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Abstract 
 

DNA topoisomerase I (Top1) is the target of camptothecin and novel Top1 inhibitors are 

in development as anticancer agents. Top1 inhibitors damage DNA by trapping covalent 

complexes between the Top1 catalytic tyrosine and the 3’-end of the broken DNA. 

Tyrosyl-DNA phosphodiesterase (Tdp1) can repair Top1-DNA covalent complexes by 

hydrolyzing the tyrosyl-DNA bond. Inhibiting Tdp1 has the potential to enhance the 

anticancer activity of Top1 inhibitors (http://discover.nci.nih.gov/pommier/pommier.htm) 

and to act as antiproliferative agents. In the present study, we report that neomycin 

inhibits Tdp1 more effectively than the related aminoglycosides paromomycin and 

lividomycin A. Inhibition of Tdp1 by neomycin is observed both with single- and double-

stranded substrates but is slightly stronger with duplex DNA, which is different from 

aclarubcin, which only inhibits Tdp1 with the single-stranded substrate.  Inhibition by 

neomycin can be overcome with excess Tdp1 and is greatest at low pH. To our 

knowledge, aminoglycoside antibiotics and the ribosome inhibitors thiostrepton, 

clindamycin-2-phosphate and puromycin are the first reported pharmacological Tdp1 

inhibitors. 
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Introduction 
 
DNA topoisomerase I (Top1) is ubiquitous and essential in higher eukaryotes. It relieves 

DNA torsional stress and relaxes DNA supercoiling by introducing DNA single-strand 

breaks, which are produced by the covalent linking of the Top1 catalytic tyrosine residue 

(Y723 in humans) to a 3'-DNA phosphate. Thus, these breaks are referred to as “Top1 

cleavage complexes” (Champoux, 2001; Wang, 2002). Once the DNA is relaxed, each 

break is religated as the 5'-end of the broken DNA reseals the break by attacking the 

phosphotyrosyl bond, which releases Top1. Top1-DNA cleavage complexes are normally 

undetectable because they are very transient [for review see (Champoux, 2001; Pommier 

et al., 1998; Wang, 2002). 

Top1 cleavage complexes can selectively be trapped by the natural alkaloid 

camptothecin (Hsiang et al., 1985) as the drug binds at the enzyme-DNA interface and 

prevents DNA religation (Pommier and Cherfils, 2005). Two camptothecin derivatives 

are used in cancer therapy: hycamtin (Topotecan®) and CPT-11 (Irinotecan; Camptosar®) 

and several families of non-camptothecin inhibitors are being developed as novel 

anticancer agents (Meng et al., 2003). Top1 cleavage complexes can also be trapped by 

endogenous DNA lesions including abasic sites, mismatches, oxidized bases, nicks and 

carcinogenic DNA adducts (Pommier et al., 2006; Pommier et al., 2003; Pourquier and 

Pommier, 2001). Hence, DNA modifications such as those associated with oxidative 

damage [thousands per cell per day] can stabilize Top1 cleavage complexes (Pourquier 

and Pommier, 2001; Sordet et al., 2004). By contrast to camptothecins and other Top1 

inhibitory drugs, these DNA modifications produce irreversible cleavage complexes 

when the 5’-end of the DNA is irreversibly misaligned as in the case of abasic sites  or 

DNA breaks (Pommier et al., 2006; Pommier et al., 2003; Pourquier and Pommier, 

2001). The irreversible cleavage complexes are commonly referred to as “suicide 

complexes”. Reversible cleavage complexes trapped by drugs can also be converted into 

irreversible complexes after collision of replication forks or transcription complexes with 

the Top1 cleavage complexes [reviewed in (Pommier et al., 2003)]. 

Tyrosyl-DNA phosphodiesterase (Tdp1) was discovered as an enzyme that specifically 

removes the 3'-phosphotyrosyl adducts (Pouliot et al., 1999; Yang et al., 1996). Top1 

needs to be proteolyzed (Debethune et al., 2002) or denatured (Interthal et al., 2005a) for 
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Tdp1 to hydrolyze the tyrosyl-DNA bond. Top1 degradation and ubiquitination have 

indeed been observed following camptothecin treatment (Desai et al., 1997). Tdp1 

orthologs are present in all eukaryotic species examined, including yeasts and humans 

(Interthal et al., 2001; Pouliot et al., 1999). Sequence comparisons (Interthal et al., 2001) 

and structural studies (Davies et al., 2002b) revealed that Tdp1 is a member of the 

phospholipase D (PLD) superfamily, which also includes a bacterial toxin, poxvirus 

envelope proteins, and bacterial nucleases (Interthal et al., 2001). 

In humans, homozygous mutation in the TDP1 gene (1478A-G) resulting in 

substitution of histine 493 with arginine is responsible for “spinocerebellar ataxia with 

axonal neuropathy” (SCAN1) (Paulson and Miller, 2005; Takashima et al., 2002). Recent 

studies demonstrated that SCAN1 cells are hypersensitive to camptothecin (Interthal et 

al., 2005b) and that Tdp1 is required for the repair of abortive Top1 cleavage complexes 

(El-Khamisy et al., 2005). Tdp1 forms multi-protein complexes with the single-strand 

break repair XRCC1 complexes (Plo et al., 2003) by direct interaction with DNA ligase 

III (El-Khamisy et al., 2005). These complexes are catalytically defective in SCAN1 cell 

extracts (El-Khamisy et al., 2005), which accumulate Tdp1-DNA intermediates (Interthal 

et al., 2005b). Tdp1 can also remove glycolate residues from the 3’-end of DNA 

(Inamdar et al., 2002). 3’-phosphoglycolate is a common byproduct of DNA double-

strand breaks caused by oxidative fragmentation of DNA sugars, which occur as a result 

of ionizing radiation and oxidative DNA damage (Inamdar et al., 2002). Consistently, 

extracts from SCAN1 cells are deficient in processing 3’-phosphoglycolate (Zhou et al., 

2005). Thus, Tdp1 appears to repair Top1-DNA adducts and free-radical-mediated DNA 

breaks. Since the later can also generate Top1 covalent complexes (Pourquier and 

Pommier, 2001), Top1repair is probably a critical function of Tdp1. 

 In budding yeast, a T722A mutant Top1 that induces high level of cleavage complexes 

by increasing their stability results in low viability (Pouliot et al., 2001). However, Tdp1 

deficiency alone does not confer hypersensitivity to Top1 cleavage complexes unless an 

additional mutation of the RAD9 checkpoint gene (Pouliot et al., 2001) or the RAD1 

endonuclease gene (Liu et al., 2002; Vance and Wilson, 2002) is associated with a Tdp1 

null-mutation [reviewed in (Pommier et al., 2006; Pommier et al., 2003) and at 

http://discover.nci.nih.gov/pommier/pommier.htm]. Moreover, Tdp1 overexpression in 
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human cells counteracts DNA damage mediated not only by Top1 but also by Top2 

(Barthelmes et al., 2004). Because cancer cells are characteristically defective in 

checkpoint and DNA repair, and oncogenic transformation produces high levels of 

oxidative radicals, it is plausible that Tdp1 inhibitors might be used for anticancer 

treatment alone or more likely in combination with camptothecins or other Top1 

inhibitors. 

The present study reports the first pharmacological inhibitors for Tdp1. The only other 

inhibitors of Tdp1 are vanadate and tungstate, which are general inhibitors of a variety of 

enzymes involved in phosphoryl transfer reactions (Davies et al., 2002a). Using 

recombinant human Tdp1 and model tyrosyl-oligonucleotides substrates, we show that 

antibiotics that target bacterial ribosomes can inhibit Tdp1 activity. 

 

 

MATERIALS AND METHODS 

 

Drugs and Reagents. Neomycin (Neo) and other chemicals were from Sigma-Aldrich 

(St. Louis, MO). HPLC purified oligonucleotides were purchased from the Midland 

Certified Reagent Co. (Midland, TX). 

 

Preparation of human Tdp1. Human Tdp1 expressing plasmid pHN1910 (a gift from Dr. 

Howard Nash, Laboratory of Molecular Biology, NIMH, NIH) was constructed using 

vector pET-15b (Novagen, San Diego, CA) with full length human Tdp1 and an 

additional His-tag sequence of MGSSHHHHHHSSGLVPRGSHMLEDP in its N-

terminus. The His-tagged human Tdp1 was purified from Novagen BL21 cells using 

HiTrap™ Chelating HP (Amersham Biosciences, Piscataway, NJ) according to the 

company’s protocol. Samples were assayed immediately. Tdp1 fractions were pooled and 

dialyzed with dialysis buffer (10% glycerol, 50 mM Tris-HCl, pH 8.0, 100 mM NaCl, 10 

mM β–mercaptoethanol, 2 mM EDTA). Dialyzed samples were aliquoted and stored at -

80oC. Tdp1 concentration was determined using Bradford protein assay (Bio-rad 

Laboratories, Hercules, CA) and its purity was analyzed by SDS-polyacrylamide gel 

electrophoresis (SDS-PAGE) (see Fig. 1B). 
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Preparation of Tdp1 substrates. HPLC purified oligonucleotides N14Y (see Fig. 1A) 

(Plo et al., 2003) were labeled at their 5'-end with [ γ-32P]-ATP  (Perkin-Elmer Life 

Science Co., Boston, MA) by incubation with 3'-phosphatase free T4 polynucleotide 

kinase (Roche applied Science, Indianapolis, IN) according to the manufacturer’s 

protocols. Unincorporated nucleotides were removed by Sephadex G-25 spin-column 

chromatography (Mini Quick Spin Oligo Columns, Roche, Indianapolis, IN). For the 

production of the oligonucleotide duplexes D14Y, N14Y was mixed with the 

complementary oligonucleotide (see Fig. 1A) in equal molar ratios in annealing buffer 

(10 mM Tris–HCl pH 7.5, 100 mM NaCl, 10 mM MgCl2), heated to 96oC, and allowed to 

cool down slowly (over 2 h) to room temperature. 

 

Tdp1 assays. Unless indicated otherwise, Tdp1 assays were performed in 20 µl mixtures 

containing 50 mM Tris–HCl, pH 8.0, 80 mM KCl, 2 mM EDTA, 1 mM dithiothreitol 

(DTT), and 40 µg/ml bovine serum albumin (BSA). For initial screening of Tdp1 

inhibitors, 25 nM of 5'-32P-labeled substrate (D14Y) was reacted with 1 ng Tdp1 (≈ 0.7 

nM) in the absence or presence of inhibitor for 20 min at 25oC. Reactions were stopped 

by addition of 60 µl of gel loading buffer (98% (v/v) formamide, 1% (w/v) xylene 

cyanol, 1% (w/v) bromophenol blue). Twelve µl of aliquots were resolved in 20% 

denaturing polyacrylamide (AccuGel, National Diagnostics, Atlanta, GA) (19:1) gel 

containing 7 M urea. After drying, gels were exposed overnight to PhosphorImager 

screens (Molecular Dynamics, Sunnyvale, CA). Screens were scanned, and images were 

obtained with the Molecular Dynamics software (Sunnyvale, CA). Densitometry analyses 

were performed using ImageQuant 5.2 software package (Amersham Biosciences, 

Piscataway, NJ). Tdp1 activity was determined by measuring the fraction of substrate 

converted into 3'-phosphate DNA product by densitometry analysis of the gel image 

(Debethune et al., 2002). Figures show representative results that were consistently 

reproduced at least three times. 

 

 

Results 
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Inhibition of Tdp1 by aminoglycosides and other antibiotic ribosome inhibitors.  It was 

reported that sodium vanadate, a phosphatase inhibitor inhibits Tdp1 activity (Davies et 

al., 2002a). As expected, vanadate inhibited Tdp1 under our assay conditions (Fig. 1C). 

Its inhibitory activity has been related to its phosphate-mimicking activity and/or its 

activity as a transition state analog (Davies et al., 2002a; Davies et al., 2003; Davies et 

al., 2004). Because Tdp1 is a member of phospholipase D superfamily (Davies et al., 

2002b) and neomycin was reported to inhibit PLD (Huang et al., 1999), we tested 

whether neomycin could also inhibit Tdp1 activity. Using Tdp1 biochemical assays (Fig. 

1A), we found that neomycin also inhibits purified recombinant Tdp1 (Fig. 1C-D). The 

two neomycin analogs, paromomycin and lividomycin also inhibited Tdp1 activity at 

slightly higher concentrations (Fig. 1D). Because neomycin, paromomycin, lividomycin 

and other aminoglycosides are known inhibitors of bacterial ribosomes (Schroeder et al., 

2000), we tested other aminoglycosides and non-aminoglycoside ribosomal inhibitors 

(Moore and Steitz, 2003). Figure 2A shows the structures and Tdp1 inhibitors activity of 

various ribosomal inhibitors against Tdp1. The most active inhibitors were neomycin 

(IC50 = 8 mM) and thiostrepton (1.8 mM). However, some activity was found for 

clindamycin-2-phosphate and puromycin albeit at higher concentration. Although these 

concentrations are high, reactions were performed at saturating Tdp1 activity (20 min 

reactions with 1 ng Tdp1; see Fig. 4A and Fig. 5 for greater inhibition under different 

conditions). 

 

Neomycin inhibits the processing of both duplex and single-stranded DNA by Tdp1.  

As partially duplex DNA and single-stranded DNA are both substrates for Tdp1 (Davies 

et al., 2003; Pouliot et al., 2001; Yang et al., 1996), we compared the inhibition of Tdp1 

by neomycin using the D14Y and N14Y substrates (Fig. 3). Panels A and B (Fig. 3) show 

that neomycin inhibits the processing of both the single- and double-stranded substrates 

by Tdp1 although neomycin was slightly more effective with the duplex substrate. By 

contrast, sodium vanadate was similarly active with both single- and double-stranded 

substrates, and aclarubicin, a known DNA intercalator inhibited Tdp1 selectively with 
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double-stranded DNA (Fig. 3C). We conclude that neomycin inhibits Tdp1 activity both 

with single- and double-stranded DNA substrates. 

 

Kinetics of Tdp1 inhibition by neomycin.  As mentioned above, the initial assays (Figs. 

1-3) had been performed at one time point (20 min) under conditions where Tdp1 fully 

converts the substrate in the absence of inhibitor (1 ng, pH 8.0). Figure 4 (panel A, left; 

and circles in panels B and C) shows that under these conditions, Tdp1 converted more 

than 90% of the D14Y substrate within 3 minutes. Thus, we wished to determine whether 

concentrations of neomycin below its determined IC50 would affect the kinetics of Tdp1 

activity. Tdp1 activity was slowed down at 1 mM neomycin, a concentration producing 

no detectable inhibition after a 20 min reaction (Fig. 4A and B). Kinetic plots 

demonstrated that 1 mM neomycin increased the conversion half-time (T1/2) of D14Y 

from 0.5 min in the absence of drug to 3 min in the presence of 1 mM neomycin and 8 

min in the presence of 2 mM neomycin (Fig. 4C). These experiments suggest that 

neomycin produces reversible inhibition of Tdp1. 

 

Tdp1 inhibition by neomycin depends on time of addition, Tdp1 concentration, and 

reaction pH.  To test whether DNA binding contributes to the inhibitory effect of 

neomycin, we performed order of addition experiments. Pre-incubating the DNA 

substrate for 20 min with neomycin before addition of Tdp1 diminished the inhibitory 

potency of neomycin (compare open and closed triangles in Fig. 4C). By contrast, pre-

incubating neomycin with Tdp1 for 20 min before adding the DNA gave similar 

inhibition as experiments done without pre-incubation (not shown). These results suggest 

that Tdp1 is preferentially inhibited when neomycin binds to the Tdp1-DNA complex 

(see Discussion). 

 Increasing Tdp1 concentration was able to overcome Tdp1 inhibition by neomycin 

even when neomycin was present at 10 mM drug concentration (Fig. 5A-B). Thus, free 

Tdp1 competes with neomycin. Moreover, if DNA were the only target of neomycin, 

inhibition should not depend on Tdp1 concentration, which is not what we observed (Fig. 

5A-B). These results suggest that neomycin inhibiting Tdp1 by binding directly to Tdp1. 
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 Neomycin tends to be protonated and to bind nucleic acids better at acidic pH than at 

pH 8.0, which is the pH used in the prior experiments and in previous publications 

(Debethune et al., 2002; Pouliot et al., 2001; Pouliot et al., 1999; Raymond et al., 2004). 

As nuclear pH is also acidic, we examined Tdp1 inhibition by neomycin at pH 6.4. Figure 

5C shows that Tdp1 activity decreases with pH (Raymond et al., 2005). Nevertheless, 

after 20 min reaction (dotted line in Fig. 5C), substrate processing was nearly the same at 

pH 6.4 and 8. Under these conditions, neomycin was more effective at pH 6.4 than at pH 

8.0 (IC50 = 1.8 mM vs. 8 mM, respectively) (Fig. 5D). 

 To gain an appreciation of neomycin IC50 at physiological pH under non-saturating 

conditions, we lowered Tdp1 concentration to 0.1 ng and the Tdp1 reaction time to 8 min. 

Figure 5D shows that under these conditions, the IC50 for neomycin was approximately 

0.25 mM, which is in the range of concentrations for inhibition of the ribosome and the 

spliceosome. 

 

 

Discussion 
 

This study suggests that antibiotics could serve as a basis for the discovery and design of 

Tdp1 inhibitors. Tdp1 is conserved from yeast to humans, which suggests its functional 

importance. Tdp1 is involved in the removal of covalent Top1-DNA complexes 

following degradation or denaturation of the Top1 polypeptide covalently linked to the 

3’-end of DNA (Debethune et al., 2002; Interthal et al., 2005a; Yang et al., 1996). Tdp1 

is also involved in the repair of oxidative damage by removing glycolate residues from 

the 3’-end of DNA breaks (Inamdar et al., 2002; Zhou et al., 2005). The development of 

Tdp1 inhibitors as anticancer agents can be envisioned as combinations of Tdp1 and 

Top1 inhibitors. Tumor cells, whose repair pathways are commonly deficient, might be 

selectively sensitized to Top1 inhibitors compared to normal cells that contain redundant 

repair pathways. Moreover, Tdp1 inhibitors might also be effective by themselves as 

anticancer agents as oncogenic activation tends to increase free radical production and 

genomic instability (Cerutti, 1985). Also, Tdp1 inhibitors might be valuable as anti-

infectious agents since the gene is present in parasites. 
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 The inhibitors reported in the present study all bind RNA motifs present in bacterial 

ribosomes. Neomycin is a polycationic aminoglycoside antibiotic with a four-membered 

ring structure consisting of a 2-deoxystreptamine ring linked to several amino sugars 

(Kotra et al., 2000) (see Fig. 2A). Neomycin interacts with the 16S rRNA of the 30S 

ribosomal subunits within an internal loop in the decoding site (Schroeder et al., 2000). 

Binding between the rRNA of the internal loop and rings I and II of the aminoglycoside 

antibiotic distort the A-site and leads to amino acid misincorporation (Moore and Steitz, 

2003; Ogle et al., 2001; Schroeder et al., 2000). Neomycin, which differs in structure 

from paromomycin by the change of single amino group by hydroxyl on the C'6 position 

of ring I (Fig. 2A), showed approximately 2-fold greater inhibition for Tdp1 than 

paromomycin and lividomycin (Fig. 2A). Protonation of the neomycin amino groups is 

probably important for inhibition since neomycin was more effective at pH 6.4 than pH 

8.0 (approximately 4-fold) (Fig. 5D). The same increase in activity at acidic pH (pH 6.4 

is close to cellular nuclear pH) was also observed for paromomycin and lividomycin 

(data not shown), which indicates that protonation increases the inhibitory activity of 

aminoglycosides. 

 Although protonation increases the binding of neomycin to RNA, our experiments 

suggest that the inhibitory effect of neomycin is probably not simply related to nucleic 

acid binding. We found no Tdp1 inhibition for the polyamines spermine and spermidine 

(our unpublished data). If neomycin was primarily targeting the DNA substrate, one 

would have expected that pre-incubation of neomycin with DNA would enhance 

inhibition. However, preincubation experiments (Fig. 4C) showed that neomycin was less 

efficient against Tdp1 when it was first incubated with DNA. In our experiments, the 

tyrosyl-DNA substrate is at much lower concentration than neomycin. The concentration 

ratio is: 25/106 (i.e. the drug is in 40,000-fold excess compared to the DNA). Therefore, it 

is unlikely that binding of neomycin to the DNA substrate would reduce the 

concentration of free drug. Moreover, if DNA were the main target of neomycin, 

increasing Tdp1 concentration would not have been expected to affect Tdp1 inhibition by 

neomycin, which is not the case since inhibition is in fact inversely related to the Tdp1 

concentration (Fig. 5A-B). Also, neomycin inhibits Tdp1 activity toward both single- and 

double-stranded DNA substrates (Fig. 3), whereas neomycin is known to bind duplex 
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RNA (Moore and Steitz, 2003; Schroeder et al., 2000). Therefore, we propose that 

neomycin binds either directly to Tdp1 or to the Tdp1-DNA complex interface. The latter 

possibility would characterize neomycin as a potential interfacial inhibitor. However, if 

neomycin stabilizes the Tdp1-DNA intermediate, we were not able to detect the resulting 

complex at the top of the gels under the electrophoresis conditions (Interthal et al., 

2005b). Interfacial inhibition has recently emerged as a common mechanism for natural 

drugs against a variety of targets including protein-DNA interfaces in the case of 

camptothecin and antibiotics (Pommier and Marchand, 2005), and protein-protein 

interfaces in the case brefeldin A, colchicine, paclitaxel or vinblastine as tubulin 

inhibitors (Pommier and Cherfils, 2005). 

 Further studies are warranted to determine the Tdp1 binding site of 

aminoglycoside antibiotics, clindamycin-2-phosphate, puromycin and thiostrepton (see 

Fig. 2). Neomycin is also known to inhibit (bind to) phospholipase D, which does not 

contain RNA or DNA (Huang et al., 1999). Neomycin acts as an uncompetitive inhibitor 

of PLD by binding to the PLD activator PIP2 or, alternatively, to the PIP2-PLD complex 

to form a ternary complex (Huang et al., 1999). 

Several crystal structures of human Tdp1 have been determined in the absence or 

presence of peptide-nucleic acid ligands (Davies et al., 2002a; Davies et al., 2002b; 

Davies et al., 2003; Davies et al., 2004; Interthal et al., 2001). Although Tdp1 contains a 

positively charged groove that accommodates the nucleic acid substrate, it also contains 

clusters of negatively charged residues in the vicinity of the active site (Davies et al., 

2003). These acidic residues might bind the neomycin polycations. Co-crystallization of 

the antibiotics described is warranted to elucidate the drug binding site and the potential 

contribution of the peptide-nucleic acid substrate for drug binding to Tdp1. Such studies 

may also guide the discovery and design of more potent and more selective Tdp1 

inhibitors. 
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Figure Legends 

 

Figure 1. Inhibition of Tdp1 activity by neomycin B (Neo), paromomycin I (Par) and 

lividomycin (Liv). (A) Schematic representation of the Tdp1 biochemical assay. The 

partially duplex oligopeptide D14Y was used as a substrate (Debethune et al., 2002; Plo 

et al., 2003). 32P-radiolabeling (asterisk) was at the 5'-terminus of the upper 14mer stand. 

Tdp1 catalyzes the hydrolysis of the 3'-phosphotyrosine bond and converts D14Y to an 

oligonucleotide with 3’-phosphate (D14P). (B) Representative SDS-PAGE gel showing 

the purified recombinant Tdp1 used in this study (Coomasie blue staining; lane 1). Lane 2 

shows markers with molecular mass (in kDa) at right. (C) Representative gel showing 

Tdp1 inhibition by vanadate and neomycin. (D) Representative gel showing Tdp1 

inhibition by neomycin, paromomycin and lividomycin. Reactions were performed at pH 

8.0 with 25 nM D14Y, 1 ng Tdp1 and the indicated inhibitors at 25oC for 20 min. Drug 

concentrations are indicated above gel picture. The 3'-phosphate oligonucleotide product 

(D14P) runs slower than the corresponding tyrosyl oligonucleotide substrate (D14Y) in 

polyacrylamide gel electrophoresis (PAGE). 

 

Figure 2. Structure-activity of aminoglycoside (A) and non-aminoglycoside (B) 

antibiotics. Drug concentrations required to inhibit 50% Tdp1 activity (IC50) were derived 

from dose-response curves in reactions performed for 20 min at pH 8.0 and 25oC in the 

presence of 25 nM D14Y substrate and 1 ng Tdp1 (see Fig. 1). 

 

Figure 3. Neomycin inhibits Tdp1 activity both with duplex and single-stranded 

substrates but is more effective with the duplex substrate. (A) Inhibition of Tdp1 by 

neomycin and sodium vanadate using the partially duplex substrate (D14Y; sequence 

shown at the top). (B) Inhibition of Tdp1 by neomycin and sodium vanadate using the 

single-stranded substrate (N14Y; sequence shown at the top of the panel). (C) Inhibition 

of Tdp1 by the intercalator aclarubicin using the partially duplex substrate (D14Y). No 

Tdp1 inhibition was observed in the presence of aclarubicin using the single-stranded 

N14Y substrates. 
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Figure 4. Kinetics of Tdp1 inhibition by neomycin. (A) A 100 µl reaction mixture 

containing 25 nM D14Y and 5 ng Tdp1 was incubated at pH 8.0 at 25oC in the absence of 

drug (No Drug), or in the presence of 1 or 2 mM neomycin (Neo). Aliquots were taken at 

the indicated times. Reaction products were analyzed by denaturing PAGE. Substrate 

D14Y (Y) and product D14P (P) are shown in a representative gel. (B) Densitometry 

analysis of the gel shown in panel A. Tdp1 activity was calculated as the percentage of 

D14Y converted to D14P. Circles: no drug; triangles 1 mM Neo; squares: 2 mM Neo. (C) 

Kinetics and half-lives (T1/2: vertical dotted lines) for Tdp1 activity measured as the 

percent of DNA substrate (D14Y) remaining as a function of incubation time. In the 

absence of drug (filled circles) T1/2 ≈ 0.5 min, in the presence of 1 mM Neo (filled 

triangles) T1/2 ≈ 3 min, and in the presence of 2 mM Neo (filled triangles) T1/2 ≈ 8 min. 

Reaction were also performed by preincubating the DNA substrate (D14Y) for 20 min 

before the addition of Tdp1 for an additional 20 min (open triangles). 

 

Figure 5. Inhibition of Tdp1 by neomycin is dependent on both Tdp1 concentration and 

pH. (A) 20 µl reaction mixtures contained 25 nM D14Y and increasing amount of Tdp1 

(0.5-8 ng) in the absence or presence of 10 mM neomycin. Reactions were at 25oC, pH 8 

for 20 min. A representative gel is shown. (B) Graphical representation of Tdp1 

inhibition by neomycin (filled circles). Tdp1 activity was calculated as the percentage of 

D14Y converted to D14P. The vertical dotted line corresponds to the Tdp1 concentration 

used in Figs. 1-4. (C) Tdp1 activity is pH-dependent. Reactions were performed at the 

indicated pH with 25 nM D14Y and 1 ng Tdp1 at 25oC for 20 min. (D) Tdp1 inhibition 

by neomycin depends both on pH (pH 8.0: filled circles; pH 6.4: open symbols) and Tdp1 

concentration (1 ng Tdp1: circles; 0.1 ng: squares). Reactions were for 8 minutes and 

Tdp1 activity was calculated as the percentage of D14Y converted to D14P. 
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