A potential role for cyclized quinones derived from dopamine, DOPA and DOPAC in proteasomal inhibition

Khan Shoeb Zafar, David Siegel and David Ross

Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado at Denver and Health Sciences Center

Copyright 2006 by the American Society for Pharmacology and Experimental Therapeutics.
Running Title

Proteasome inhibition by oxidation products of dopamine

Corresponding Author:

David Ross
Department of Pharmaceutical Sciences
School of Pharmacy
University of Colorado at Denver and the Health Sciences Center
4200 East 9th Ave.
Denver, Colorado 80262 USA
Tel: 303-315-6077
Fax: 303-315-6281
Email: david.ross@uchsc.edu

Number of text pages 21
Number of Tables 1
Number of Figures 8 (6 figures & 2 schemes)
Number of References 42

Number of words in Abstract 242
Number of words in Introduction 633
Number of words in Discussion 959

Abbreviations: PD, Parkinson’s Disease
Abstract

We examined the ability of oxidation products of dopamine, DOPA and DOPAC to inhibit proteasomal activity. Dopamine DOPA and DOPAC underwent tyrosinase catalyzed oxidation to generate aminochrome, dopachrome and furanoquinone, respectively. In these studies the oxidation of dopamine by tyrosinase generated product(s) that inhibited the proteasome and that proteasomal inhibition correlated with the presence of the UV/vis spectrum of aminochrome. The addition of SOD and catalase did not prevent proteasomal inhibition. The addition of NADH and the quinone reductase, NQO1, protected against aminochrome-induced proteasome inhibition. Although NQO1 protected against dopamine induced proteasomal inhibition the metabolism of aminochrome by NQO1 led to oxygen uptake due to the generation of a redox labile cyclized hydroquinone, further demonstrating the lack of involvement of oxygen radicals in proteasomal inhibition. DOPA underwent tyrosinase catalyzed oxidation to form dopachrome, and similar to aminochrome, proteasomal inhibition correlated with the presence of a dopachrome UV/vis spectrum. The inclusion of NQO1 did not protect against proteasomal inhibition induced by dopachrome. Oxidation of DOPAC by tyrosinase generated furanoquinone which was a poor proteasome inhibitor. These studies demonstrate that oxidation products including cyclized quinones derived from dopamine and related compounds rather than oxygen radicals have the ability to inhibit the proteasome. They also suggest an important protective role for NQO1 in protecting against dopamine-induced proteasomal inhibition. The ability of endogenous intermediates formed during dopaminergic metabolism to cause proteasomal inhibition
provides a potential basis for the selectivity of dopaminergic neuron damage in Parkinson’s disease.
Introduction

Parkinson’s disease (PD) is a progressive neurodegenerative disease characterized by destruction of dopamine containing neurons in the substantia nigra pars compacta coupled with the formation of neuronal cytoplasmic inclusions known as Lewy bodies (Olanow and Tatton W.G., 1999). Several lines of evidence have implicated failure of the ubiquitin proteasomal system (UPS) as central in the pathogenesis of PD and a number of excellent, recent reviews have summarized the evidence linking defects in the UPS to both familial and sporadic PD (Dawson and Dawson, 2003; McNaught et al., 2001; McNaught and Olanow, 2003; McNaught and Olanow, 2005; Chung et al., 2003; Halliwell, 2002). Inhibition or failure of the UPS leads to accumulation and aggregation of proteins, Lewy body formation and dopaminergic cell death (McNaught et al., 2002b). Importantly, the association of genetic mutations in familial PD has provided important clues to the role of a frustrated UPS and proteolytic stress in PD. Genetic mutations that have been associated with PD include α-synuclein, parkin and UCH-L1 and all of these have been associated with impaired UPS activity (McNaught et al., 2001; McNaught and Olanow, 2003; McNaught and Olanow, 2005; Chung et al., 2003). α-Synuclein mutations have been suggested to result in protein misfolding, aggregation and proteasomal impairment, parkin is a ubiquitin ligase and UCH-L1 is a de-ubiquinating enzyme (McNaught et al., 2001; McNaught and Olanow, 2003; McNaught and Olanow, 2005; Chung et al., 2003).

In addition to genetic evidence there have been a number of important biochemical findings that have linked an impaired UPS system to both familial and sporadic PD. The evidence for involvement of an inhibited UPS system in PD includes a
loss of UPS activity in the substantia nigra of PD patients relative to non-PD patients (McNaught and Jenner, 2001; McNaught et al., 2001) and immunocytochemical evidence for the presence of UPS protein residues in Lewy bodies in PD patients (Ii et al., 1997; Andersen, 2000). More recently, defects and impairment of the 26/20S proteasomes have been detected in the SNc in PD (McNaught et al., 2002a) and importantly, dosing of proteasome inhibitors to rats caused a progressive model of PD accompanied by dopaminergic cell death, apoptosis and the formation of α-synuclein/ubiquitin containing inclusion bodies resembling Lewy bodies (McNaught et al., 2004).

Dopamine is known to undergo a very complex series of metabolic events in dopaminergic cells involving tyrosinase mediated generation of dopamine o-quinone and at physiological pH cyclization to leukoaminochrome, subsequent oxidation to the cyclized o-quinone, aminochrome (Scheme 1) with eventual polymerization to melanins (Graham et al., 1978; Graham, 1978). There has been some debate regarding the expression of tyrosinase in the substantia nigra (Xu et al., 1997; Gimenez et al., 2003) but other enzymes such as peroxidases including prostaglandin H synthase can also catalyze the oxidation of dopamine to its quinone derivatives (Hastings, 1995; Mattammal et al., 1995). As well as the generation of reactive quinone metabolites, autoxidation of many of the intermediates in this pathway is also possible with concomitant generation of reactive oxygen species (Graham et al., 1978; Graham, 1978; Segura-Aguilar et al., 1998). Similar pathways exist for 3,4-dihydroxyphenylalanine (DOPA), norepinephrine, epinephrine and 3,4-dihydroxyphenylacetic acid (DOPAC), generating dopachrome, noradrenochrome, adrenochrome (Graham, 1978) and furanoquinone (Sugumaran et al., 1999) respectively. Simplified pathways are shown for dopamine, DOPA and DOPAC in
Scheme 1. The generation of o-quinones from these molecules during metabolism produces reactive species capable of arylating cellular nucleophiles (Graham et al., 1978; Graham, 1978; Khan et al., 2001) Thus, metabolic intermediates in the dopaminergic pathway are capable of both arylation and inducing oxidative stress (Scheme 2). Dopaminergic quinoid intermediates formed from dopamine may therefore represent endogenous toxic compounds and provide a potential basis for the selective loss of dopaminergic neurons in PD. Given the potential importance of proteasomal impairment in the pathogenesis of PD, in this work we have examined whether cyclized quinones generated during the tyrosinase mediated metabolism of dopamine, DOPA and DOPAC are capable of directly inhibiting the proteasome.

Materials and Methods

Reagents Dopamine HCl, L-DOPA (L-3,4-dihydroxyphenylalanine) DOPAC (3,4-dihydroxyphenylacetic acid), tyrosinase, NADH and catalase were obtained from the Sigma Chemical Co (St. Louis, MO). Untreated rabbit reticulocyte lysate (RRL) was obtained from Promega (Madison, WI). Fluorescently labeled proteasome substrate Suc-Leu-Leu-Val-Tyr-AMC was obtained from Bachem (Torrance CA). Superoxide dismutase (SOD) was purchased from Roche (Indianapolis, IN). MG132 was obtained from Biomol International (Plymouth Meeting, PA). Recombinant human NQO1 was purified from E. coli using cibacron blue affinity chromatography as previously described (Beall et al., 1994).

Formation of aminochrome, dopachrome and furanoquinone during tyrosinase mediated metabolism of dopamine, DOPA and DOPAC. In the case of dopamine, reactions (60µl, 30°C) contained 3.3mM dopamine, 100µg tyrosinase in 8.3mM Tris-HCl
buffer, pH 7.4. To limit further tyrosinase catalyzed oxidative reactions, after 3min the reaction mixture was centrifuged (13k rpm for 7 min at 4°C) through a 100 kDa molecular weight cutoff membrane filter (Microcon, Amicon/Millipore, Bedford, MA) and the filtrate was collected and stored on ice. To quantify the amount of aminochrome generated a 5µl sample of filtrate was removed and added to 995µl of 25mM Tris-HCl, pH 7.4 and the UV / vis spectrum was collected (200-800nm). The aminochrome concentration was determined at 474nm using a molar extinction coefficient of 3,058 (Baez et al., 1997). Under these conditions the aminochrome concentration was approximately 2.7mM (Baez et al., 1997). Metabolism of DOPA by tyrosinase was performed under identical conditions. The dopachrome concentration was determined at 474nm using a molar extinction coefficient of 4,770 (Baez et al., 1997). Under these conditions the dopachrome concentration was approximately 1.9mM. Tyrosinase catalyzed oxidation of DOPAC was performed as described for dopamine and DOPA.

Inhibition of proteasome activity Proteasomal activity was measured in RRL following incubation with aminochrome, dopachrome and furanoquinone. RRL was utilized as a model system since it is a robust source of proteasome and is void of NQO1 activity. Reactions (100µl, 30°C) contained 10mM Tris-HCl, pH 7.4, 250mM sucrose, 5mM MgCl₂, 2mM ATP and 10µl (1.3mg) of RRL. After a 5min incubation of RRL with either aminochrome, dopachrome or furanoquinone in the absence or presence of antioxidant enzymes, the proteasome activity was determined by measuring the remaining chymotrypsin peptidase activity (Chu-Ping et al., 1992). Labeled peptide (50µM, Suc-Leu-Leu-Val-Tyr-AMC) was added to the RRL reaction for an additional 30 min at 30°C. Reactions were terminated by the addition of 200µl of cold ethanol,
centrifuged (13k rpm for 2 min) and 200µl of supernatant was transferred to a 96-well plate and the fluorescence was determined (excitation 380nm; emission 460nm) using a microplate reader at 30°C. The proteasome inhibitor MG132 (100µM) was included as a positive control. In control experiments no significant quenching of the hydrolyzed fluorophore by oxidation products of dopamine, DOPA and DOPAC was observed.

Oxygen consumption by cyclized quinones. Oxygen consumption was measured in stirred 3 ml reactions at 37°C using a Clark electrode. Reactions included 25mM Tris-HCl, pH 7.4, 0.2mM NADH, rhNQO1 (3 or 50µg) and cyclized quinone (15 or 30µl). Oxygen consumption was measured over 20 min and linear rates were calculated over 5 min.

Statistical Analysis. One-way ANOVA with Tukey Post Test for multiple comparisons was used for statistical analysis in these studies. Statistical analysis were performed using GraphPad Prism software.

Results

We examined inhibition of proteasomal activity in RRL during tyrosinase mediated metabolism of dopamine, DOPA and DOPAC. Aminochrome, dopachrome and furanoquinone were generated by tyrosinase-catalyzed oxidation of dopamine, DOPA and DOPAC, respectively and the subsequent removal of tyrosinase greatly slowed any further oxidation into higher molecular weight polymers. The formation of aminochrome dopachrome and furanoquinone were confirmed by UV / vis spectroscopy and the absorbance of these compounds were identical to spectra previously reported (Graham et al., 1978; Graham, 1978; Sugumaran et al., 1999; Graham and Jeffs, 1977). In these studies oxidation by tyrosinase was used as a model system to generate reactive
intermediates from dopamine, DOPA and DOPAC. The treatment of RRL with increasing quantities of tyrosinase-catalyzed dopamine oxidation products resulted in a corresponding decrease in proteasome activity (Figure 1A). No significant proteasome inhibition was observed in control incubations containing dopamine or tyrosinase alone. Once generated, dopamine oxidation products caused effective proteasomal inhibition for at least 6 hr in buffer at 30°C (Figure 1B). In these studies proteasomal inhibition could be directly correlated with the presence of a UV / vis spectrum for aminochrome. After 12 and 24 hr in buffer aminochrome had lost its characteristic UV/vis absorbance and had begun to form a brown insoluble precipitate (Fig 1C). No proteasome inhibition could be detected when RRL was added to these samples (12, 24hr) suggesting that aminochrome or derivatives other than polymerization products were responsible for proteasome inhibition. To determine whether reactive oxygen species may be responsible for the observed proteasome inhibition we examined the ability of the aminochrome solution to consume O₂ using a Clark electrode. Very low levels of oxygen consumption were detected when aminochrome was placed into buffer (Table 1). In addition, the inclusion of SOD and or catalase did not prevent proteasome inhibition by aminochrome (Figure 2A) suggesting that superoxide and hydrogen peroxide were not responsible for proteasome inhibition. The ability of aminochrome to inhibit proteasome activity could be prevented if NADH and NQO1 were included in the incubation (Figure 2B). Previous work has shown that aminochrome could be reduced by NQO1 in the presence of NAD(P)H and that the resultant hydroquinone was unstable to O₂ and underwent rapid redox cycling (Segura-Aguilar and Lind, 1989). We confirmed these data using our experimental conditions and observed a substantial decrease in the absorbance of
aminochrome at 475nm upon the addition of NADH and NQO1 (data not shown). In addition, we have measured a high rate of oxygen consumption in reactions with aminochrome, NADH and NQO1 (Table 1). Interestingly, although the addition of NADH and NQO1 resulted in more oxygen consumption and redox cycling reactions, they protected against dopamine induced proteasomal inhibition. These findings are in agreement with the lack of effect of SOD and catalase on dopamine-induced proteasomal inhibition (Fig 2A) and confirm that reactive oxygen species generated during dopamine metabolism are not responsible for proteasomal blockade.

The ability of metabolites generated during tyrosinase catalyzed oxidation of DOPA, to inhibit RRL proteasome activity was also measured. A similar concentration-dependent decrease in RRL proteasomal activity was induced by metabolites formed by tyrosinase mediated oxidation of DOPA (Figure 3A) and these metabolites lost the ability to significantly inhibit proteasomal activity after only 3 hr in buffer at 30°C (Figure 3B). Proteasomal inhibition correlated with the formation of the characteristic absorption spectrum of dopachrome (Figure 3C). The broadening of the characteristic dopachrome spectrum (λ_{max} 474nm) as a function of time in buffer indicated the formation of insoluble polymeric oxidation products. As the dopachrome spectrum was lost, the efficiency of proteasomal inhibition was decreased (Figure 3C). Spectral changes at later time points were consistent with oxidative decarboxylation of dopachrome to form the water insoluble product 5,6-dihydroxy-indole (Vachtenheim et al., 1985) and proteasomal inhibitory potency was lost. The ability of NQO1 to protect against dopachrome-induced proteasome inhibition was examined. The inclusion of NADH had a small but significant protective effect on dopachrome-induced proteasome inhibition.
Dopachrome generated via tyrosinase catalyzed oxidation of DOPA did not generate a high rate of oxygen consumption when placed into buffer (Table 1). The addition of NADH and NQO1 resulted in only a small amount of additional O$_2$ consumption despite using very high quantities of NQO1 (Table 1). This confirms previous data that although dopachrome is a substrate for NQO1 it is relatively inefficient and high concentrations of NQO1 are needed for metabolism (Baez et al., 1994).

Tyrosinase generated metabolites of DOPAC induced only a small decrease in proteasomal activity at the highest concentration tested (Figure 5A). A small but significant decrease in proteasomal activity was observed when metabolites were immediately incubated with RRL but no significant proteasomal inhibition was observed if DOPAC metabolites remained in buffer for 3 hr at 30ºC before exposure to RRL (Figure 5B) Furanoquinone was generated rapidly during tyrosinase mediated metabolism of DOPAC and further oxidation led to the formation of insoluble polymeric products (not shown). The addition of NADH and high concentrations of NQO1, in contrast to the results found with dopamine, resulted in a small but significant protection against proteasomal inhibition (Fig 6). DOPAC metabolites did not generate a high rate of oxygen consumption when placed into buffer (Table 1), but incubation with NADH resulted in some O$_2$ consumption while the addition of NQO1 at high concentrations resulted in only a small additional increase in O$_2$ consumption (Table 1). These data suggest that furanoquinone generated during tyrosinase mediated oxidation of DOPAC is not an efficient substrate for human NQO1 and is more similar in substrate efficiency to dopachrome. Based on the oxygen consumption data (Table 1) aminochrome was by far
the best substrate for human NQO1 of the three cyclized quinones and is also the most potent and long lasting cyclized quinone in terms of ability to induce proteasomal inhibition (compare Figures 1, 3 and 5).

Discussion

The major observation from this study is that endogenous intermediates formed during the metabolism of dopamine, DOPA and DOPAC result in proteasomal impairment. Our data suggest that cyclized quinones generated during the tyrosinase mediated oxidation of dopamine, DOPA and DOPAC are capable of inhibiting proteasomal activity. Given the importance of proteasomal impairment to the pathogenesis of PD, this provides a potential basis for the selectivity of destruction of dopaminergic neurons in PD. Importantly, we and others have observed that dopamine can cause proteasomal impairment in dopaminergic neural cell lines in culture (Keller et al., 2000; Zafar et al., 2006).

Metabolism of catecholamines in dopaminergic cells is complex and involves the generation of reactive oxygen species, quinonoid metabolites and polymeric products. Unequivocal characterization of the chemical species responsible for proteasomal inhibition in such a system is difficult. However, our data suggests that at least in this RRL containing cell-free system, cyclized quinones or metabolites generated from them, and not reactive oxygen species are responsible for proteasomal inhibition. In the case of dopamine, proteasomal inhibition correlated temporally with the optimal formation of the cyclized quinone (aminochrome) chromophore indicating an important role for aminochrome in proteasomal inhibition. Another piece of evidence strongly linking the
dopamine metabolite aminochrome to proteasomal inhibition was the protective effect of the quinone reductase, NQO1. These experiments demonstrate that aminochrome, either as a result of direct reactions or via secondary reactions to generate additional reactive species, plays an important role in proteasomal inhibition. Similarly, our results suggested that the corresponding cyclized quinone dopachrome derived from DOPA was capable of causing proteasomal inhibition. Oxidation products of DOPAC were less potent at inducing proteasomal inhibition but temporal experiments were consistent with furanoquinone playing a potential role in proteasomal blockade. Both aminochrome and dopachrome, when injected into the rat substantia nigra, have marked motor and behavioral effects consistent with effects on the nigrostriatal dopamine system (Diaz-Veliz et al., 2002).

Reactive oxygen species did not appear to be responsible for dopamine induced proteasomal inhibition in our experiments. The evidence supporting this conclusion includes a lack of effect of SOD and catalase on dopamine induced proteasomal inhibition and the fact that NQO1-mediated metabolism of aminochrome results in an increase in the generation of reactive oxygen species due to the redox instability of the hydroquinone generated, but actually protects against dopamine-induced proteasomal inhibition.

Although the later products of oxidative metabolism such as polymeric melanin like products do not appear to play a role in proteasomal blockade, it remains a possibility that metabolites downstream of the cyclized quinones may be responsible for proteasomal inhibition. The situation is made more complex by the suggestion that additional reactive intermediates may be formed in the dopaminergic metabolic cascade.
such as reactive quinone methides (Sugumaran et al., 1999). Interestingly, the interaction of dopamine-derived aminochrome with α-synuclein, which has been proposed to cause accumulation of pathogenic protofibrils (Conway et al., 2001) has been recently demonstrated to occur via a conformational change in the protein rather than a covalent modification (Norris et al., 2005). Thus, quinonoid species formed during dopaminergic metabolism may have additional non-covalent mechanisms of interaction with proteins that might underlie pathogenesis. Unequivocal definition of the reactive metabolite(s) responsible for proteasomal impairment and the mechanism underlying inhibition should be a direction for future research.

The control of quinone concentrations in dopaminergic neurons will not only depend on their rate of generation but on other parameters including the levels of cellular thiols such as glutathione and enzymes capable of quinone metabolism such as NAD(P)H:quinone oxidoreductase 1 (NQO1). Thiols will interact with quinones generated during dopaminergic metabolism either directly or via glutathione-S-transferase mediated reactions (Graham et al., 1978; Drukarch and van Muiswinkel, 2000; Stokes et al., 1999; Xu et al., 1998; Stokes et al., 2000; Baez et al., 1997). Importantly, glutathione-S-transferase isozyme GST M2-2 is known to catalyze the conjugation of glutathione with cyclized quinones extremely efficiently (Baez et al., 1997; Segura-Aguilar et al., 1997) and levels of this enzyme are likely to be important in the ultimate disposition of any quinones generated. One of the significant findings in this study was that NQO1 protected against dopamine induced proteasomal impairment. NQO1 is known to metabolize aminochrome and dopachrome (Segura-Aguilar and Lind, 1989; Baez et al., 1994), has been located in both rat (Schultzberg et al., 1988) and
human mesencephalic tissue (van Muiswinkel et al., 2004) and has also been found to be elevated in the substantia nigra pars compacta of parkinsonian brains (van Muiswinkel et al., 2004). A neuroprotective role for NQO1 against aminochrome-dependent toxicity is supported by previously work in catecholaminergic cell lines (Paris et al., 2001; Arriagada et al., 2004; Paris et al., 2005) and in vivo in rats (Diaz-Veliz et al., 2002; Segura-Aguilar et al., 2004). There is conflicting evidence regarding the relationship of NQO1 polymorphisms to the incidence of PD (Shao et al., 2001; Harada et al., 2001) but the elevation of enzyme levels in the target cells for PD in parkinsonian brains suggested that it may play a protective role (van Muiswinkel et al., 2004). However, van Muiswinkel et al. (van Muiswinkel et al., 2004) have pointed out that NQO1 may also contribute to dopamine induced pathology due to the generation of redox unstable hydroquinones which can redox cycle (Segura-Aguilar and Lind, 1989; Baez et al., 1994).

At least with respect to proteasomal inhibition, our data suggest that NQO1 plays a protective role against dopamine derived quinones and this conclusion is strengthened by the recent observation that NQO1 also protects against dopamine-induced apoptosis (Inayat-Hussain et al., 2005).

In summary, our data implicate cyclized o-quinones from dopamine, DOPA and DOPAC, or reactive species derived from these quinones, in inhibition of proteasomal activity. Reactive oxygen species do not appear to be involved in dopamine-induced proteasomal inhibition. Importantly, the quinone reductase NQO1 is capable of abrogating dopamine induced proteasomal inhibition by efficiently reducing aminochrome. The ability of cyclized o-quinones generated during dopaminergic...
metabolism to cause proteasomal impairment provides a potential basis for the selectivity of dopaminergic neuron damage in PD.
References

not detected in mouse brain outside the retinal pigment epithelium cells. Eur J Neurosci. 18:2673-2676.

21

nigra neuronal cell line. *J. Neurochem.* **77**:519-529.

Zhonghua Yi Xue Yi Chuan Xue Za Zhi **18**:122-124.

Footnotes

1This work was supported by National Institutes of Health grant RO1 NS44613.
Figure Legends

Scheme 1. Chemical structures of dopamine, DOPA and DOPAC and their corresponding cyclized α-quinone oxidation products.

Scheme 2. Proposed pathway for the generation of cyclized α-quinones and the role of NQO1 in protection against proteasome inhibition.

Figure 1. The inhibition of proteasomal activity by dopamine oxidation products. (A) Proteasomal activity was measured in RRL following exposure to increasing concentrations of freshly prepared oxidation products. (B) Proteasomal activity was measured in RRL following exposure to 5µl of freshly prepared oxidation products. For these experiments, after generation of oxidation products by tyrosinase, the enzyme was removed by centrifugation through a membrane filter and the metabolites were then incubated at 30°C for the indicated times before the treatment of RRL. (C) Spectrophotometric analysis of aminochrome in solution at pH 7.4 for the indicated times. For these experiments dopamine oxidation products were prepared as in B. Bars represent mean ± SD of 3-4 determinations, *p<0.001 significantly different from tyrosinase only control (A) or significantly different from control (B).

Figure 2. The effect of antioxidant enzymes on the inhibition of proteasomal activity by aminochrome. (A) Proteasomal activity was measured in RRL supplemented with SOD (5µg) and catalase (5µg) then exposed to freshly prepared aminochrome (5µl). (B)
Proteasomal activity was measured in RRL supplemented with NADH and increasing quantities of NQO1 then exposed to freshly prepared aminochrome (5µl). Values shown in open bars indicate the quantity (µg) of NQO1 (AC, aminochrome). Bars represent mean ± standard deviation of 3-4 determinations. Treatment with antioxidant enzymes did not have a significant effect on proteasome inhibition when compared to aminochrome alone. *p< 0.01, **p<0.001 significantly different from aminochrome plus NADH control.

Figure 3. The inhibition of proteasomal activity by DOPA oxidation products. (A) Proteasomal activity was measured in RRL following exposure to increasing concentrations of freshly prepared DOPA oxidation products. (B) Proteasomal activity was measured in RRL following exposure to 10µl of DOPA oxidation products. For these experiments, after generation of oxidation products by tyrosinase, the enzyme was removed by centrifugation through a membrane filter and the metabolites were then incubated at 30°C for the indicated times before the treatment of RRL. (C) Spectrophotometric analysis of dopachrome in solution at pH 7.4 for the indicated times. For these experiments DOPA oxidation products were prepared as in B. Bars represent mean ± standard deviation of 3-4 determinations, †p<0.05, *p<0.01, **p<0.001, significantly different from tyrosinase only control (A) or significantly different from control (B).

Figure 4. The effect of NQO1 on the inhibition of proteasomal activity by dopachrome. Proteasome activity was measured in RRL supplemented with NADH and increasing amounts of NQO1 then exposed to freshly prepared dopachrome (10µl).
Values shown in open bars indicate the quantity (µg) of NQO1 (DC, dopachrome). Bars represent mean ± standard deviation of 3-4 determinations. *p< 0.01, significantly different from dopachrome only.

Figure 5. The inhibition of proteasomal activity by DOPAC oxidation products. (A) Proteasomal activity was measured in RRL following exposure to increasing concentrations of freshly prepared DOPAC oxidation products. (B) Proteasomal activity was measured in RRL following exposure to 10µl of DOPAC oxidation products. For these experiments, after generation of oxidation products by tyrosinase, the enzyme was removed by centrifugation through a membrane filter and the metabolites were then incubated at 30°C for the indicated times before the treatment of RRL. Bars represent mean ± SD of 3-4 determinations. *p<0.01; **p<0.001, significantly different from tyrosinase only (A) or significantly different from control (B).

Figure 6. The effect of NQO1 on the inhibition of proteasomal activity by furanoquinone. Proteasomal activity was measured in RRL supplemented with NADH and increasing amounts of NQO1 then exposed to freshly prepared furanoquinone (10µl). Values shown in open bars indicate the quantity (µg) of NQO1 (FQ, furanoquinone). Bars represent mean ± SD of 3-4 determinations, †p<0.05, *p<0.01, **p<0.001, significantly different from furanoquinone and NADH control.
Table 1. Oxygen consumption by cyclized quinones

<table>
<thead>
<tr>
<th>Treatment</th>
<th>nmol O₂/min</th>
<th>nmol O₂/min/µg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminochrome (15µl)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Buffer</td>
<td>3.0 ± 0.2</td>
<td></td>
</tr>
<tr>
<td>NADH</td>
<td>4.9 ± 0.2</td>
<td></td>
</tr>
<tr>
<td>NADH, NQO1 (3.3µg)</td>
<td>29.8 ± 2.4</td>
<td>9.0 ± 0.7</td>
</tr>
<tr>
<td>Dopachrome (30µl)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Buffer</td>
<td>1.2 ± 0.2</td>
<td></td>
</tr>
<tr>
<td>NADH</td>
<td>3.2 ± 0.2</td>
<td></td>
</tr>
<tr>
<td>NADH, NQO1 (50µg)</td>
<td>9.5 ± 0.8</td>
<td>0.2 ± 0.02</td>
</tr>
<tr>
<td>Furoquinone (30µl)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Buffer</td>
<td>3.7 ± 0.1</td>
<td></td>
</tr>
<tr>
<td>NADH</td>
<td>8.4 ± 0.8</td>
<td></td>
</tr>
<tr>
<td>NADH, NQO1 (50µg)</td>
<td>23.8 ± 3.5</td>
<td>0.5 ± 0.07</td>
</tr>
</tbody>
</table>

†mean ± standard deviation of three separate determinations
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6