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Abstract 

 

Pregnane X receptor (PXR) regulates drug metabolism and is involved in drug-drug interactions. 

Prediction of PXR activators is important for evaluating drug metabolism and toxicity. 

Computational pharmacophore and quantitative structure-activity relationship models have been 

developed for predicting PXR activators. Because of structural diversity of PXR activators, more 

efforts are needed for exploring methods applicable to a broader spectrum of compounds. We 

explored three machine learning methods (MLMs) for predicting PXR activators, which were 

trained and tested by using significantly higher number of compounds, 128 PXR activators (98 

human) and 77 PXR non-activators, than those of previous studies. The recursive feature 

selection method was used to select molecular descriptors relevant to PXR activator prediction, 

which are consistent with conclusions from other computational and structural studies. In a 10-

fold cross-validation test, our MLM systems correctly predicted 81.2%~84.0% of PXR 

activators, 80.8%~85.0% of hPXR activators, 61.2%~70.3% of PXR non-activators, and 

67.7%~73.6% of hPXR non-activators. Our systems also correctly predicted 73.3%~86.7% of 

15 newly published hPXR activators. MLMs appear to be useful for predicting PXR activators 

and for providing clues to physicochemical features of PXR activation. 
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Introduction 

            

Pregnane X receptor (PXR) is a nuclear receptor known to be activated by structurally 

diverse xenobiotics and endogenous compounds(Ekins, 2004; Jones et al., 2000; Lehmann et al., 

1998). PXR plays important roles in the metabolism of xenobiotics and drug-drug interactions 

by regulating the expression of metabolizing enzymes such as cytochrome P450 enzymes 

(CYP3A4, CYP2B6, CYP2C8/9), and glutathione-S-transferases (Kliewer et al., 2002). It also 

regulates the expression of important drug transporters such as P-glycoprotein and multi-drug 

resistance proteins (Ekins, 2004; Xie et al., 2004). Therefore, drugs capable of activating PXR 

may have significant impact on their own metabolism, transport and interaction with other drugs. 

Identification of PXR activators is important for analyzing metabolism and pharmacokinetic 

profiles of drug candidates and for detecting potential drug-drug interactions. 

 

 Most of the drug metabolism prediction efforts have been directed at the development of 

tools for predicting CYP substrates and inhibitors(Doniger et al., 2002; Ekins et al., 2000). 

However, significantly less works have been devoted to the development of tools for identifying 

PXR activators. So far, experimental high-throughput screening assays have been used for 

detecting PXR binding ligands(Jones et al., 2000), computational pharmacophore (Ekins and 

Erickson, 2002; Schuster and Langer, 2005) and quantitative structure and activity relationship 

(QSAR)(Jacobs, 2004) models have been developed for predicting PXR activators. Because of 

the importance of PXR in drug metabolism and drug-drug interactions, more efforts are needed 

to explore additional methods for predicting a broader spectrum of PXR activators than those 

covered by existing studies. 

 

This article has not been copyedited and formatted. The final version may differ from this version.
Molecular Pharmacology Fast Forward. Published on September 26, 2006 as DOI: 10.1124/mol.106.027623

 at A
SPE

T
 Journals on A

pril 10, 2024
m

olpharm
.aspetjournals.org

D
ow

nloaded from
 

http://molpharm.aspetjournals.org/


 
MOL #27623 

 
5

            We explored machine learning methods (MLMs) for predicting PXR and human PXR 

(hPXR) activators. PXRs show high amount of sequence diversity in its ligand-binding 

domain(Moore et al., 2002), resulting in marked differences in ligand selectivity of PXRs across 

species which likely has evolutionary significance in cross-species difference in adaptation to 

toxic compounds(Krasowski et al., 2005).  Some compounds are known to activate mouse but 

not human PXR and vice versa.  Therefore, it is more relevant to develop prediction systems for 

hPXR activators. Nonetheless, prediction systems for PXR as well as hPXR activators were 

developed in this work for facilitating the search of broader spectrum of activators particularly 

those of species frequently used in drug toxicity tests. 

 

            MLMs have been used for predicting compounds of different pharmacological classes 

(Yap and Chen, 2005; Xue et al., 2004b; Doniger et al., 2002). The most widely used MLMs in 

these studies are support vector machines (SVM)(Burges, 1998), probabilistic neural network 

(PNN)(Specht, 1990) and k nearest neighbor (k-NN)(Johnson and Wichern, 1982). These 

methods have consistently exhibited good prediction performance for compounds of diverse 

structures. Moreover, a feature selection method can be incorporated into these methods for 

selecting molecular descriptors most relevant to the prediction of compounds with specific 

pharmacological property (Li et al., 2005a; Li et al., 2005b; Xue et al., 2004a; Xue et al., 2004b). 

 

PXR activators are structurally diverse partly because PXR ligand binding domain is 

highly flexible (Watkins et al., 2001). None-the-less, certain common physicochemical 

characteristics can be found at the binding site. For instance, the binding site is largely 

hydrophobic but contains a few polar residues capable of both donating and accepting hydrogen 

bonds(Watkins et al., 2001). These and other distinguished binding-site features likely define 

the common structural and physicochemical properties of the compounds that can bind and 
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activate PXR, which can be exploited by using MLMs to distinguish PXR activators and non-

activators. Several molecular descriptors of PXR activators have been used for deriving QSAR 

(Jacobs, 2004) and pharmacophore models (Ekins and Erickson, 2002; Schuster and Langer, 

2005). It is likely that not all of the molecular descriptors related to PXR activation have been 

included in previous studies due to the limited coverage of compounds and the number of other 

relevant descriptors. Therefore, feature selection methods(Li et al., 2005a; Li et al., 2005b; Xue 

et al., 2004a; Xue et al., 2004b) may be applied for finding additional molecular descriptors 

relevant to PXR activation. The use of a higher number of relevant molecular descriptors also 

serves to improve the performance of MLMs.  

 

              In this work, PXR and hPXR activator prediction systems were developed by using 

SVM, PNN, and k-NN, which were trained and tested by using a significantly higher number of 

compounds than those used in the previous studies. A comprehensive literature search was 

conducted to collect a diverse set of literature-reported PXR activators and non-activators. A 

popular feature selection method, recursive feature elimination (RFE) (Guyon et al., 2002; Li et 

al., 2005a; Li et al., 2005b; Xue et al., 2004a; Xue et al., 2004b), was used to extract molecular 

descriptors associated with PXR activation. The performance of these systems were tested by 

using 10-fold cross validation and an independent set of 15 newly published experimental PXR 

activators (Lemaire et al., 2006). 

 

Methods 

Collection of PXR activators and non-activators 

          Figure 1 illustrates the procedure for searching and selecting PXR activators, human PXR 

(hPXR) activators, and the corresponding non-activators.  PXR activators were selected based 

on the criterion that they have been reported to show potent activation to at least one PXR 
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ortholog regardless of its effect on other PXR orthologs. A total of 128 PXR activators were 

collected from literature, which were used as the activator dataset for predicting PXR activators 

irrespective of host species. There are 98 PXR activators reported to activate hPXR, which were 

used as the activator dataset for predicting hPXR activators. The first dataset is of higher 

statistical significance because of the higher number of compounds included. Compared to the 

largest dataset of 53 compounds used in the previous studies (Ekins and Erickson, 2002; Jacobs, 

2004; Schuster and Langer, 2005), our datasets contain a significantly higher number of 

compounds and are more diverse in structures as shown by the computed structural diversity 

index as will be described.   

 

            PXR non-activators include known PXR antagonists and PXR non-binders reported in 

the literature. Moreover, compounds explicitly reported to not activating PXR-regulated gene 

expression of CYP3A4 were further considered as implicated PXR non-activators if they satisfy 

the subsequent criterion that they have not been reported to induce the expression of other PXR-

regulated drug-metabolizing enzyme genes such as CYP2B6 and CYP2C8/9. These PXR non-

activators and implicated PXR non-activators were used as the non-activator dataset for 

predicting PXR activators irrespective of host species. The hPXR non-activator dataset include 

all compounds in the PXR non-activator dataset plus known non-human PXR activators.  

 

The 2D and 3D structure of each compound was generated by using ChemDraw 

(http://www.cambridgesoft.com/) and DS ViewerPro 5.0 (http://www.accelrys.com/), 

respectively, and geometrical optimization was conducted subsequently. The optimized 3D 

structure of each compound was manually inspected to ensure that the chirality of each chiral 

agent is properly generated and is consistent with that described in the literature. For those 

compounds with transactivation activities but without a reported active enantiomer, the default 
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enantiomer structure in the chemical database such as PubChem 

(http://pubchem.ncbi.nlm.nih.gov/) and ChemFinder (http://www.chemfinder.com/) was 

straightforwardly used. 

 

Determination of Structural Diversity 

            Structural diversity of a collection of compounds can be measured by using the diversity 

index (DI) value, which is the average value of the similarity between pairs of compounds in a 

dataset (Perez, 2005): 

                              1 1,

( , )

( 1)

N N

i j i j

sim i j

DI
N N

= = ≠=
−

∑ ∑

                                                 (1)        
 

where sim(i,j) is a measure of the similarity between compound i and j, and N is the number of 

compounds in the dataset. The structural diversity of a dataset increases with decreasing DI 

value. In this work, sim(i,j) is computed by using the Tanimoto coefficient(Willett et al., 1998). 

                             1

2 2

1 1 1
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( ) ( )

l
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d
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+ −

∑
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where l is the number of descriptors computed for the molecules in the dataset. 

 

Construction of training and testing sets 

            PXR and hPXR activators and non-activators were divided into training and testing sets 

in a manner suitable for conducting 10-fold cross validation study. For instance, the 128 PXR 

activators and 77 PXR non-activators were each randomly divided into ten subsets of 

approximately equal size. Nine of the subsets were used as the training set, and the remaining 

subset was used as the testing set for PXR activators and non-activators respectively. This 
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process was repeated ten times such that every subset is used as the test set once. The same 

procedure was applied to the 98 hPXR activators and 77 hPXR non-activators for constructing 

the training and testing sets of the hPXR activator prediction systems. An additional set of 15 

experimentally determined PXR activators (14 of which are structurally un-similar in our dataset 

by visual inspection) obtained from a newly published paper(Lemaire et al., 2006) was used as 

the independent set for further evaluation of the performance of our prediction systems.   

 

Molecular descriptors  

            Molecular descriptors are quantitative representations of structural and physicochemical 

features of molecules, which have been extensively used in the structure-activity relationship 

(SAR)(Fang et al., 2001), QSAR(Jacobs, 2004) and other machine learning studies of 

pharmaceutical agents(Doniger et al., 2002; Xue et al., 2004b; Yap and Chen, 2004; Zernov et 

al., 2003). A total of 199 molecular descriptors were used in this work. These descriptors were 

selected from more than 1,000 descriptors described in the literature by eliminating those 

descriptors that are obviously redundant or unrelated to the prediction of pharmaceutical 

agents(Li et al., 2005b; Xue et al., 2004b). The resulting 199 molecular descriptors include 18 

descriptors in the class of simple molecular properties, 28 descriptors in the class of molecular 

connectivity and shape, 97 descriptors in the class of electro-topological state, 31 descriptors in 

the class of quantum chemical properties, and 25 descriptors in the class of geometrical 

properties. They were computed from the 3D structure of each compound by using our own 

designed molecular descriptor computing program. A feature selection method, recursive feature 

elimination (described below), was used for eliminating those descriptors that are redundant or 

have no significant contribution to PXR activator prediction (Guyon et al., 2002).  

          

Feature selection method 
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The recursive feature elimination (RFE) method(Guyon et al., 2002) was used in this 

work as the feature selection method for selecting molecular descriptors associated to PXR 

activation. RFE has gained popularity due to its effectiveness for improving prediction 

performance and for discovering informative features associated with drug activity(Guyon et al., 

2002), pharmacokinetic and toxicological properties(Xue et al., 2004a; Xue et al., 2004b). Each 

of the compounds studied is represented by a vector xi, with its molecular descriptors (or 

features) as its components. The task of selecting appropriate molecular descriptors to a 

particular compound classification problem can be conducted by ranking and selecting those 

with meaningful contributions to the classification of the studied compounds.  

 

Descriptor ranking in RFE is based on the magnitude of the change of an objective 

function of a MLM model upon removing each descriptor (which roughly measures the extent of 

contribution of each feature to the prediction capability of the model) (Kohavi and John, 1997). 

The prediction capability of a MLM model is more significantly affected by a greater change in 

the objective function, and thus the corresponding descriptor is ranked higher. To improve the 

efficiency of training, this objective function is represented by a cost function J computed from 

the training set only. When a given feature is removed or its weight is brought to zero, the 

change DJ(i) in the cost function J is computed by 2
2

2

)(
2

1
)( i

i

Dw
w

J
iDJ

∂
∂= , where wi is the 

weight of the feature i, and the change in weight Dwi = wi corresponds to the removed descriptor 

xi. One or more of descriptors with the smallest DJ(i) can be eliminated in each iteration(Guyon 

et al., 2002).  

 

Machine Learning Methods 

(I) Support Vector Machine (SVM) 
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 SVM is illustrated in Figure 2. A linear SVM constructs a hyperplane separating two 

different classes of feature vectors with a maximum margin(Vapnik, 1995). This hyperplane is 

constructed by finding a vector w and a parameter b that minimizes
2

w  which satisfies the 

following conditions: 1,  for 1i ib y⋅ + ≥ + = +w x  (PXR activators as positive class) and 

1,  for 1i ib y⋅ + ≤ − = −w x  (PXR non-activators as negative class). Here xi is a feature vector, yi is 

the group index, w is a vector normal to the hyperplane, /b w  is the perpendicular distance 

from the hyperplane to the origin, and 
2

w  is the Euclidean norm of w. A nonlinear SVM 

projects feature vectors into a high dimensional feature space by using a kernel function such 

as
2 2/ 2

( , ) j i

i jK e
σ− −= x x

x x . The linear SVM procedure is then applied to the feature vectors in this 

feature space. After the determination of w and b, a given vector x can be classified by 

using [( ) ]sign b⋅ +w x , a positive or negative value indicates that the vector x belongs to the 

positive or negative class respectively.  

 

(II) k-Nearest Neighbor (k-NN) 

k-NN is illustrated in Figure 3. k-NN measures the Euclidean distance between a to-be-

classified vector x and each individual vector xi in the training set(Johnson and Wichern, 1982). 

The Euclidean distances for the vector pairs are calculated using the following formula: 

 
2

iD = −x x                                                                                     (3) 

 

A total of k number of vectors nearest to the vector x are used to determine its class, f(x): 

1

ˆ ( ) arg max ( , ( ))
k

v V i
i

f v fδ∈
=

← ∑x x                                                        (4) 

This article has not been copyedited and formatted. The final version may differ from this version.
Molecular Pharmacology Fast Forward. Published on September 26, 2006 as DOI: 10.1124/mol.106.027623

 at A
SPE

T
 Journals on A

pril 10, 2024
m

olpharm
.aspetjournals.org

D
ow

nloaded from
 

http://molpharm.aspetjournals.org/


 
MOL #27623 

 
12

where ( , ) 1 if  and ( , ) 0 if a b a b a b a bδ δ= = = ≠  , argmax is the maximum of the function, V is a 

finite set of vectors {v1,…vs} and ˆ ( )f x  is an estimate of f(x). Here estimate refers to the class of 

the majority of the k nearest neighbors.  

 

(III) Probabilistic Neural Network (PNN) 

As illustrated in Figure 4, PNN is a form of neural network designed for classification 

through the use of Bayes’ optimal decision rule (Specht, 1990) 

 ( ) ( )i i i j j jh c f h c f>x x                     (5) 

where hi and hj are the prior probabilities, ci and cj are the costs of misclassification and fi(x) and 

fj(x) are the probability density function for class i and j respectively. An unknown vector x is 

classified into population i if the product of all the three terms is greater for class i than for any 

other class j (not equal to i). In most applications, the prior probabilities and costs of 

misclassifications are treated as being equal. The probability density function for each class for a 

univariate case can be estimated by using the Parzen’s nonparametric estimator, 

           
1

1
( ) ( )

n
i

i

g W
nσ σ=

−= ∑
x x

x                      (6)    

where n is the sample size, σ is a scaling parameter which defines the width of the bell curve 

that surrounds each sample point, W(d) is a weight function which has its largest value at d = 0 

and (x – xi) is the distance between the unknown vector and a vector in the training set. The 

Parzen’s nonparametric estimator was later expanded by Cacoullos for the multivariate case. 

          ,1 1,
1

11 1

1
( , , ) ( , , )

n
p p ii

p
ip p

x xx x
g x x W

nσ σ σ σ=

−−
= ∑K K

K

                     (7)  

              The Gaussian function is frequently used as the weight function because it is 

well behaved, easily calculated and satisfies the conditions required by Parzen’s estimator. Thus 

the probability density function for the multivariate case becomes 
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2

1 1

1
( ) exp( )

pn
j ij

i j j

x x
g

n σ= =

 −
= −   

 
∑ ∑x                          (8) 

 The network architectures of PNN are determined by the number of compounds and 

descriptors in the training set. There are 4 layers in a PNN. The input layer provides input values 

to all neurons in the pattern layer and has as many neurons as the number of descriptors in the 

training set. The number of pattern neurons is determined by the total number of compounds in 

the training set. Each pattern neuron computes a distance measure between the input and the 

training case represented by that neuron and then subjects the distance measure to the Parzen’s 

nonparameteric estimator. The summation layer has a neuron for each class and the neurons sum 

all the pattern neurons’ output corresponding to members of that summation neuron’s class to 

obtain the estimated probability density function for that class. The single neuron in the output 

layer then estimates the class of the unknown vector x by comparing all the probability density 

function from the summation neurons and choosing the class with the highest probability 

density function. 

 

Evaluation of prediction performance 

           As in the case of all discriminative methods(Baldi et al., 2000), the performance of 

MLMs can be evaluated by the quantity of true positives TP (true PXR activators), true 

negatives TN (true non-activators), false positives FP (false PXR activators), false negatives FN 

(false non-activators). Sensitivity SE=TP/(TP+FN) and specificity SP=TN/(TN+FP) are the 

prediction accuracy for PXR activators and non-activators respectively. The overall prediction 

accuracy (Q) and Matthews correlation coefficient (C)(Matthews, 1975) are used to measure the 

overall prediction performance: 

                
FNFPTNTP

TNTP
Q

+++
+=                                                                   (9) 
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))()()((

**

FPTNFNTNFPTPFNTP

FPFNTNTP
C

++++
−=                                (10)      

 

Computational parameters and performance evaluation 

 There is only one parameter to be optimized in training each of the SVM, k-NN and 

PNN classification systems. The classification speed of these MLM-based prediction systems is 

in the order of a few thousands to hundreds of thousands of compounds per second(Li et al., 

2005a). The classification speed of SVM is usually 25-55% faster than that of k-NN and PNN 

due to the fact that SVM typically uses 45-75% of the training set as support vectors for 

classification, whereas k-NN and PNN use the whole training set.  

 

   MLMs generally require a sufficient number of samples to develop a classification system. 

Irrelevant molecular descriptors may reduce the performance of these classification 

systems(Kohavi and John, 1997; Li et al., 2005a; Xue et al., 2004a; Xue et al., 2004b). SVM has 

been found to be the least sensitive to data over-fitting, even in the cases when a large number of 

redundant and overlapping molecular descriptors are used(Vapnik, 1995). This is because SVM 

is based on the structural risk minimization principle, which minimizes both training error and 

generalization error simultaneously.  

 

 SVM, k-NN and PNN do not explicitly provide information about the importance of 

each molecular descriptor. For SVM, this problem is further compounded when kernel function 

is used as there is no simple method to inversely map the solution back into the input space. 

Incorporation of feature selection methods(Li et al., 2005b; Yap and Chen, 2005) and regression 

methods(Yap and Chen, 2004) have been frequently used for extracting important molecular 

descriptors from these machine learning-based prediction systems. 
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Results 

 

Promiscuity nature of PXR activator structures and the selected molecular 

descriptors for classifying PXR activators 

 

          Table 1 gives the computed diversity index (DI) value of PXR activators and those of 

several groups of compounds possessing various different activities or properties. PXR 

activators are structurally more diverse not only than some of the well known promiscuous 

binder groups such as ER agonists and P-glycoprotein substrates, but also than some of the 

compound groups involved in multiple mechanisms such as human intestine absorbing agents. 

Figure 5 shows the structures of selected PXR activators, which are indicative of the extent of 

structural diversity of PXR activators. The DI value of our dataset is 0.535, which is smaller 

than that of 0.605 of the largest dataset of other PXR activators studies (Schuster and Langer, 

2005). Therefore, our dataset is structurally more diverse than those of other studies of PXR 

activators. 

 

            A total of 83 molecular descriptors, listed in Supplementary Table S2, were selected by 

the RFE method from a set of 199 molecular descriptors. These descriptors include simple 

molecular description such as count of atom types (nhyd, nhal, nhet, ncocl, nnitro), ring (nring) 

and rotatable bonds (nrot), molecular connectivity and geometry (3χC, 4χPC, 5χCH, 6χCH, 1χv, 

2χv, 3χvP, 3χvC, 4χvPC, 6χvCH, dis1, dis2, dis3, etc), molecular flexibility (phi), 

electrotopological states or Estates (S car, S het, S hal, S(1), S(5), S(12), S(13), S(16), S(18), 

Tcent, Tradi, Tdiam, Tiwie, etc), molecular surface area (PSA, Sapc, Sanc, Sapcw, Sancw, Svpc, 
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etc), molecular shape (Rugty, Gloty), hydrophobicity (Shpl, Shpb, Hiwpl, Hiwpb, Hiwpa) and 

quantum chemical descriptors (εa, εb, µ, η, SN, IP, A, µ cp, χ en, ω, etc).  

 

           Some features of these RFE selected descriptors such as hydrophobicity, hydrogen bond 

acceptors, molecular globularity and some Volsurf descriptors are also consistent with the 

structural features or descriptors described or used in the previous pharmacophore and QSAR 

studies of PXR activators. Pharmacophore models have shown that hydrophobic and hydrogen 

bond acceptors (HBAs) are important features for PXR activators(Ekins and Erickson, 2002; 

Schuster and Langer, 2005). In a QSAR study (Jacobs, 2004), hydrogen bond acceptors, 

dispersion forces, molecular globularity and some VolSurf descriptors were found to be the key 

positive correlated variables for constructing the PXR QSAR model for predicting PXR 

activators.  

             The number of selected descriptors in this study is substantially larger than the 22~39 

molecular descriptors selected in the prediction of compounds of various other drug activities or 

properties(Li et al., 2005a; Li et al., 2005b; Xue et al., 2004a; Xue et al., 2004b). An 

examination of the selected descriptors shows that most of the “extra” set of descriptors is from 

the electro-topological, connectivity and quantum chemical classes. As shown in Figure 5, apart 

from the usual chemical structures, a substantial number of PXR activators contain highly 

complex multi-aromatic rings, or highly-flexible chain-like structures, or halogen-rich structures. 

These structural features coupled with highly diverse structural frameworks are likely the 

primarily reasons for the need of the “extra” set of electro-topological, connectivity and quantum 

mechanical descriptors in distinguishing PXR activators. 

 

Performance of MLMs for predicting PXR activators 
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            Table 2 gives the prediction performance of the three MLMs, with and without the use 

of the RFE feature selection method, for predicting PXR and hPXR activators and non-

activators based on a 10-fold cross validation study. The parameters of the PXR SVM, k-NN 

and PNN systems are δ=1, k=1, and δ=0.3 respectively. Those of the hPXR systems are δ=1, 

k=3, and δ=0.2, respectively. The use of the RFE feature selection method helps to improve the 

overall prediction performance of the PXR MLM systems from an accuracy level of 72.6~74.0% 

to that of 75.4~77.4%, and that of the hPXR systems from an accuracy level of 72.5%~74.9% to 

that of 75.0%~79.6%. All of the MLM systems appear to show good performance. When 

considering overall prediction accuracies, PNN and SVM perform better than k-NN.  

 

            Our classification systems were further evaluated by using 15 newly published hPXR 

activators (Lemaire et al., 2006) whose structures are shown in Figure 6. These include 5 

herbicides (pretilachlor, metolachlor, oxadiazon, alachlor and isoproturon), 6 fungicides 

(bupirimate, fenarimol, propiconazole, fenbuconazole, prochloraz and imazalil), and 4 

insecticides (toxaphene, permethrin, fipronil and diflubenzuron). As shown in Table 3, 86.7%, 

73.3% and 73.3% of these activators were correctly predicted by the SVM, PNN and k-NN PXR 

prediction systems, 66.7%, 66.7%, and 53.3% were correctly predicted by the corresponding 

hPXR prediction systems respectively. One possible reason for the lower accuracies of the hPXR 

systems is that they were trained by using compounds structurally more different from the newly 

published hPXR activators than some PXR activators in the training set of PXR prediction 

systems. As shown in supplementary Table S3, the Euclidean distance between the 15 newly 

published hPXR activators and the 28 PXR activators outside the hPXR dataset is closer than 

that of the 98 hPXR activators. One activator, fenbuconazole, was incorrectly predicted by all of 

our PXR and hPXR systems. One possible reason for misclassifying this compound is that it 
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contains a cyano group (-C≡N) which may not be adequately represented by existing molecular 

descriptors.  

 

 

Discussion 

             Our selected descriptors are consistent with the molecular binding features derived from 

the study of the binding site of the ligand-free and drug-bound PXR receptor structures(Watkins 

et al., 2001). It has been reported(Watkins et al., 2001) that molecular flexibility, surface area, 

geometry, and connectivity are important for characterizing molecular recognition between PXR 

ligand-binding site and activators. The solved crystal structure of human PXR (hPXR) ligand-

binding domain shows high mobility and flexibility in largely hydrophobic site that incorporates 

a few polar residues capable of forming hydrogen bonds with a binding ligand(Chrencik et al., 

2005; Watkins et al., 2003a; Watkins et al., 2001). Hydrogen bonds are important in 

determining the specificity of molecular recognition. Upon binding to PXR ligand-binding site, 

PXR activator is oriented in a specific orientation stabilize by hydrogen bonds and cause 

conformational change of PXR ligand binding domain to recruit the binding of coactivators. On 

the other hand, connectivity is important not only for discriminating between active from non-

active analogs but also for representing important molecular topological features involved in 

PXR activation. Moreover, electrotopological states, hydrophobicity, and quantum chemical 

descriptors describe polarity and charge of molecules that contribute in hydrogen bonding, polar, 

and salt-bridge interactions between PXR activators with the amino acid residues in the ligand-

binding cavity of PXR.  

 

             PXR activators generally show higher content of halogen atoms especially chlorine 

atoms than non-activators as can be seen from higher mean values of halogen atom count (nhal) 
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(1.16 vs. 0.80), chlorine atom count (ncocl) (1.02 vs. 0.27), and atom-type estate sum for 

chlorine S(60) (6.33 vs.1.63). Moreover, PXR activators contain less nitrogen atoms (nnitro) 

than non-activators (0.80 vs.1.79), and have lower values of several descriptors including the 

mean values of atom-type electrotopological state (estate) sum for >NH, S(5) (0 vs.0.45); atom-

type estate sum for =N-, S(34) (0.31 vs.1.15); atom-type estate sum for >N-, S(36) (0.15 vs. 

0.94); and atom-type estate sum for –N<<, S(37) (0.05 vs. 0.41). In addition, polar and salt 

bridges between PXR ligand-binding domain (LBD) residues and п-п stacking between 

aromatic rings of activators and LBD are also important for PXR activation. The descriptors for 

sums of solvent accessible surface areas of positively charged atoms (Sapc, Sapcw, Svpc), 

negatively charged atoms (Sanc, Sancw), and ionization potential (IP) are associated with salt-

bridge interactions. Those of atom-type estate sum for CHn unsaturated, S(13); and atom-type 

estate sum for :CH: aromatic, S(21) are relevant to п-п stacking.  

 

            Although PXR activators generally contain less number of hydrogen bond donors (εa) 

and acceptors (εb) than those of non-activators, non-the-less hydrogen bonding plays some roles 

in activator binding to PXR. It was found that on average PXR activators have higher number of 

HBAs (εb) than hydrogen bond donors (HBDs) (εa), which are consistent with the results from 

QSAR and pharmacophore studies(Ekins and Erickson, 2002; Jacobs, 2004; Schuster and 

Langer, 2005). A higher number of HBAs for PXR activators may result from the existence of 

the HBD-containing residues His-327, His-407, and Arg-410 residues in the interior region of 

PXR ligand-binding site. These features are captured by the RFE-selected descriptors Svpcw 

and Svncw for the sum of weighted van der Waals surface areas of positive and negative atoms, 

respectively. The mean values for Svncw (36.25 vs. 21.84) is larger than Svpcw for PXR 

activators showing complementary charge for activators to the PXR ligand-binding site may 

contribute to the entry of binding site and stable binding.   
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            The computed mean values for the number of rotatable bonds (nrot) (4.45 vs.5.99), Kier 

molecular flexibility index (phi) (5.84 vs.6.24), polar molecular surface area (PSA) (61.90 

vs.69.53)  of PXR activators are smaller than those of non-activators, which is consistent with 

the view that PXR activators are generally smaller in size (Handschin and Meyer, 2005). The 

smaller size and less number of rotatable bonds enable a better access to the ligand-binding site. 

While how a ligand gains access to the PXR ligand-binding cavity remains unclear, it has been 

hypothesized that the flexible α2 (residues 192-205) that is unique to PXR may be critical 

component for ligand entry and exit site(Watkins et al., 2003a). The flexible region may operate 

like a trapping-door allowing ligands to enter the central of the ligand-binding site. In addition, 

Leu209 located near the C terminus of α2 shifted in position by up to 7.7Å when bound by 

different ligands(Watkins et al., 2003b). Binding by co-activators further stabilizes the bound 

orientations of ligands. Taken together, the large and flexible ligand-binding pocket of PXR 

explains the promiscuous nature of PXR to bind to a variety of endogenous and xenobiotic 

compounds. 

 

              While some aspects of activator binding to PXR can be exhibited by analyzing the 

selected descriptors, these descriptors are quantitative representations of structural and 

physicochemical features. Therefore, analysis of these descriptors without consideration of the 

receptor site structure is insufficient for providing molecular level picture about the connection 

between a descriptor and the predicted activity. In the protein 3D structure database PDB 

(http://www.rcsb.org/pdb/Welcome.do), there are four entries of ligand-bound PXR structures. 

Analysis of some of these structures provides useful information about the atomic-level 

interactions represented by some of our selected descriptors. Figure 7 and Figure 8 show the 

binding site structure of PXR bound by activator SR12813 (Chrencik et al., 2005; Watkins et al., 
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2003a; Watkins et al., 2001) and hyperforin (Watkins et al., 2003b) respectively. Both activators 

form hydrophobic contacts with two hydrophobic residues and they form hydrogen bonds with 

two polar residues. These provide clear molecular picture about the connection between our 

selected descriptors, hydrophobic and hydrogen bond descriptors, and activator-binding to PXR. 

         

          K-NN is based on a nearest neighbor algorithm that works best when activators and 

non-activators tend to cluster in different regions or pockets of chemical space. SVM and PNN 

are based on non-linear algorithms that are generally effective for all cases of distributions. SVM 

has fewer parameters than PNN, which makes it easier for deriving an optimal prediction system. 

MLMs are subjected to some degree of error due to such factors as dataset quality and the 

inherent limitation in predicting biological activities solely based on structure-derived molecular 

descriptors.  

 

         From the chemistry point of view, one can state that the molecular structure of a 

compound is the key in understanding its physicochemical properties and ultimately its 

biological activity and physiological effect(Johnson and Maggiora, 1990). Although 

hydrophobic interactions and hydrogen bondings are known to play important roles in molecular 

recognition from ligand-protein, protein-protein, up to macromolecular assemblies, there are 

many ways to describe these interactions from chemistry point of views as can be expressed by 

various molecular descriptors. However, which descriptions are more relevant to a given activity 

has to be further characterized by various means such as using feature selection methods in the 

machine learning methods.  

 

         Current representations of molecular physicochemical properties by molecular 

descriptors are still far from complete. Further refinement to develop a more sophisticated set of 
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molecular descriptors is definitely an important task. Moreover, it is essential to include more 

PXR activators and non-activators from future experimental works. Currently we used a set of 

199 molecular descriptors. However, when the dataset grows in future we believe more 

completed set of molecular descriptors is required. Furthermore, the biological activity of a 

compound is an induced response that is influenced by numerous factors dictated by many 

levels of biological complexity. The relationship between structure and activity is thus more 

implicit and thereby requires a more thorough investigation and rigorous validation(Tong et al., 

2004). Hence, the choice for better descriptors is still under investigation.  

 

Conclusion 

           Identification of novel PXR activators from structurally diverse compounds is 

important for the discovery of drugs with desired metabolic and toxicological profiles. This 

study shows that MLMs especially SVM are useful for in silico prediction of the activators of 

highly promiscuous proteins such as PXR and for characterizing the molecular features of PXR 

activation. By incorporating feature selection methods such as RFE into MLMs, molecular 

descriptors relevant to PXR activators can be identified. Most of these selected molecular 

descriptors are consistent to those used in previous pharmacophore and QSAR studies and with 

the findings from X-ray crystallography studies. Further works on the improvement and 

refinement of feature selection methods as well as molecular descriptors are needed in order to 

improve the capability of MLMs for accurately identifying PXR activators and the related 

molecular characteristics.  
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Legends for Figures 
 

Figure 1. A flowchart of the procedure for searching and selecting PXR activators, hPXR 

activators and the corresponding non-activators in this work. 

 

Figure 2. Schematic diagram illustrates the process of predicting PXR activators by using 

support vector machines (SVM). A,B: feature vectors of agents with the property; E,F: feature 

vectors of agents without the property; feature vector (hj, pj, vj,…) represents such structural and 

physicochemical properties as hydrophobicity, volume, etc. 

 

Figure 3. Schematic diagram illustrating the process of the prediction of PXR activators by 

using k-nearest neighbors (k-NN). 

 

Figure 4. Schematic diagram illustrates the process of predicting PXR activators by using 

probabilistic neural networks (PNN).  

 

Figure 5 Structure of selected PXR activators of different structural features. The CAS number 

of each compound is also given.   

 

Figure 6 Structure of 14 novel PXR activators from a recent publications (Lemaire et al., 2006). 

The CAS number for each compound is also given. 

 

Figure 7 Binding of PXR activator SR12813 (in ball and stick) at PXR (in wire frame) ligand-

binding site. The activator forms hydrogen bonds with Ser247 and His407, and hydrophobic 

contact with Met243 and Met246. 

 

Figure 8 Binding of PXR activator hyperforin (in ball and stick) at PXR (in wire frame) ligand-

binding site. The activator forms hydrogen bonds with Ser247 and His407, and hydrophobic 

contact with Met243 and TRP299. 
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Table 1.  Diversity Index (DI) for the compounds in several chemical groups, and the number of 

molecular descriptors selected by RFE for predicting each group of compounds by using a MLM 

classification system. These chemical groups are arranged in descending order of structural 

diversity. 

 
Chemical Group No. of 

Compounds  
DI value No. of Molecular 

Descriptors 
Selected by RFE 
 

Blood-brain barrier penetrating agents (Li et al., 2005b) 276 0.430 37 

Genotoxic agents (Li et al., 2005a) 229 0.441 39 

FDA approved drugs 1121 0.495 -- 

CYP 3A4 inhibitors 233 0.505 
-- 

PXR activators (this work) 128 0.535 83 

CYP 2C9 inhibitors  167 0.541 -- 

NCI diversity set 1804 0.544 -- 

CYP 3A4 substrates 362 0.547 -- 

CYP 2C9 substrates 144 0.552 -- 

P-glycoprotein substrates (Xue et al., 2004b) 116 0.555 22 

CYP D6 inhibitors 180 0.575 -- 

CYP 2D6 substrates 198 0.588 -- 

Human intestine absorbing agents (Xue et al., 2004a) 131 0.596 27 

PXR activators in Schuster and Langer’s pharmacophore 
model (Schuster and Langer, 2005) 

53 0.605 -- 

ER agonists (Li et al., 2006) 243 0.618 31 
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Table 2 Performance of three machine learning methods (k-NN, PNN and SVM) for predicting 

PXR and hPXR activators and non-activators determined by a 10-fold cross validation study. 

The results are expressed in SE (sensitivity or prediction accuracy for PXR activators), SP 

(specificity or prediction accuracy for PXR non-activators), Q (overall accuracy) and C 

(Matthews correlation coefficient). 

 
 
Species Molecular 

descriptors 
Method PXR 

activator 
Accuracy 
SE (%) 

PXR non-
activator 
Accuracy 

SP (%) 

Q (%) C 

k-NN 81.7 57.5 72.6 0.410 
PNN 81.9 60.9 74.0 0.446 

All 
Descriptor
s SVM 81.0 62.2 73.9 0.441 
      

k-NN 84.0 61.2 75.4 0.473 
PNN 82.8 68.4 77.4 0.526 

All Species 

RFE 
Selected 
Descriptor
s 

SVM 
81.2 70.3 77.1 0.528 

       
k-NN 80.6 62.4 72.5 0.448 
PNN 80.7 63.8 73.2 0.461 

All 
Descriptor
s SVM 77.8 71.4 74.9 0.504 
      

k-NN 80.8 67.7 75.0 0.499 
PNN 85.0 68.7 77.7 0.559 

Human 

RFE 
Selected 
Descriptor
s 

SVM 
84.4 73.6 79.6 0.598 
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Table 3 Performance of the PXR and hPXR activator prediction systems for predicting the 15 

recently published hPXR activators. A: predicted PXR activator and N: predicted PXR non-

activators.  

 
PXR Activator 

Prediction System 
hPXR Activator 

Prediction System 
S
N 

Compound 
Name 

CAS 
Number 

Relative 
Activity 

SVM PNN k-NN SVM PNN k-NN 
1  Pretilachlor    51218-49-6   129.5 A A A N A N 
2  Toxaphene  8001-35-2 114.2 A A A A A A 
3  Metolachlor    51218-45-2   107.2 A A A N A A 
4  Oxadiazon    19666-30-9   94.2 A A A A A N 
5 Bupirimate  41483-43-6   93.5 A A A A A A 
6  Fenarimol    60168-88-9   89.6 A A N A N A 
7 Permethrin  52645-53-1   88.4 A A A A N A 
8  Propiconazole  60207-90-1   85.1 A N N A A A 
9 Alachlor  15972-60-8 71.3 A A A N A A 
1
0 

Fipronil  120068-37-3   58.7 A A A A A N 

1
1 

Fenbuconazole   114369-43-6   56.1 N N N N N N 

1
2 

 Prochloraz    67747-09-5   50.5 A A A A A N 

1
3 

Isoproturon  34123-59-6   50.1 A A A A N A 

1
4 

 Imazalil    35554-44-0   46.5 N N A N N N 

1
5 

Diflubenzuron  35367-38-5   33.0 A N N A A N 
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