal
bovine serum, HS, horse serum; BSA, bovine serum albumin; PKA, protein kinase A; PKC,
protein kinase C; CGS, CGS21680; CSC, 8-(3-chlorostyryl) caffeine; CHE, chelerythrine; BIM,
bisindolylmaleimide I; TPβ, thromboxane A2 receptor.
ABSTRACT

Blockage of the p53 tumor suppressor has been found to impair nerve growth factor (NGF)-induced neurite outgrowth in PC12 cells. We report herein that such impairment could be rescued by stimulation of the A2A adenosine receptor (A2A-R), a G protein-coupled receptor implicated in neuronal plasticity. The A2A-R-mediated rescue occurred in the presence of PKC inhibitors or of PKA inhibitors, and in a PKA-deficient PC12 variant. Thus, neither PKA nor PKC was involved. In contrast, expression of a truncated A2A-R mutant harboring the 7th transmembrane domain and its C terminus reduced A2A-R’s rescue effect. Using the cytoplasmic tail of the A2A-R as bait, a novel-A2A-R-interacting protein (translin-associated protein X; TRAX) was identified in a yeast two-hybrid screen. The authenticity of this interaction was verified by pull-down experiments, co-immunoprecipitation, and colocalization of these two molecules in the brain. Importantly, reduction of TRAX using an antisense construct suppressed A2A-R’s rescue effect, whereas overexpression of TRAX alone caused the same rescue effect as did A2A-R activation. Results of ^3^H-thymidine and BrdU incorporation suggested that A2A-R stimulation inhibited cell proliferation in a TRAX-dependent manner. Since the antimitotic activity is crucial for NGF’s function, the A2A-R might exert its rescue effect through a TRAX-mediated antiproliferative signal. This antimitotic activity of the A2A-R also enables a mitogenic factor (EGF) to induce neurite outgrowth. Collectively, we demonstrate that the A2A-R modulates the differentiation ability of trophic factors through a novel interacting protein, TRAX.
MOL 21261

INTRODUCTION

Tumor suppressor protein p53 is a nuclear, DNA-binding phosphoprotein that regulates the cell cycle (Levine, 1997; White, 1996). It is known to activate the transcription of a number of genes, including p21, BaX, Mdm2, cyclin G, and Gadd45 (Ko and Prives, 1996; Levine, 1997). Cell cycle arrest mediated by p53 is believed to occur primarily through induction of p21, an inhibitor of cyclin-dependent kinases (el-Deiry et al., 1994; Xiong et al., 1993). Moreover, p53 regulates the transcription of various mitochondrial proteins and might greatly contribute to mitochondrial abnormalities (Polster and Fiskum, 2004; Sawa, 2001). The roles of p53 in tumor formation and apoptosis therefore have been extensively investigated. In the central nervous system, p53 has been implicated in neuronal apoptosis upon various stresses and disorders (Bae et al., 2005; Gilman et al., 2003; Herzog et al., 1998; Jordan et al., 2003). Moreover, in a widely used neuronal model (PC12), p53 and its downstream effector (p21) were shown to play critical roles in NGF-induced neuronal differentiation by causing cell cycle arrest (Eizenberg et al., 1996; Erhardt and Pittman, 1998; Levine, 1997; Lin et al., 1992). Accumulating evidence also suggests that p53 is critical for neuronal development, because p53 knockout mice exhibit developmental abnormalities including neural tube defects (Armstrong et al., 1995). Suppression of the p53-mediated pathway has been reported under many conditions including germline/somatic mutations and various types of trauma (Jiang et al., 2003; Malkin, 2001). Regulation of p53 during neuronal development, plasticity, and trauma therefore is of great interest.

Adenosine has been shown to play an essential role in modulating neuronal function via four adenosine receptors (Daval et al., 1991). The A_{2A} adenosine receptor (A_{2A}-R) belongs to the G protein-coupled receptor (GPCR) family and is involved in regulating neuronal plasticity and development (Cheng et al., 2002; Ribeiro, 1999; Weaver, 1993). Other laboratories and our own
MOL 21261

have previously demonstrated that in PC12 cells, stimulation of the A\textsubscript{2A}-R activates at least two major cellular signaling cascades: adenylyl cyclase/cAMP/protein kinase A (PKA) and the protein kinase C (PKC)-mediated pathways (Chang et al., 1997; Charles et al., 2003; Huang et al., 2001; Sobreviela et al., 1994). In addition, A\textsubscript{2A}-R stimulation rescues the ability of PC12 cells to proceed with NGF-evoked neurite outgrowth when the MAPK cascade is impaired (Cheng et al., 2002). In the present study, using two dominant negative p53 mutants, we demonstrate that stimulation of the A\textsubscript{2A}-R suppresses proliferation and rescues the differentiation process impaired by p53 inactivation. Intriguingly, neither the PKA- nor PKC-mediated signaling pathway contributes to this rescue effect of the A\textsubscript{2A}-R. Instead, a novel A\textsubscript{2A}-R-interacting protein [the Translin-associated protein X, TRAX; (Aoki et al., 1997)] which binds to the C terminus of the A\textsubscript{2A}-R might mediate the A\textsubscript{2A}-R’s rescue effect. TRAX was originally identified as a binding protein of Translin using a yeast two-hybrid system (Aoki et al., 1997). Translin is a protein which binds RNA and single-stranded DNA with potential functions in DNA rearrangement and repair, mitotic cell division, mRNA transport, and translational regulation (Aoki et al., 1997; Aoki et al., 1995; Han et al., 1995; Hosaka et al., 2000; Ishida et al., 2002; Wu et al., 1997; Yang et al., 2003). TRAX is a 33-kDa protein whose amino acids have 28% identity to those of Translin (Aoki et al., 1997). Although the biological function of TRAX largely remains obscure, it forms complexes with Translin in neuronal dendrites, and thus might be involved in dendritic RNA processing (Finkenstadt et al., 2000). TRAX has also been implicated in DNA repair via binding to the nuclear matrix protein, C1D, an activator of the DNA-dependent protein kinase important for DNA double-strand repair and V(D)J recombination (Erdemir et al., 2002). In the present study, we found that TRAX is a novel interacting protein of the A\textsubscript{2A}-R and that overexpression of TRAX recovered the NGF-induced neurite outgrowth impaired by p53 inhibition in PC12 cells. Moreover, downregulation of
endogenous TRAX using an antisense construct obliterated the A_2A-R’s rescue effect. Collectively, our data suggest the involvement of TRAX in mediating the A_2A-R's rescue effect on neuronal differentiation in PC12 cells.
MATERIALS AND METHODS

Reagents: All reagents were purchased from Sigma Chemical (St. Louis, MO, USA) except where otherwise specified. Forskolin (FK), CGS21680 (CGS), and 8-(3-chlorostyryl) caffeine (CSC) were obtained from Research Biochemical (Natick, MA, USA). Chelerythrine (CHE) and bisindolylmaleimide I (BIM) were from Calbiochem (San Diego, CA, USA). DMEM, fetal bovine serum (FBS), and horse serum (HS) were purchased from Life Technologies (Gaithersburg, MD, USA). H-89 was from Biomol (Plymouth Meeting, PA, USA). NGF was obtained from Alomone (Jerusalem, Israel).

Cell Culture: PC12 cells were originally obtained from the American Type Culture Collection (Manassas, VA, USA; CRL1721) and maintained in DMEM (HyClone, Logan, UT, USA) supplemented with 5% FBS (HyClone) plus 10% HS (HyClone) in an incubation chamber gassed with 10% CO2 and 90% air at 37 °C. A123, a cAMP-dependent PKA-deficient variant of PC12 cells (Ginty et al., 1991), was kindly provided by Dr. J.A. Wagner (Cornell University Medical College, Ithaca, NY, USA). A123 cells were maintained in DMEM supplemented with 5% v/v HS and 10% v/v FBS. HEK293 T cells were maintained in DMEM supplemented with 10% (v/v) FBS and 2 mM glutamine in an incubation chamber supplied with 5% CO2 and 95% air at 37 °C.

Transfection and neuronal differentiation: The expression constructs, which encode the dominant negative mutants of p53 (R175H-p53 and R273H-p53) are described elsewhere (Bargonetti et al., 1992; Srivastava et al., 1993). The A2A-R-truncated mutants were generated from pcDNA3-A2A-R by PCR and were subcloned into a pcDNA3.1/V5-His vector. Primers for creating A2A-R253-410 were as follows: 5’-ACCATGTTTCTGTCCACGTGCGGG-3’ and 5’-
MOL 21261

GGAAGGGGCAAACTCTGAAGA-3’. The antisense construct of TRAX (TRAXAS, encoding the RNA containing nucleotides 451 to 870 in the antisense direction), was also produced by PCR amplification using the following primers: 5’-GCGGCCATGCAGTTGACATTTACA-3’ and 5’-GCGGCGAGAAATGCCTCTTCCTG-3’. Cells were transfected using LipofectAMINE 2000™ (Invitrogen, San Diego, CA, USA) following the manufacturer's protocol. For analyzing neuronal differentiation, cells were transiently transfected with the indicated construct(s) along with 1/10 of the molar amount of an EGFP-expressing construct (Clontech; Palo Alto, CA, USA), and treated with the indicated reagent(s) for 3 days. Transfected cells were marked as EGFP-expressing cells under a fluorescent microscope with a blue filter. Cells containing neurites of at least two cell-body diameters in length were scored as neurite-bearing cells. Transfected cells that grew neurites were normalized to the number of total transfected cells and are presented as the percentage of neurite-bearing cells. In each experiment, at least 100 transfected cells were counted. HEK239T cells were transfected with the desired construct(s) at 3 x 10⁶ cells in 100-mm culture plates using LipofectAMINE 2000™ as described above.

Flow cytometry and cell sorting: PC12 cells were transfected with the construct(s) of desired proteins plus hrGFP at a molar ratio of 10:1. One day post-transfection, cells were harvested by centrifugation, resuspended in DMEM to a final density of 5 x 10⁶ cells/ml, and filtered through a cell strainer cap (FALCON) to remove cell aggregates. Flow cytometry and sorting of hrGFP-positive cells were carried out using a FACS Vantage instrument (Becton Dickinson, Cockeysville, MD, USA) with a 530 ± 15-nm bandpass filter as cells traversed the beam of an argon ion laser (488 nm, 100 mW). Data acquisition and analysis were performed with CellQuest software (Becton Dickinson, Mountain View, CA, USA). Sorted cells were harvested and plated for further treatments.
cAMP assay: Transfected and sorted PC12 cells were plated at the density of 5 x 10^5 cells/well (on 12-well plates) and incubated with the indicated reagent(s) for the desired period of time. Cells were washed twice with ice-cold Ca^{2+}-free Locke’s solution (150 mM NaCl, 5.6 mM KCl, 5 mM glucose, 1 mM MgCl\textsubscript{2}, and 10 mM HEPES adjusted to pH 7.4). Cellular cAMP was extracted by adding 0.3 ml of 0.1 N HCl to each well and incubating this for 10 min on ice. The cAMP content was assayed using the ^{125}\text{I}-cAMP assay system (Amersham Biosciences).

Production of the polyclonal anti-TRAX antibody: Oligopeptides (TRAX\textsubscript{273-290}, corresponding to amino acids 273-290 of mouse TRAX) were purchased from Genosys (The Woodlands, TX, USA) and conjugated to bovine serum albumin (BSA, Sigma) using m-maleimidobenzoyl-N-hydroxysuccinimide ester as described by Harlow and Lane (1988). To remove the potentially existing anti-BSA IgG, the anti-TRAX antiserum was pre-absorbed with 3% BSA in PBS at 4°C overnight. For double immunohistochemical staining, the anti-TRAX antibody was biotinylated as described elsewhere (Lee et al., 2003).

Immunohistochemistry and brain tissue preparation: Seventy-two hours after transfection, PC12 cells were fixed and stained with the desired primary antibody reconstituted in PBS/2% goat serum at 4°C for 14–16 h. Dilution of the anti-HA antibody (Invitrogen) with anti-TRAX was at 1: 1000. After extensive washing, slides were incubated with the corresponding secondary antibody conjugated with Alexa red (for the HA-A\textsubscript{2A}-R) and FITC (for TRAX) at RT for 1 h, and analyzed with the aid of a laser confocal microscope (Bio-Rad, MRC-1000, Hercules, CA, USA).
For brain tissues, 8-week-old male C57BL6 mice were obtained from the National Laboratory Animal Center (Taipei, Taiwan). Animal experiments were performed in accordance with the National Institutes of Health Guidelines under protocols approved by the Animal Care and Use Committee of Academia Sinica. In brief, animals were deeply anesthetized with sodium pentobarbital (50 mg/kg), and intracardially perfused with 4% paraformaldehyde in 0.1 M phosphate buffer (PB, pH 7.4). Brains were carefully removed, post-fixed with 4% paraformaldehyde/0.1 M PB for 3–5 h, and then immersed in 30% sucrose in 0.1 M PB for 2 days. Double immunostaining of A$_{2A}$-R and TRAX was conducted as detailed elsewhere (Shindler and Roth, 1996) with modifications. Briefly, brain sections (20 µm) were first stained with an anti-A$_{2A}$-R antibody (Lee et al., 2003) and visualized using a highly sensitive biotin-tyramide amplification system with Avidin-Alexa Fluor® 568. The sections were then blocked sequentially using the avidin D blocking solution (Vector Laboratories, Burlingame, CA, USA) and the biotin blocking solution (Vector Laboratories), incubated with the anti-TRAX antibody, and followed by a goat anti-rabbit IgG conjugated with Alexa Fluor® 488. Patterns of double immunostaining were analyzed with the aid of a laser confocal microscope.

Western blot analysis: For the antisense experiments, cells were transfected with the control vector or the TRAX antisense construct (TRAX$_{AS}$) for 72 h. For analyzing the expression level of p21, cells were transiently transfected with the indicated construct along with 1/4 of the molar amount of an EGFP expression construct. Twenty-four hours post-transfection, EGFP-positive cells were sorted and harvested using a FACS Vantage (Becton Dickinson, Cockeysville, MD, USA) with a 530 ± 15-nm bandpass filter, plated in 35-mm dishes, and treated with the indicated reagent(s) for 3 days. Cells were then lysed using a lysis buffer containing 50 mM HEPES (pH 7.6), 150 mM NaCl, 10% (v/v) glycerol, 1% (v/v) Triton X-100, 10 mM NaF, 1 mM EDTA, 1
mM phenylmethylsulfonyl fluoride, 1 µM leupeptin, 1 µM pepstatin A, 1 mM Na₃VO₄, 1 mM dithiothreitol, and 100 nM okadaic acid. Equal amounts of sample were separated by SDS-PAGE (Laemmli, 1970) and electroblotted onto Immobilon PVDF membranes (Millipore, Bedford, MA, USA) for the Western blot analyses as previously described (Cheng et al., 2002). Typically, we used a 1:1000 dilution for the anti-TRAX and anti-actin antibodies, and 1:500 for the anti-p21 antibody (Santa Cruz Biotechnology, Santa Cruz, CA, USA). Immunoreactive bands were detected by enhanced chemiluminescence (Pierce, Rockford, IL, USA).

Co-immunoprecipitation: HEK 293T cells were transfected with the A₂₅-R-V₅ cDNA along with other desired plasmids for 72 h and lysed with ice-cold RIPA buffer (10 mM sodium phosphate, pH 7.2, 1% Triton X-100, 0.5% sodium deoxycholate, 0.1% SDS, and 150 mM NaCl). The lysates were then incubated with anti-V5 monoclonal antibody (1 µl/ml lysate; Invitrogen) for 1 h. Protein A beads (200 µl/ml lysate) were added into the mixture and rotated gently at 4 °C for 2 h. The immunoprecipitates were pelleted and washed three times with ice-cold RIPA buffer. Lysates (input) and washed immunoprecipitates were mixed with SDS-PAGE sample buffer, boiled for 5 min, and separated on 10% SDS-PAGE, followed by Western blot analyses using the corresponding antibodies.

DNA synthesis assay: For the [³H]thymidine incorporation assay, transfected and sorted cells were plated onto 12-well plates and incubated with the indicated reagents for 3 days. [³H]Thymidine (1 mCi/ml; PerkinElmer, Wellesley, MA, USA) was added to the growth medium and used to label cells for 4 h at 37 °C. After removing the labeling medium, cells were collected onto glass microfiber filters (Whatman, Ann Arbor, MI, USA), washed twice with 5 ml
of 0.15 M NaCl, and soaked with 5% TCA (trichloroacetic acid) for 5 min. The membranes were then washed with 5% TCA, neutralized with 0.5 M NaOH, air-dried, and counted.

DNA synthesis was also determined using a BrdU labeling and detection kit (Roche, Mannheim, Germany) according to the manufacturer’s protocol. Briefly, PC12 cells were transfected with the indicated plasmids plus the expression construct of EGFP, incubated for 16~18 h, and treated with the indicated reagent(s) for 4 days. Bromodeoxyuridine (BrdU, 10 mM) was then added to the culture medium for 1 h, followed by immunostaining using an anti-BrdU antibody and an anti-EGFP antibody (BD, Palo Alto, CA, USA) to identify the transfected cells. Cell immunostaining was observed and photographed using a Zeiss immunofluorescent microscope. Totals of at least 100 cells were scored for each condition.
RESULTS

p53 has been shown to mediate NGF-triggered cell growth arrest in PC12 cells (Eizenberg et al., 1996; Hughes et al., 2000). In line with previous findings (Eizenberg et al., 1996), we found that overexpression of a dominant negative p53 mutant (R175H-p53) led to suppression of NGF-evoked neurite outgrowth in PC12 cells (Fig. 1A). Interestingly, activation of the A2A-R using an A2A-R-selective agonist (CGS) counteracted the impaired neurite outgrowth caused by R175H-p53 (Fig. 1A, B). Expression of another dominant negative p53 mutant (R273H-p53), which lacks DNA binding ability, also inhibited NGF-evoked neurite outgrowth. Again, this blockage of neurite outgrowth could be rescued by A2A-R stimulation (Fig. 1C). Pretreating PC12 cells with an A2A-R antagonist, CSC, abolished CGS’s rescue effect (Fig. 1D), indicating that CGS operates through the A2A-R.

To elucidate the signaling pathway underlying the rescue effect of the A2A-R, we first measured whether activation of the A2A-R elevated the cellular cAMP content under the conditions tested. Transfected cells were sorted by the expression of hrGFP as described and stimulated with NGF and/or CGS. As shown in Fig. 2, regardless of the absence or presence of NGF, activation of the A2A-R using CGS enhanced the cellular cAMP content at both the early stage (3 h) and the late stage (3 days) of NGF-induced differentiation. Consistent with the previously described desensitization process upon chronic stimulation (Chern et al., 1993), in all conditions tested, the cAMP level evoked by a 3-h incubation of CGS was much higher than by a 3-day incubation. Surprisingly, p53 blockage using an R273H-p53 mutant reduced the A2A-R-evoked cAMP response by approximately 50%. The mechanism of how p53 blockage suppresses the cAMP response evoked by A2A-R stimulation is not yet clear.
To determine whether the cAMP-dependent kinase (PKA) mediates the rescue effect of the A$_{2A}$-R, we set out to determine the role of PKA. As shown in Table 1, neither of two PKA inhibitors (H89 and PKI) attenuated the A$_{2A}$-R’s rescue effect. We also used a PKA-deficient PC12 variant (A123) to verify the functional role of PKA in A$_{2A}$-R’s action. Expression of the p53-R175H mutant in A123 cells resulted in blockage of NGF-induced neurite outgrowth as occurs in parental PC12 cells (Table 1). Most importantly, A$_{2A}$-R stimulation retained the ability to rescue the impaired neurite outgrowth caused by p53 blockage in A123 cells (Table 1). We next examined the involvement of PKC using two PKC inhibitors (CHE and BIM) because A$_{2A}$-R stimulation has been shown to activate PKCs in PC12 cells (Huang et al., 2001; Lai et al., 1997). Similar to that observed with PKA inhibitors, neither CHE nor BIM alone could suppress the rescue effect of the A$_{2A}$-R on neurite outgrowth caused by p53 blockage (Table 2). Taken together, the rescue effect of the A$_{2A}$-R was both PKA- and PKC-independent.

Note that stimulation of the A$_{2A}$-R only causes a low and transient cAMP response due to desensitization of the cAMP system (Chern et al., 1993). In contrast, direct stimulation of adenylyl cyclase by forskolin (FK) evoked sustained and high levels of cAMP. The elevation in cAMP induced by FK (10 µM) and CGS (1 µM) was 10.9 ± 0.4 and 2.1 ± 0.3 nmol/million cells (mean ± SE; with 20 min of incubation at RT), respectively, in PC12 cells. It is interesting to find that FK treatment (10 µM) also overcame the inhibitory effect of p53 blockage on neurite outgrowth, and that it was inhibited by PKI (Table 1). Thus, in contrast to that employed by A$_{2A}$-R stimulation, FK rescued p53 blockage via a PKA-dependent pathway.
Results described above suggest that A2A-R stimulation might rescue p53 blockage through a previously uncharacterized pathway. Studies of other GPCRs have demonstrated that in addition to G proteins, GPCRs might transmit their signals via specific interacting proteins which bind to the C terminus and/or other cytosolic domains of a GPCR (Nickols et al., 2004; Xia et al., 2003). Because the C terminus domain of the A2A-R is relatively long and might exert novel function(s) (Gsandtner et al., 2005; Milojevic et al., 2005), we set out to determine whether the C terminus of the A2A-R is involved in its rescue effect. A truncated A2A-R mutant (A2A-R253-410), comprising the 7th transmembrane domain and the entire C terminus of the A2A-R, was generated. As shown in Fig. 1E, expression of A2A-R253-410 reduced A2A-R’s rescue effect, supporting our hypothesis that the A2A-R might exert its rescue effect through direct interaction with a novel protein at its C terminus. Note that expression of A2A-R253-410 itself moderately reduced the extent of neurite outgrowth in the presence of CGS plus NGF. The C terminus of the A2A-R therefore might contribute to its modulatory effect on NGF-induced neurite outgrowth as previously reported (Cheng et al., 2002).

To search for novel interacting protein(s) of the A2A-R, the C terminus of the A2A-R (A2A-R290-407) was used as bait to screen a mouse brain cDNA library using the yeast two-hybrid system. This library was chosen because of its availability and because the C terminus of rat and mouse A2A-Rs are highly homologous (90% identity in amino acids). Out of 5 x 10^6 clones, 15 independent clones expressing the reporter gene (β-galactosidase) were selected. The cDNA of each clone was analyzed by nucleotide sequencing and functional annotation using standard bioinformatic programs (the Genetics Computer Group, Wisconsin Package; Madison, Wisconsin, USA). Among those, only one authentic cDNA clone (TRAX) was obtained. Note that the mouse and rat TRAX proteins are also highly homologous (95% identity in amino acids).
acids). TRAX was originally identified as a Translin-associated protein X (Aoki et al., 1997). Its interaction with the C terminus of the A2A-R was verified by co-transforming the identified pACT2-TRAX construct with the original A2A-R290-407 into yeast Y187 cells. Co-transformation of TRAX and A2A-R291-407 led to expression of the reporter gene (β-galactosidase), confirming the interaction between TRAX and A2A-R291-410 in yeast (Supplementary Materials, Fig. S-1).

To further demonstrate the interaction between the A2A-R and TRAX, recombinant GST and GST-TRAX proteins were purified using glutathione-Sepharose beads and were incubated with the membrane extraction of the rat striatum which contains high levels of the endogenous A2A-R (Lee et al., 2003). As shown in Fig. 3A, GST-TRAX, but not GST, successfully pulled down the striatal A2A-R. The addition of excess peptide antigen (amino acids 394-410 of the A2A-R) conjugated to an irrelevant protein (ovalbumin) resulted in the complete disappearance of the immunoreactive bands (Fig. 3B), confirming the specificity of the observed A2A-R protein. The veracity of interaction was also confirmed by co-immunoprecipitation assays in HEK293 cells transfected with the A2A-R (A2A-R-V5) and TRAX (HA-TRAX) cDNAs. Immunoprecipitation of the A2A-R protein using the V5 antibody pulled-down TRAX (Fig. 3C), but not an irrelevant protein (AMPK, Fig. 3E). The transfected HA-TRAX appeared to be slightly larger (Fig. 3C) than the size of endogenous TRAX (~33 kDa, Fig. 4A) due to the presence of an HA tag at its N terminus and the 20-amino acid linker region between the HA tag and the TRAX cDNA. Colocalization of the A2A-R-V5 and HA-TRAX could also be detected (Supplementary Materials, Fig. S2). Activation of the A2A-R using CGS for 2 h did not alter the amount of TRAX co-immunoprecipitated with the A2A-R (Fig. 3C, D), suggesting that interactions between the A2A-R and TRAX are independent of the receptor’s activity.
We previously demonstrated that, in the brain, the A\textsubscript{2A}-R is enriched in the striatum and is also expressed at low levels in various regions of the brain. Since the regional expression of TRAX in the central nervous system (CNS) has not yet been reported anatomically, we first set out to examine the expression of TRAX in the brain. An oligopeptide (TRAX\textsubscript{273-290}) corresponding to the most C-terminal region (amino acids 273–290) of TRAX was used to produce an anti-TRAX antiserum. The anti-TRAX antiserum recognized an immunoreactive band of 33 kDa, the predicted molecular weight of TRAX, in the cytosolic fractions of the mouse cerebellum where TRAX has been reported to be expressed. Addition of excess antigen caused the complete disappearance of the TRAX-immunoreactive band (Fig. 4A). We next performed an immunohistochemical analysis of TRAX in adult mouse brains. Except for the enriched striatal expression, the expression of TRAX was similar to that of the A\textsubscript{2A}-R in the brain, and could be detected with different intensities in many brain areas (Supplementary Materials, Fig. S-3, left panels; Fig. S-4, left panels). TRAX immunoreactivity was completely abolished by treatment with an excess amount of the peptide antigen, thus verifying the specificity of TRAX (Supplementary Materials, Fig. S3, right panels; Fig. S-4, right panels). The overall expression profiles of the A\textsubscript{2A}-R and TRAX support our hypothesis that these two molecules might be coexpressed in the brain. Indeed, double-immunohistochemical staining further demonstrated that the A\textsubscript{2A}-R was colocalized with TRAX in many areas of adult mouse brains (Fig. 4).

In PC12 cells, colocalization of the A\textsubscript{2A}-R and TRAX was also evident in the presence of a p53 mutant (R273H-p53; Fig. 5A). Most importantly, transient expression of TRAX rescued the NGF-evoked neurite outgrowth impaired by p53 inhibition (Fig. 5B). Stimulation of the A\textsubscript{2A}-R by CGS in TRAX-overexpressing cells did not further enhance NGF-induced neurite outgrowth,
suggesting that the same pathway might be utilized by both A2A-R stimulation and TRAX to rescue defective neurite outgrowth. To verify whether the rescue effect of the A2A-R on neurite outgrowth is mediated by TRAX, an antisense construct of TRAX (designated TRAXAS) was created. Transient transfection of the antisense construct into PC12 cells significantly diminished the expression of endogenous TRAX and markedly reduced the A2A-R’s rescue effect (Fig. 5C). Note that downregulation of TRAX did not alter NGF-induced neurite outgrowth. TRAX is thus involved in the action of the A2A-R, but not that of NGF.

p53 has been implicated in NGF-induced cell cycle arrest (Hughes et al., 2000). We set out to examine whether A2A-R stimulation also caused inhibition of proliferation assessed using \(^{3}\)H-thymidine incorporation assays. Transfected cells were first sorted by the expression of hrGFP and stimulated with NGF in the presence or absence of CGS for 3 days. As shown in Fig. 6, chronic NGF reduced \(^{3}\)H-thymidine incorporation. As expected, p53 blockage using R273H-p53 elevated the \(^{3}\)H-thymidine incorporation in the presence of NGF. Most importantly, upon p53 blockage, stimulation of the A2A-R using CGS lowered \(^{3}\)H-thymidine incorporation in the presence of NGF to a level similar to that treated with NGF alone in vector-transfected cells.

We next performed the BrdU incorporation assay to verify whether modulation of proliferation was involved in A2A-R’s rescue effect. As shown in Fig. 7 and Table 3, blocking the p53-mediated pathway using a p53 mutant (R273H-p53) reversed NGF-reduced DNA synthesis. Overexpression of TRAX caused a reduction in BrdU incorporation in a p53-independent manner. Furthermore, downregulation of endogenous TRAX by overexpression of an antisense TRAX construct abolished the decrease in DNA synthesis mediated by A2A-R activation, but not
by NGF treatment in either the absence or presence of p53 blockage. TRAX therefore appears to mediate the A2A-R rescue effect by suppressing proliferation in a p53-independent manner.

It was suggested that the antimitotic activity of NGF is required for differentiation (Mark and Storm, 1997). The above findings demonstrate that A2A-R stimulation and TRAX overexpression might cause cessation of proliferation in PC12 cells. We next examined whether A2A-R activation might turn a mitogenic factor (e.g., EGF) into a differentiating factor through inhibiting proliferation. In PC12 cells, both NGF and EGF stimulation led to a similar signal transduction pathway (Morooka and Nishida, 1998). Nevertheless, unlike NGF, EGF promoted PC12 proliferation without evident morphological alterations (Huff et al., 1981; Maher, 1988). As shown in Fig. 8A, in combination with EGF, both an A2A-R-selective agonist (CGS) and FK induced neurite outgrowth. Interestingly, downregulation of TRAX using an antisense approach suppressed the neurite-inducing effect of CGS, but not that of FK. In addition, overexpression of TRAX induced neurite outgrowth (Fig. 8B) and suppressed DNA synthesis (Fig. 8C) in the presence of EGF. These results support our hypothesis that stimulation of the A2A-R causes a reduction in proliferation and subsequently enables EGF to trigger neuronal differentiation through a TRAX-dependent pathway.
DISCUSSION

Many studies have shown that GPCR-interacting molecules participate in the desensitization, trafficking, targeting, signaling, fine-tuning, and allosteric regulation of GPCRs (Brady and Limbird, 2002; Heuss and Gerber, 2000; Presland, 2004). Ample evidence suggests that these interacting molecules have diverse functions and affect GPCRs’ actions through direct interactions. Compared to other GPCRs, the C terminus of the A2A-R is relatively long. An actin-binding protein was previously shown to interact with the C terminus of the A2A-R and to contribute to the rapid desensitization process (Burgueno et al., 2003). A de-ubiquitination enzyme (Usp4) was shown to interact with the A2A-R. This interaction allows the A2A-R to remain in the de-ubiquitinated state and to enhance the receptor’s expression on the cell surface (Milojevic et al., 2005). In addition, the C terminus of the A2A-R binds to a nucleotide exchange factor for ARF6 (ARNO) which mediates the sustained, G protein-independent activation of MAP kinase by the A2A-R (Gsandtner et al., 2005). This is of particular interest because ARNO and ARF6 have been implicated in axonal elongation and branching (Hernandez-Deviez et al., 2004). These findings together with our data presented herein suggest that the C terminus of the A2A-R appears to form complexes with multiple proteins (designated A2A-R signalosome) and to mediate G protein-independent actions of the A2A-R. We therefore cannot exclude the possibility that in addition to hijacking TRAX from its association with the A2A-R, expression of the A2A-R’s C terminus might also interfere with other A2A-R-interacting proteins (such as ARNO) which contribute to the A2A-R’s rescue effect (Fig. 1E). Nevertheless, multiple lines of evidence clearly demonstrate that TRAX plays a crucial role in the A2A-R’s rescue effect. First, overexpression of TRAX rescued the reduced neurite outgrowth caused by p53 blockage as did A2A-R stimulation (Fig. 5B). Second, downregulation of endogenous TRAX suppressed the A2A-R’s ability to
rescue the p53 blockage (Fig. 5C). TRAX therefore appeared to mediate the A2A-R’s rescue effect by inhibiting the proliferation of PC12 cells (Table 3; Figs. 6~8).

Accumulating evidence suggests that NGF evokes neuronal differentiation in PC12 cells through multiple processes including the MAPK cascade and the p53/p21 pathway (Hughes et al., 2000; Pang et al., 1995). Blocking either pathway hinders NGF-induced differentiation. Damage occurring at the MAPK cascade or the p53/p21 pathway with NGF treatment can be rescued by A2A-R stimulation through distinct mechanisms. When the NGF-evoked MAPK pathway is blocked, A2A-R stimulation rescues the NGF-induced neurite outgrowth via a PKA/CREB-dependent pathway (Cheng et al., 2002). In contrast, when the NGF-induced p53 pathway is suppressed, damaged neurite outgrowth is compensated by A2A-R stimulation through a PKA-independent pathway. Expression of a dominant negative MAPK mutant (Cheng et al., 2002; Seth et al., 1992) did not jeopardize the ability of the A2A-R to rescue the blockage of neurite outgrowth caused by p53 damage (data not shown), suggesting that MAPK is unlikely to be involved. Because chronic CGS treatment led to a sustained but low level of cAMP elevation (Fig. 2), the role of cAMP therefore is interesting. Using various kinase inhibitors, we demonstrated that PKA is not involved (Table 1). Another important cAMP effector, Epac (Bos, 2003), has recently been shown to convert a PKA-mediated proliferative signal into a differentiation signal in PC12 cells (Kiermayer et al., 2005). Also, activation of the A2A-R during hypoxia or by a prokaryotic nucleoside has been shown to induce neurite outgrowth via a cAMP-dependent pathway (Charles et al., 2003; O’Driscoll and Gorman, 2005). Although TRAX appears to play the major role in mediating A2A-R’s rescue effect on p53 blockage (Fig. 5, Table 3), we cannot completely rule out the potential involvement of Epac. In the future, it will be of
great interest to assess whether Epac is involved in the TRAX-mediated suppression of proliferation by A2A-R stimulation.

TRAX was originally identified as a Translin-interacting protein (Aoki et al., 1997). Binding with TRAX greatly reduces the ability of Translin to bind to RNA, but not to DNA (Chennathukuzhi et al., 2001). Both TRAX and Translin have been found in centrosomes and are believed to play critical roles in cell cycle controls (Castro et al., 2000; Ishida et al., 2002). Indeed, downregulation of TRAX using the siRNA approach was shown to reduce the growth rate in HeLa cells (Yang et al., 2004), suggesting that TRAX plays a central role in proliferation. Surprisingly, overexpression of TRAX in PC12 caused a reduction in proliferation (Table 3). Cell-type specificity might have contributed to such a discrepancy. Recent studies have indicated that TRAX might work in concert with other interacting molecules. For example, TRAX interacts specifically with the nuclear matrix protein, C1D, an activator of DNA-dependent protein kinase (Erdemir et al., 2002) and an upstream activator of p53 (Rothbarth et al., 1999). In addition, four other interacting proteins of TRAX (i.e., snaxip1, MEA-2, Akap9, and Sun-1), which are located in the cytoplasmic fractions, have been reported (Bray JD, 2002). In the present study, we identified the A2A-R, a membrane protein, as a novel TRAX-interacting protein. The mechanism employed by TRAX to suppress proliferation upon A2A-R activation is currently unclear. Because p21 is a major downstream target of p53 for cell cycle regulation, we performed experiments to determine whether the rescue effect of A2A-R/TRAX is mediated by p21. In agreement with a previous report (Yan and Ziff, 1995), NGF treatment elevated p21 (Supplementary Materials, Fig. S-6). Blocking p53 signaling using R273H-p53 markedly reduced the p21 expression level under all conditions tested. The A2A-R’s ability to regulate proliferation thus appears to be independent of the p53/p21 pathway. Results of a recent study
employing Translin-null mice suggest that post-transcriptional stabilization is important for TRAX’s function in proliferation (Yang et al., 2004). Since a de-ubiquitination enzyme exists in the A2A-R signalosome and TRAX is an ubiquitinated protein (Milojevic et al., 2005; Yang et al., 2004), it will be of great interest to examine whether A2A-R stimulation regulates the ubiquitination/expression of TRAX and subsequently impacts proliferation. Another interesting aspect is that Translin and TRAX were found to bind to a non-protein-coding RNA (BC1) and form ribonucleoprotein particles (Muramatsu et al., 1998). These ribonucleoprotein particles are translocated to neuronal dendrites and might play a modulating role in local translation within dendrites in response to activity-dependent regulation (Kobayashi et al., 1998). The interaction between TRAX and the A2A-R might thus provide a novel link which allows a membrane protein to transmit signals to the nucleus or to the translational machinery upon extracellular stimuli.

Accumulating evidence suggests that p53 is critical for embryonic development. Mice expressing no p53 exhibit high-frequency developmental abnormalities including early embryonic death, neural tube defects, and craniofacial malformations (Armstrong et al., 1995). Moreover, p53 has been implicated in neuronal apoptosis upon various stresses (Herzog et al., 1998; Jordan et al., 2003), and is believed to contribute to the synaptic dysfunction of neurodegenerative diseases (Gilman et al., 2003; Jordan et al., 2003). Suppression of the p53-mediated pathway has been reported under various conditions. For example, in Huntington’s disease, mutant Huntingtin aggregates recruit p53 and subsequently alter the activities of the p53-regulated promoters, p21 and MDR-1 (Bae et al., 2005; Steffan et al., 2000). Furthermore, addictive drugs were found to elevate the expression of murine double minute clone 2 (MDM2), a negative regulator of p53, suggesting the involvement of p53/Mdm2 in the development of drug addition (Jiang et al., 2003). Most importantly, germline and somatic mutations which
inactivate the transactivating function of p53 have been well-documented in a wide spectrum of tumor types (Malkin, 2001). Results of the present study suggest that stimulation of the A2A-R might rescue the function of neurotrophins through TRAX upon p53 inactivation. Another intriguing finding reported herein is that A2A-R stimulation converted a mitogenic factor (EGF) into a differentiating factor via suppression of proliferation in a TRAX-dependent manner (Fig. 7, Table 3). Note that expression of the A2A-R is found in many areas of the brain (Lee et al., 2003), and has previously been implicated in neuronal development due to its dynamic expression during embryogenesis (Weaver, 1993). The role of the A2A-R in modulating and compensating neuronal functions in vivo therefore might be more important than previously recognized.

In summary, we provide evidence to demonstrate that the C terminus of the A2A-R interacts with TRAX to suppress proliferation in PC12 cells. These findings add additional dimensions to the multiple signaling pathways which a GPCR employs to transmit signals and modulate functions. Results of the present study also provide important insights into the cross-talk between trophic factors (differentiating or mitogenic factors) and the A2A-R in neuronal trauma and neurological diseases.
ACKNOWLEDGEMENTS

We are grateful to Dr. F. F. Wang (Department of Biochemistry, Yang Ming University, Taipei, Taiwan) for the dominant negative p53 mutants and Dr. Sheau-Yann Shieh (Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan) for valuable discussion. We also thank Dr. Pauline Yen, Mr. Dan Chamberlin, and Ms. Christine Shieh for editing the manuscript, and Ms. Yi-Chih Wu and Mr. Hua-an Tseng for construct preparations.
REFERENCES

MOL 21261

FOOTNOTES

* This work was supported by grants from the National Science Council (NSC93-2320-B-001-009 and NSC94-2320-B-001-030) and Academia Sinica, Taipei, Taiwan.

Address correspondence to: Yijuang Chern, Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan, Tel. 886-2-26523913; Fax, 886-2-27829143; E-mail: bmychern@ibms.sinica.edu.tw

1 Sun C-N, Cheng H-C, and Chou J-I contributed equally to this work.
Fig. 1. Stimulation of the A2A-R specifically rescued the suppression of NGF-evoked neurite outgrowth caused by p53 blockage. (A) PC12 cells were transiently transfected with a GFP vector, a construct encoding p53-R175H, wildtype 53, or an empty vector as indicated. One day post-transfection, cells were incubated with normal growth medium containing NGF (100 ng/ml), or NGF plus CGS (1 μM), as indicated for 72 h. Representative merged pictures (right panels) are phase-contrast pictures (left panels) overlaid with images from fluorescence microscopy (middle panels). (B) NGF-evoked neurite-bearing cells transfected with the indicated plasmids treated with NGF or NGF plus CGS were quantified. (C) PC12 cells were transiently transfected with a control vector, or with a vector encoding a p53-R273H mutant along with a GFP vector as indicated. One day post-transfection, cells were incubated with normal growth medium containing NGF or NGF plus CGS for 72 h. (D) PC12 cells were transiently transfected with a control vector or with a vector encoding p53-R175H along with a GFP vector as indicated. One day post-transfection, cells were pretreated with an A2A-R-specific antagonist (CSC, 10 μM) for 30 min before further treatment with NGF or NGF plus CGS for 3 days. (E) Expression of the C terminus of the A2A-R suppressed its rescue effect. PC12 cells were transfected with the indicated cDNAs along with a GFP vector. One day post-transfection, cells were treated with NGF (100 ng/ml) or NGF plus CGS (1 μM) for 72 h. NGF-evoked neurite-bearing cells were quantified. Data are presented as the mean ± SEM values from at least three independent experiments. b Specific comparison between cells treated with or without CGS in each group (p < 0.001; two-way ANOVA). c Specific comparison between cells treated with or without CSC in each group (p < 0.001; two-way ANOVA). e Specific comparison between cells transfected with the indicated plasmid or a control vector (p < 0.001; two-way ANOVA).
Specific comparison between cells transfected with A$_{2A}$-R$_{253-410}$ or a control vector ($p < 0.001$; two-way ANOVA).

Fig. 2. Stimulation of the A$_{2A}$-R elevated the intracellular cAMP content in NGF-treated, R273H-p53-expressing PC12 cells. Cells were transfected with an expression construct of R273H-p53 cells or an empty vector plus an expression vector of hrGFP. Twenty-four hours post-transfection, cells were sorted by the expression of hrGFP and stimulated with the indicated reagent(s) for 3 h (closed bars) or 3 days (shaded bars). Intracellular cAMP levels were measured as described under “Materials and Methods”. Values represent the mean ± SEM of nine determinations and are expressed as percentages of the CGS-induced cAMP response in the cells transfected with an empty vector (37.0 ± 3.3 nmol/million cells). Statistical significance was evaluated by one-way analysis of variance (ANOVA). $^a p < 0.05$ compared with cells in the control, vector-transfected group. $^b p < 0.05$ compared with the cAMP level after 3 h of incubation under the same treatment conditions.

Fig. 3. The A$_{2A}$-R interacted with TRAX at its C terminal domain. (A, B) TRAX bound the striatal A$_{2A}$-R in GST pull-down assays. Striatum membrane fractions (0.4 mg) were solubilized using NP40 (1%), and incubated with GST (1 mg) or GST-TRAX (1 mg) for 60 min at 37 °C. The interacting proteins were then pulled-down using 50 µl of glutathione-Sepharose beads. The blots were probed with an anti-A$_{2A}$-R antibody which recognized the C terminus of the A$_{2A}$-R (A$_{2A}$-Rc; Lee et al., 2003; A) and the A$_{2A}$-R pre-adsorbed with the peptide antigen (A$_{2A}$-R$_{abs}$, B) as indicated. (C-E) The A$_{2A}$-R bound TRAX in HEK293 cells. HEK 293T cells were transfected with A$_{2A}$-R-V5 cDNA along with HA-TRAX cDNA (C) or AMPK cDNA (E) for 72 h. The A$_{2A}$-R-V5 and associated proteins were immunoprecipitated using the V5 antibody, and analyzed for.
the presence of HA-TRAX or an irrelevant protein (AMPK) by Western blotting with an anti-HA or anti-AMPK antibody, respectively. Whole cell lysates (50 µg) were run as input controls as indicated. (D) The amount of TRAX bound to the A2A-R in the absence or presence of CGS21680 (CGS) was quantified and expressed as percentages of TRAX binding in the absence of CGS. Data were generated by quantitative computed densitometry of autoradiograms from three to five independent experiments using the image analysis software package, ImageQuant v.3.15 (Molecular Dynamics). Values represent the mean ± SEM. Statistical significance was evaluated by Student’s t-test. IP, immunoprecipitation; IB, immunoblot. The asterisk (*) indicates a non-specific band of HEK293 cells recognized by the anti-HA antibody.

Fig. 4. **Colocalization of the A2A-R and TRAX in vivo.** (A) Characterization of the anti-TRAX antibody. An equal amount (50 µg) of cytosolic protein from the mouse cerebellum was loaded into each lane for Western blot analysis using the anti-TRAX antibody. The arrow indicates the TRAX band. The addition of the antigen peptide completely removed the immunoreactive band. (B) Double immunostaining of the A2A-R and TRAX in various regions of the brain. TRAX was visualized by the Alexa Fluor® 488 conjugated secondary antibody (green; left panels). The A2A-R was visualized by streptavidin Alexa Fluor® 568 (middle panels). Merged images are shown in the right panels. Scale bars = 6 µm.

Fig. 5. **TRAX mediated the rescue effect of the A2A-R on damaged NGF-induced neurite outgrowth caused by p53 blockage.** (A) PC12 cells were transfected with constructs encoding A2A-R-V5, TRAX, and p53-R273H for 3 days. The A2A-R-V5 was visualized using streptavidin Alexa Fluor® 568 (red). TRAX was visualized using the FITC secondary antibody (green). Arrows indicate the positions of colocalization. (B) Cells were transfected with the indicated
plasmid(s) along with a GFP vector. (C) Cells were transfected with an antisense construct of TRAX (TRAX\textsubscript{AS}) along with a GFP vector. One day post-transfection, cells were treated with NGF (100 ng/ml) or NGF plus CGS (1 \(\mu\)M) for 3 days. Neurite-bearing cells were then quantified. Data represent the mean ± SEM values from at least three independent experiments. \(b\) \(p < 0.001\) compared to the corresponding non-CGS-treated sample (two-way ANOVA). \(c\) Specific comparison between cells transfected with the indicated p53 mutant or the control vector \(p < 0.001\); two-way ANOVA). \(e\) Specific comparison between cells transfected with the corresponding TRAX construct or the control vector \(p < 0.001\); two-way ANOVA). The insert is a representative picture which demonstrates the expression levels of TRAX (upper panel) and the internal control (actin, lower panel) in PC12 cells transfected with an antisense construct of TRAX (TRAX\textsubscript{AS}) or an empty vector (V) by Western blot analysis.

Fig. 6. \(A\textsubscript{2A}\)-R stimulation restored NGF’s ability to suppress proliferation in the presence of R273H-p53 (\(^3\)H-thymidine incorporation assay). PC12 cells were transfected with an expression construct of R273H-p53 or an empty vector plus an expression vector of hrGFP. Twenty-four hours post-transfection, cells were sorted by the expression of hrGFP and stimulated with the indicated reagent(s) for 3 days. \(^3\)H-thymidine incorporation was performed as described under “Materials and Methods”. Values represent the mean ± SEM from 5 ~ 7 independent experiments and are expressed as percentages of \(^3\)H-thymidine incorporation of the control, non-treated cells in each group (17909 ± 2933 CPM/1x10\(^4\) cells for cells transfected with an empty vector and 12738 ± 3260 CPM/1x10\(^4\) cells for cells transfected with an expression construct of R273H-p53). Statistical significance was evaluated by one-way analysis of variance (ANOVA). \(a\) Specific comparison between cells transfected with an empty vector or R273H-p53
(p < 0.05). Specific comparison between cells treated with NGF alone or NGF plus CGS (p < 0.05).

Fig. 7. A2A-R stimulation restored NGF’s ability to suppress proliferation in the presence of R273H-p53 (BrdU incorporation analysis). PC12 cells were transiently transfected with a control or a p53-R273H vector along with a GFP reporter. One day post-transfection, cells were treated with NGF (100 ng/ml), or NGF plus CGS (1 µM) for 4 days. Cells were then labeled with BrdU. Transfected cells were identified by GFP expression visualized using the FITC secondary antibody (green). BrdU incorporation was visualized using streptavidin Alexa Fluor® 568 (red). Arrows indicate transfected cells positive for BrdU incorporation. In order to precisely visualize the BrdU incorporation in the nucleus, pictures were taken with the focus set at the mid-nuclear levels. Neurite outgrowth, which appeared at the bottom layer of the cells, therefore largely cannot be seen in the pictures. Note that approximately 40% of the NGF-treated and R273H-p53-expressing cells exhibited enlarged cell bodies (marked by arrowheads) and short neurites (with diameters of less than two cell bodies) which were not considered neurite-bearing cells in our study. Representative images from three independent experiments are shown.

Fig. 8. A2A-R stimulation enabled a mitogenic factor, EGF, to induce neurite outgrowth and to suppress DNA synthesis through a TRAX-dependent pathway. PC12 cells were transfected with either an empty vector, an antisense construct of TRAX (TRAXAS), or a TRAX expression construct, along with a GFP vector. One day post-transfection, cells were treated with normal growth medium containing no additive, CGS (1 µM), or FK (10 µM) in the presence or absence of EGF (10 ng/ml) for 4 days as indicated. (A, B) Data are expressed as the percentage of neurite-bearing cells, and represent the mean values from three different fields. (C) Cells were
labeled with BrdU. Data (mean ± SEM) are expressed as the percentage of transfected cells incorporating BrdU from three different fields. Transfected cells were identified by GFP expression. Three independent experiments showed similar results.

Specific comparison between cells treated with or without CGS ($p < 0.05$; two-way ANOVA). Specific comparison between cells treated with or without FK ($p < 0.05$; two-way ANOVA). Specific comparison between cells transfected with a control construct or a TRAX expression construct ($p < 0.05$; two-way ANOVA).

Fig. 9. Schematic representation of signaling pathways that mediate the A$_2$A-R's action in rescuing NGF-induced neurite outgrowth abolished by blockage of the p53-mediated proliferation suppression.
Tables

Table 1. **PKA was not required for the A2A-R's rescue effect.** Cells were transfected with an empty vector or a construct encoding p53-R175H or/and a construct encoding PKI along with a GFP vector as indicated. One day post-transfection, cells were pretreated with or without H89 (10 μM) for 30 min before the addition of NGF (100 ng/ml), NGF plus CGS (1 μM), or NGF plus forskolin (FK, 10 μM) for 3 days. NGF-evoked neurite-bearing cells were quantified. Data represent the mean ± SEM values from at least three independent experiments. Specific comparison between cells treated with or without CGS (p < 0.001; two-way ANOVA). Specific comparison between cells treated with or without FK (p < 0.001; two-way ANOVA). Specific comparison between cells transfected with the indicated plasmid or a control vector (p < 0.001; two-way ANOVA).

<table>
<thead>
<tr>
<th>Cell</th>
<th>CGS</th>
<th>FK</th>
<th>Inhibitor</th>
<th>Neurite-Bearing Cells, %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Vector</td>
</tr>
<tr>
<td>PC12</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>35.4±5.2</td>
</tr>
<tr>
<td>PC12</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>42.2±4.8</td>
</tr>
<tr>
<td>PC12</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>39.7±1.3</td>
</tr>
<tr>
<td>PC12</td>
<td>-</td>
<td>-</td>
<td>PKI</td>
<td>34.6±3.4</td>
</tr>
<tr>
<td>PC12</td>
<td>+</td>
<td>-</td>
<td>PKI</td>
<td>38.4±1.8</td>
</tr>
<tr>
<td>PC12</td>
<td>-</td>
<td>+</td>
<td>PKI</td>
<td>38.8±8.1</td>
</tr>
<tr>
<td>PC12</td>
<td>-</td>
<td>-</td>
<td>H89</td>
<td>37.8±4.9</td>
</tr>
<tr>
<td>PC12</td>
<td>+</td>
<td>-</td>
<td>H89</td>
<td>46.2±0.8</td>
</tr>
<tr>
<td>A123</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>43.7±1.5</td>
</tr>
<tr>
<td>A123</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>45.4±4.0</td>
</tr>
</tbody>
</table>
Table 2. **PKC was not required for A2A-R's rescue effect.** PC12 cells were transiently transfected with an empty vector or p53-R175H along with a GFP vector. One day post-transfection, cells were pretreated with the indicated inhibitor (CHE, 1 μM; BIM, 1 μM) for 30 min before the addition of NGF (100 ng/ml) in the absence or presence of CGS (1 μM) as indicated for 72 h. Values represent the mean ± SEM. \(^b\) Specific comparison between cells treated with or without CGS (\(p < 0.001\); two-way ANOVA). \(^c\) Specific comparison between cells transfected with R175H or a control vector (\(p < 0.001\); two-way ANOVA).

<table>
<thead>
<tr>
<th>CGS</th>
<th>Inhibitor</th>
<th>Neurite-Bearing Cells, %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Vector</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>35.2±1.2</td>
</tr>
<tr>
<td>+</td>
<td>-</td>
<td>46.4±3.5</td>
</tr>
<tr>
<td>-</td>
<td>CHE</td>
<td>37.8±2.4</td>
</tr>
<tr>
<td>+</td>
<td>CHE</td>
<td>46.2±3.5</td>
</tr>
<tr>
<td>-</td>
<td>BIM</td>
<td>37.4±5.8</td>
</tr>
<tr>
<td>+</td>
<td>BIM</td>
<td>48.1±4.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R175H</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11.1±4.1 (^e)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>44.7±8.2 (^b)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14.1±4.1 (^e)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>43.7±7.1 (^b)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13.3±2.6 (^e)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>38.4±7.5 (^b)</td>
</tr>
</tbody>
</table>
Table 3. **Stimulation of A_{2A}-R blocked BrdU incorporation through its interacting protein, TRAX.** PC12 cells were transfected with an empty vector, a p53-R273H vector, a TRAX construct, or an antisense TRAX construct (TRAX_{AS}) as indicated along with a GFP vector. One day post-transfection, cells were treated with NGF (100 ng/ml) or NGF plus CGS (1 μM) for 4 days. Cells were then labeled with BrdU. Transfected cells were identified by GFP expression. Data (mean ± SEM) represent the percentage of transfected cells incorporated BrdU from three different fields. Three independent experiments showed similar results.

<table>
<thead>
<tr>
<th>R273H</th>
<th>NGF</th>
<th>CGS</th>
<th>Vector (%)</th>
<th>TraX (%)</th>
<th>TraX<sub>AS</sub> (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>26.5±2.9</td>
<td>11.3±1.6</td>
<td>19.3±1.9</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>+</td>
<td>12.9±1.0</td>
<td>8.8±1.6</td>
<td>21.2±3.0</td>
</tr>
<tr>
<td>-</td>
<td>+</td>
<td>-</td>
<td>2.3±0.9</td>
<td>5.1±1.9</td>
<td>5.2±2.0</td>
</tr>
<tr>
<td>-</td>
<td>+</td>
<td>+</td>
<td>2.9±2.0</td>
<td>3.7±1.8</td>
<td>13.4±1.6</td>
</tr>
<tr>
<td>+</td>
<td>-</td>
<td>-</td>
<td>20.5±2.8</td>
<td>13.0±1.2</td>
<td>23.1±2.4</td>
</tr>
<tr>
<td>+</td>
<td>-</td>
<td>+</td>
<td>15.0±0.6</td>
<td>13.1±0.5</td>
<td>19.1±0.8</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>-</td>
<td>13.9±0.8</td>
<td>9.4±0.5</td>
<td>15.3±1.3</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>+</td>
<td>7.3±0.6</td>
<td>6.1±0.8</td>
<td>12.2±0.3</td>
</tr>
</tbody>
</table>
Fig. 1

B.

% Neurite-Bearing Cells

<table>
<thead>
<tr>
<th></th>
<th>Vector</th>
<th>WT</th>
<th>R175H</th>
</tr>
</thead>
<tbody>
<tr>
<td>NGF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NGF/CGS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C.

% Neurite-Bearing Cells

<table>
<thead>
<tr>
<th></th>
<th>Vector</th>
<th>R273H</th>
</tr>
</thead>
<tbody>
<tr>
<td>NGF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NGF/CGS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

D.

% Neurite-Bearing Cells

<table>
<thead>
<tr>
<th></th>
<th>Vector</th>
<th>R175H</th>
</tr>
</thead>
<tbody>
<tr>
<td>NGF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CGS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSC</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

E.

% Neurite-Bearing Cells

<table>
<thead>
<tr>
<th></th>
<th>NGF</th>
<th>CGS</th>
<th>R273H</th>
<th>A2A-R253-410</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fig. 2

![Graph showing relative cAMP content over time with different treatments.](molpharm.aspetjournals.org)
Fig. 6

![Graph showing % 3H-thymidine incorporation](image-url)

- **NONE**
 - Vector: [Bars with error bars]
 - R273H: [Bars with error bars]
- **NGF**
 - Vector: [Bars with error bars]
 - R273H: [Bars with error bars]
- **NGF/CGS**
 - Vector: [Bars with error bars]
 - R273H: [Bars with error bars]

Legend:
- Vector
- R273H

Statistical significance:
- a
- b
- a, b
Fig. 8

A. % Neurite-Bearing Cells

Vector TRAX_{AS}

CGS - + - - + - -
FK - - + - - + -
EGF - - - + + + +

B. % Neurite-Bearing cells

Vector TRAX

CON - - - - - - -
EGF e e e e e e e

C. % BrdU Incorporation

Vector TRAX

CGS - - - - - - -
EGF + + + + + + +
Fig. 9

- \(A_{2A} - R \) → PKC → PKA → TRAX → proliferation
- NGF-Rs → PI3K → MAPK → p53 → p21 → CREB → differentiation