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Abstract 

Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, plays 

an important role in synaptic plasticity.  In this issue of Molecular Pharmacology, Ou & 

Gean thoroughly describe the molecular cascade by which fear learning leads to an 

increase in BDNF expression in the lateral amygdala (LA).  Calcium influx through 

NMDA receptors and L-VDCC channels, which occurs in the LA during fear 

conditioning, activates PKA and CaMKIV.  Each induces phosphorylation of CREB, 

which binds to the BDNF promoter, leading to BDNF expression in the LA, and 

contributes to fear memory consolidation.    
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The activity-dependent modification of synapses, a process known as synaptic plasticity, 

permits the brain to generate efficient neural networks that facilitate advantageous 

behavioral adaptations.  Although an extensive body of research has demonstrated the 

importance of synaptic strengthening in the beneficial functions of learning and memory, 

recent evidence also suggests that a host of pathologies, including mood disorders and 

drug addiction, engage overlapping mechanisms.  Thus, the elucidation of molecular 

pathways involved in driving these physiological changes has broad clinical implications 

(Malenka & Bear, 2004; MacKinnon & Zamoiski, 2006).   

 

 The neurotrophins, a family of structurally related proteins known for their role in 

promoting neuronal differentiation and survival during development (Levi Montalcini, 

1987; Leibrock et al., 1989; Barde, 1994), have recently surfaced as playing an important 

role in mediating synaptic plasticity (Schinder & Poo, 2000;  Lu, 2003; Lu, 2004; 

Bramham & Messaoudi, 2005; Arancio & Chao, 2007).  In the current issue of Molecular 

Pharmacology, Ou and Gean (2007) investigated the mechanism by which one member 

of this family, brain derived neurotrophic factor (BDNF), mediates fear memory 

consolidation in the amygdala.  BDNF and its main receptor, TrkB, are fast emerging as 

major regulators of synaptic transmission and plasticity in the adult brain.  In mammals, 

BDNF is synthesized, stored, and released from excitatory glutamate (Lessman et al., 

2003) and, in some populations, dopamine-containing neurons (Berton et al., 2006).   
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 Past investigations into the role of BDNF in plasticity have predominantly 

focused on the hippocampus, a structure traditionally associated with learning and 

memory.  In that structure, TrkB receptors have been specifically localized to the pre- and 

post-synaptic elements of glutamatergic synapses (Drake et al., 1999), and co-

immunoprecipitate with the transmembrane NMDA receptor protein, which allows 

calcium entry into the cell in response to detection of coincidental rises in both pre-

synaptic glutamate and post-synaptic voltage (Aoki et al., 2000).  Because this calcium 

influx is necessary for the initiation of cellular changes, the co-localization of NMDARs 

with BDNF and its receptor, TrkB, at synaptic junctions sets the stage to synchronize 

bidirectional synaptic optimization.   

 

Much evidence indicates that learning initiates alterations in glutamate-dependent 

excitatory synaptic transmission, which subsequently stabilize through structural changes 

at postsynaptic sites on dendritic spines (for review, see Lamprecht & LeDoux, 2004).  

Direct infusion of BDNF into the hippocampus enhances synaptic strength, both in vitro 

(Kang & Schuman, 1995; Levine et al., 1995) and in vivo (Messaoudi et al., 1998), as 

well as modulates the induction of long-term potentiation (Patterson et al., 1996; 

Messaoudi et al., 2002) and structural changes in dendritic spines (Alonso et al., 2004).  

Recent work by Tyler and colleagues (2002) also suggests that BDNF activation is 

necessary for the learning-induced modification of hippocampal spines, which may also 

involve the activation of TrkB (von Bohlen und Halbach et al., 2006).  Furthermore, 

Bekinschtein et al. (2007) recently demonstrated that BDNF-dependent storage of long-
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term memories occurs within hours after acquisition of an associative learning task, 

suggesting that BDNF is likely to be involved in memory stabilization.    

 

 Despite the traditional popularity of the hippocampus in all matters of learning 

and memory, there is increasing empirical support for the role of another structure—the 

amygdala—in the types of synaptic changes facilitated by BDNF.  In particular, 

mounting evidence now indicates a role for BDNF signaling in the basal and lateral 

nuclei of the amygdala (Rattiner et al., 2004a; Ou & Gean, 2006), areas known to be 

necessary for the formation of learned fear associations (LeDoux et al., 2000).  Because 

the amygdala has been implicated in many pathologies, including post-traumatic stress 

(Garakani et al., 2006), anxiety (Rauch et al., 2006), and autism spectrum disorders 

(Baron-Cohen et al., 2000; Bachevalier & Loveland, 2006), considerable efforts have 

been devoted to the characterization of this circuitry as a central site for emotion-induced 

neuronal plasticity (LeDoux, 2000; Maren, 2001, Paré et al., 2004; Wilensky et al., 

2006).  A number of studies have shown, using Pavlovian fear conditioning paradigms, 

that the physiological basis for such changes begins with the relay of sensory information 

from the medial geniculate nucleus of the thalamus (MGm) to the lateral amygdala (LA), 

where the initial association is made via an LTP-like mechanism, followed by the intra-

amygdala transfer of signals to the central nucleus of the amygdala (CEm) which 

facilitates the expression of a fear response by way of projections to brainstem and 

hypothalamic targets (Davis, 1997; Paré et al., 2004; LeDoux, 2000).  Together, these 

findings support the notion that changes in synaptic strength are required for the 

acquisition of emotional memories.  At a more profound level, however, our knowledge 
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of these larger-scale anatomical modifications remains bound by our more limited 

comprehension of the molecular machinery governing those changes.  

 

 A recent study found temporally-specific increases in BDNF gene expression to 

occur in the basal/lateral portion of the amygdala (BLA) after paired stimuli that 

supported learning, but not after exposure to neutral or aversive stimuli alone (Rattiner et 

al., 2004a).  BDNF signaling through TrkB receptors was also found to be necessary for 

the consolidation of fear memories (Rattiner et al., 2004a).  In agreement with Rattiner et 

al.’s findings (2004), Ou & Gean (2006) reported increases in BDNF protein expression 

and activation of TrkB receptors in the amygdala.  Their study further revealed that intra-

amygdala infusion of a TrkB ligand scavenger or the inhibition of Trk receptors impaired 

fear memory assessed 24 hours after training.  In addition, they showed that BDNF 

phosphorylates mitogen-activated protein kinase (MAPK), and this is blocked by the Trk 

receptor inhibitor K252a (Ou & Gean, 2006).  The BDNF-induced phosphorylation of 

MAPK occurs via Shc binding to the TrkB receptor, which leads to the activation of Ras, 

Raf, MEK, and MAPK.  BDNF also phosphorylates MAPK via activation of PI-3 kinase 

(see figure 1).     

 

 In the current issue of molecular pharmacology, Ou & Gean (2007) extend their 

earlier work to a characterization of the molecular cascades underlying fear conditioning 

that exert transcriptional and translational control over BDNF expression in the 

amygdala.  Consistent with the previous work of Rattiner et al. (2004b), they show a 

significant increase in BDNF exon I- and III-containing mRNA in the amygdala of fear 
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conditioned rats.  Inhibition of protein synthesis and translation, using intra-LA 

anisomycin or actinomycin D, respectively, attenuates this increase in fear-conditioning-

induced BDNF expression.  Further, they demonstrate that the increase in BDNF depends 

on the activation of NMDA receptors as well as L-type voltage-dependent calcium 

channels (L-VDCC), the blockade of which significantly attenuates BDNF expression.  A 

similar reduction was also apparent following the pharmacological inhibition of PKA and 

CaMKIV activity.  In addition, through the use of DNA affinity precipitation and 

chromatin immunoprecipitation (ChIP) assays, Ou & Gean (2007) demonstrate a specific 

increase in the binding of phosphorylated cAMP response element binding protein (p-

CREB) to exon I and III promoters after fear conditioning.  Interestingly, they found that 

sequestration of endogenous BDNF during fear conditioning by infusion of a TrkB IgG 

did not affect the BDNF protein level increases typically observed one hour after 

conditioning.  This suggests that whereas BDNF signaling through TrkB receptors in the 

amygdala is required for long-term memory (Rattiner et al., 2004a; Ou & Gean, 2006), it 

is not necessary to regulate the increase in BDNF protein levels induced by fear 

conditioning (Ou & Gean, 2007).   

 

 Many of the most common psychiatric disorders that afflict humans are emotional 

disorders, a number of which involve the activation of fear circuitry in the brain.  In order 

to develop suitable treatments for anxiety-related disorders, it is necessary to develop a 

better understanding of the molecular mechanisms that underlie their development and 

manifestation.  Ou & Gean’s (2007) findings elegantly illustrate that calcium influx 

through NMDA receptors and L-VDCC channels, known to occur during fear 
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conditioning, activates PKA and CaMKIV, each inducing CREB phosphorylation.  In 

turn, phosphorylated CREB binds to the BDNF promoter, leading to an increase in 

BDNF expression in the amygdala, and likely contributes to fear memory consolidation 

(see Figure 1).  Ou & Gean’s (2007) study describes a tight molecular cascade linking the 

initial physiological events that take place during fear conditioning to the expression of 

BDNF- a potent modulator of synaptic plasticity that could lead to the restructuring of 

synapses in the LA.  Taken together, these findings implicate the BDNF signaling 

cascade in the amygdala as a potential target for novel pharmacological interventions. 
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Figure caption 

Figure 1.  Brain-derived neurotrophic factor (BDNF) signaling cascade involved during 

fear conditioning.  Calcium influx through NMDA receptors and L-VDCC channels, 

which occurs in the lateral amygdala (LA) during fear conditioning, activates adenyl 

cyclase (AC) and protein kinase A (PKA).  Activated PKA translocates to the nucleus 

and induces CREB phosphorylation.  Increase in intracellular calcium also activates 

CaMKIV, and leads to phosphorylation of CREB at ser-133.  Activated CREB binds to 

the BDNF promoter, leading to BDNF expression in the LA, and contributes to fear 

memory consolidation (from Ou & Gean, 2007).  Fear conditioning is also associated 

with binding of BDNF to TrkB receptors.  This results in the association of Shc and TrkB 

receptor [structure of ligand binding domain after the work of Ultsch et al (1999)], and 

leads to the activation of Ras, Raf, MEK, and MAPK (not shown here).  BDNF also 

phosphorylates MAPK via activation of PI3 kinase (from Ou & Gean, 2006) (not shown 

here).   
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