Evidence for functional P2X₄ / P2X₇ heteromeric receptors

Chang Guo, Marianela Masin, Omar S. Qureshi, Ruth D. Murrell-Lagnado

Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge
CB2 1PD, United Kingdom
Abbreviations: BzATP, 2’,3’-O-(benzoyl-4-benzoyl)-ATP; DMEM, Dulbecco’s modified Eagle’s medium; EGFP, enhanced green fluorescent protein; ER, endoplasmic reticulum; FITC, fluorescein isothiocyanate; HA, hemagglutinin; HEK, human embryonic kidney; NRK, normal rat kidney; BMDM, bone marrow derived macrophages; PBS, phosphate-buffered saline; SDS-PAGE, sodium dodecylsulfate-
polyacrylamide gel electrophoresis; TNP-ATP, 2',3'-O-(2,4,6-trinitrophenyl) adenosine 5-triphosphate; BBG, Brilliant Blue G; EC, extracellular; wt, wild type.
Abstract

The cytolytic ionotropic ATP receptor, P2X7, has several important roles in immune cell regulation such as cytokine release, apoptosis and microbial killing. Although P2X7 receptors are frequently co-expressed with another subtype of P2X receptor, P2X4, they are thought not to form heteromeric assemblies but to function only as homomers. Both receptors play a role in neuropathic pain and therefore understanding how they coordinate the cellular response to ATP is important for the development of effective pain therapies. Here we provide biochemical and electrophysiological evidence for an association between P2X4 and P2X7 that increases the diversity of receptor currents mediated via these two subtypes. The heterologously expressed receptors were co-immunoprecipitated from HEK293 cells, and the endogenous P2X4 and P2X7 receptors were similarly co-immunoprecipitated from bone marrow derived macrophages. In HEK293 cells the fraction of P2X4 receptors biotinylated at the plasma membrane increased 2-fold in the presence of P2X7 although there was no change in overall expression. Co-expression of a dominant negative P2X4 mutant (C353W) with P2X7, inhibited P2X7-receptor mediated currents by greater than 2 fold, whereas a non-functional but non-dominant negative mutant (S341W) did not. Co-expression of P2X4S341W with P2X7 produced a current that was potentiated by ivermectin (IVM) and inhibited by 2',3'-O-(2,4,6-trinitrophenyl) adenosine 5-triphosphate (TNP-ATP), whereas expression of P2X7 alone produced a current that was insensitive to both these compounds at the concentrations used. These results demonstrate a structural and functional interaction between P2X4 and P2X7 which suggests that they associate to form heteromeric receptors.
Introduction

Extracellular ATP acts as a signalling molecule exerting effects on a range of biological functions including immune regulation, apoptosis, cellular proliferation and neurotransmission (Khakh and North, 2006). P2X receptors are cationic channels gated by extracellular ATP of which seven subtypes have been identified which assemble either as homo- or hetero-trimeric receptors (Barrera et al., 2005; North, 2002). Heteromerisation can change both the functional and pharmacological properties of P2X receptors (King et al., 2000; Lewis et al., 1995). One member of this family, P2X7 receptor is thought to be unique amongst P2X receptors in only forming homomeric assemblies (Torres et al., 1999).

Activation of P2X7 receptors, which are expressed in a range of immune cells, can result in release of IL-1β, IL-18, tumor necrosis factor -α (TNF-α) and matrix metalloproteinase 9, activation of the stress-activated protein kinase/JNK pathway, membrane blebbing and apoptotic or necrotic cell death (Gu and Wiley, 2006; Humphreys et al., 2000; Perregaux et al., 2000; Wilson et al., 2002). This receptor represents an important target in inflammatory diseases such as arthritis, neuropathic pain and stroke (Chessell et al., 2005; Dell'Antonio et al., 2002; Labasi et al., 2002). In immune cells such as macrophages, monocytes, and microglia, P2X7 receptors are co-expressed with another member of the P2X family also important in neuropathic pain, the P2X4 receptor (Bowler et al., 2003; Xiang and Burnstock, 2005). The role of this receptor in immune cells is not as well understood, however it has considerably higher affinity for ATP than the P2X7.
receptor and its up-regulation in spinal cord microglia as a result of peripheral nerve injury contributes to allodynia type hypersensitivity (Tsuda et al., 2003).

Co-expression of P2X₄ and P2X₇ is not restricted to immune cells. They are also present together in endothelial and epithelial cells and a recent, electrophysiological study of P2X receptors that are present in ciliated airway epithelia and thought to be important for mucociliary clearance, reported currents with a novel combination of both P2X₇ and P2X₄ receptor characteristics (Ma et al., 2006). Comparing amino acid sequences, P2X₄ is more homologous to P2X₇ (~40%) than are the other P2X receptor subtypes, however a previous co-immunoprecipitation study with heterologously expressed receptors failed to provide evidence for the formation of stable P2X₄/7 complexes (Torres et al., 1999).

To understand how receptors transmit an ATP signal we need to define the subunit identity of the physiological receptors. The formation of a P2X₄/7 heteromer could provide an important mechanism for the modulation of P2X₇ receptor signalling, and so has important consequences for P2X₇ as a therapeutic target and for its physiological roles in a range of diseases and immune cell function. We sought to evaluate a molecular basis for its existence using biochemical, functional and pharmacological methods.
Material and Methods

Antibodies and Reagents. The following primary antibodies were used: rabbit polyclonal anti-P2X₂ subunit (0.6 µg/ml; Alomone Labs, Jerusalem, Israel), rabbit polyclonal anti-P2X₄ subunit (6 µg/ml; Alomone), rabbit polyclonal anti-P2X₇ subunit (1.5 µg/ml; Alomone), mouse monoclonal anti-HA (0.8 µg/ml; Roche), rabbit polyclonal anti-EE (1 µg/ml Bethyl, UK), anti-LAMP-1 (0.8 µg/ml, Santa-Cruz Biotechnologies). FITC- or Cy3-conjugated goat anti-mouse or anti-rabbit IgG secondary antibodies (1:250; Jackson Immuno-Research Laboratories, Inc.) were used for immunofluorescence. Horseradish peroxidase-conjugated anti-mouse or anti-rabbit secondary antibodies (1:10000; Amersham Biosciences and Perbio Science, Cramlington, UK) or Rabbit TrueBlot™-Horseradish Peroxidase (HRP) anti-rabbit IgG (eBioscience, US), were used for Western blotting. Complete Protease Inhibitor cocktail (Roche), n-Dodecyl-b-D-maltoside (DDM, Melford Labs, UK), Anti-Rabbit IgG-beads (eBioscience, US) and BCA Protein assay kit (Pierce) were used for co-immunoprecipitation experiments. Sulfo-succinimidyl 2-(biotinamido)-ethyl-1,3’-dithiopropionate was from Pierce, Rockford, IL. Unless otherwise stated, all others reagents were obtained from Sigma or Invitrogen.

DNA Constructs. The construction and characterization of P2X₄ and P2X₂ receptors with enhanced green fluorescent protein fused to the C-terminus (P2X₄-EGFP, P2X₂-EGFP) has been previously been described (Bobanovic et al., 2002). Briefly, to generate cDNA encoding P2X₄ with EGFP fused to the C terminus, the rat cDNA (a kind gift from Prof. P.P.A Humphrey) was amplified by PCR using oligonucleotide primers to introduce
a Kozak initiation sequence (Kozak, 1987), to remove the stop codon and to introduce
NheI and *SacII* sites at the 5' and 3' ends, respectively. Amplification products were then
cloned into the pEGFP-N1 vector (Clontech, CA). Other constructs used include wild
type P2X4 and P2X4 with a hemagglutinin (HA) tag at the C terminus. These sequences
were subcloned into the pEGFP-N1 vector so that the enhanced green fluorescent protein
(EGFP) sequence was excised. The C353W and S341W point mutations were made using
the Quick Change II site directed mutagenesis kit (Stratagene) in P2X4-EGFP. The
sequences of all amplified regions were verified using automated DNA sequencing
(Department of Genetics, University of Cambridge, UK). Other constructs used include
wild-type rat P2X7 and P2X2, P2X2 tagged at its N terminus with HA, pEGFP-N1 and
DsRed-ER (Clontech, Mountain View, CA). Glu-Glu (EE)-tagged P2X7 in pcDNA3 was
a kind gift from A. Surprenant.

Cell Culture and Transfection. Normal rat kidney (NRK) cells and human embryonic
kidney 293 (HEK293) cells were maintained in Dulbecco's modified Eagle's medium
(DMEM) containing 10% fetal bovine serum and 100 units/ml penicillin/streptomycin at
37°C and 5% CO2. Transient transfections of NRK cells were carried out using
Lipofectamine 2000 (Invitrogen, Carlsbad, CA), according to the manufacturer's
instructions. For transfection of one well of a 12-well plate, 1 µg of plasmid DNA was
used. Transient transfections of HEK293 cells were carried out using the modified
calcium phosphate method as described previously (Bobanovic et al., 2002). The amount
of DNA used to form a precipitate was 3 µg (in 100 µl CaCl2/100 µl 2× HBS) and this
was added to cells (200 µl/well) for 6 hours. For co-transfection experiments, equal
amounts of DNA were used and we also included 0.5 µg of pEGFP-N1 vector for co-expression of EGFP with non-fluorescent constructs.

Bone marrow derived macrophages (BMDMs) were obtained from 5-6 week-old, male CD-1 mice. Mice were killed, the femur was excised, and the epiphyses removed prior to flushing out the bone marrow. Cells were washed and resuspended in RPMI 1640 media supplemented with 20% fetal calf serum (FCS), 100U/ml of penicillin/streptomycin and 30% L929 cell-conditioned media. Cells were cultured for 7 days before use and treated for 48 hours with lipopolysaccharide (LPS) solution (1 µg/ml) before membrane protein fraction isolation.

Cell Biology and Immunofluorescence Protocols. Both NRK cells and HEK293 cells were plated onto poly-D-lysine-treated coverslips. All cells were used 24 hours post-transfection. The basic protocol for total staining of the receptors was as follows. Cells were fixed in 3% paraformaldehyde (PFA) and 4% sucrose in PBS (in mM: 1.5 NaH$_2$PO$_4$, 8 Na$_2$HPO$_4$, and 145 NaCl, pH 7.3) for 10 minutes at 4°C. If required, permeabilisation was done using 0.1% Triton X-100 in PBS for 10 minutes at 4°C. Nonspecific sites were blocked using PBS containing 4% normal goat serum and 3% bovine serum albumin (blocking buffer). Antibodies were diluted to their final concentration in blocking solution. Primary antibodies were applied for 2 hours at room temperature. Cells were rinsed once in blocking buffer and three times for 5 minutes with PBS, and then secondary antibodies were applied for 2 hours at room temperature. Finally, cells were washed five times for 5 minutes with PBS and mounted onto slides with Vectashield (Vector Laboratories, Burlingame, CA) as a mounting medium. In some
experiments 100% methanol was used for 10 minutes at -20°C to fix and permeabilise the cells.

Image Analysis. Fluorescence was visualized using a Zeiss Axiovert LSM510 confocal microscope using a 63× oil immersion objective (Carl Zeiss Inc., Thornwood, NY). For FITC-Cy3 anti-FLAG double labeling, FITC and Cy3 were excited at 7% and 60% of 488 and 543 laser power, respectively. For each experiment, images were collected using identical acquisition parameters and analysed using Image J. Pixel values were on an 8-bit scale ($2^8 = 256$; 0-255).

Biotinylation. Cells were washed with ice-cold PBS and incubated with 1 mg/ml of sulfo-succinimidyl 2-(biotinamido)-ethyl-1,3'-dithiopropionate for 20 minutes at 4°C. Excess biotin was quenched with PBS containing 50 mM glycine. Cells were solubilised with lysis buffer (20 mM Tris, pH 8.0, 150 mM NaCl, 1 mM EDTA, 2 mM EGTA, 1% NP-40, 1 mM PMSF, 50 mM NaF, 1 mM sodium orthophosphate, 20 mM β-glycerophosphate, 10 mM sodium pyrophosphate, and protease inhibitors) and incubated on ice for 30 minutes, after which time they were sonicated and cleared by centrifugation. The majority of the supernatant was incubated with immobilised NeutrAvidin biotin binding protein beads (Pierce) on a rotating rack for 2 hours at 4°C to precipitate biotinylated proteins. The remaining supernatant was kept to assess total protein in each sample. Beads containing precipitated biotinylated proteins were spun for 1 minute at 10,000 rpm at 4°C and washed at least three times. The protein was eluted from the beads by incubation in 20 µl of the Laemmli buffer. Proteins were separated by SDS-PAGE by loading on 7.5% polyacrylamide gels and detected by immunoblotting. The P2X₄
receptor was detected using a rabbit polyclonal anti-P2X$_4$ antibody (1:500). The P2X$_7$ receptor was detected using a rabbit polyclonal anti-P2X$_7$ antibody (1:100). Immunoreactive bands were visualized using appropriate horseradish peroxidase-conjugated secondary antibodies followed by enhanced chemiluminescence detection. All blots shown in figures are typical of at least two and in most cases four similar results.

Membrane protein fraction isolation. In order to obtain total membrane protein fractions for immunoprecipitation assays, transfected HEK293 cells or bone marrow derived macrophages (BMDMs) were washed three times with HBS-EDTA buffer (50 mM HEPES pH 7.4, 100 mM NaCl, 2 mM EDTA), scrapped off, and then collected by gentle centrifugation. The cell pellet was resuspended in ice-cold hypotonic buffer (10 mM Tris-HCl pH 7.0, 2 mM EDTA, 1 mM PMSF and Protease Inhibitors cocktail) and incubated for 20 minutes on ice. Cells were mechanically disrupted by passing the solution through a needle, and then the extract was centrifuged at high speed (14000 rpm, 15 minutes). The pellet containing the membrane-derived protein fraction was solubilised using 1% DDM in HBS buffer for 1 hour on ice and the solution was ultracentrifuged at 30000 rpm for 1 hour. The membrane protein fraction was collected from the supernatant and subjected to the BCA protein assay.

Immunoprecipitation. Total membrane protein extracts were pre-absorbed with Anti-Rabbit IgG-beads for 30 minutes. The pre-cleared membrane protein extracts were then incubated with 2-5 µg of anti-P2X$_4$ or anti-P2X$_7$ antibody in HBS buffer containing 1% DDM for 2 hours at 4°C. Anti-Rabbit IgG beads were subsequently added to the samples and the mixture was further incubated for 1 hour at 4°C. The protein-beads complexes were washed four times with HBS buffer containing 1% DDM and proteins were eluted
by boiling for 5 minutes in 40 µl of Laemmli buffer. Samples were analyzed by SDS-PAGE and probed by Western blot using the corresponding primary antibody and Rabbit TrueBlot™-Horseradish Peroxidase (HRP) anti-rabbit IgG as secondary antibody. When the immunoprecipitation was performed using a monoclonal anti-HA antibody, protein G-beads were used instead to isolate the complexes, and a HRP-anti-mouse secondary antibody was employed for detection in Western blots.

Electrophysiological Recordings. Standard whole-cell recordings were performed at room temperature using an Axopatch 200A amplifier (Axon Instruments, Inc.). Patch pipettes (3-6 megaohms) were pulled from thick-walled borosilicate glass (GC150F-10, Harvard Apparatus, Inc.). ATP-induced responses were measured at -30 mV, and different extracellular (EC) solutions were used. These included normal Na⁺ EC solution (in mM: 140 NaCl, 5 KCl, 2 CaCl₂, 1 MgCl₂, 10 D-glucose and 10 HEPES, pH 7.3); Na⁺ EC solution with low divalent (in mM: 151 NaCl, 0.3 CaCl₂, 10 HEPES and 10 Glucose, pH 7.3); Cs⁺ EC solution with low divalent (in mM: 151 CsCl, 0.3 CaCl₂, 10 HEPES and 10 Glucose, pH 7.3); Cs⁺ EC solution with 1.58 mM Ca²⁺ (in mM: 151 CsCl, 1.58 CaCl₂, 10 HEPES and 10 Glucose, pH 7.3); Cs⁺ + Na⁺ EC solution with low divalent (in mM: 121 CsCl, 30 NaCl, 0.3 CaCl₂, 10 HEPES and 10 Glucose, pH 7.3). When using Na⁺ EC solution the intracellular (IC) solution had the following composition (in mM: 70 K₂SO₄, 10 KCl, 1 MgCl₂, 10 HEPES and 75 sucrose, pH 7.3). When using a Cs⁺ EC solution the composition of the IC solution was as follows (in mM: 151 CsCl, 10 HEPES, 0.1 EGTA, pH 7.3).
Whole-cell currents were low pass-filtered at 2 kHz and digitized at 10 kHz. Agonists were applied locally using a Picospritzer II (Parker Instrumentation). To ensure delivery of drug, 0.05% (w/v) fast green was used. (Local applications of 1% fast green induced no response.) To visualize cells expressing P2X receptors without an EGFP tag, cells were cotransfected with EGFP. Cells expressing EGFP or EGFP-tagged P2X subunits were observed under a microscope with an epifluorescence attachment (Nikon, Tokyo, Japan). Untransfected cells and cells expressing EGFP alone were found to have no inward current in response to application of agonists. Acquisition was performed using HEKA Pulse Version 8.30, and data were subsequently analyzed using IgorPRO Version 3.16. Statistical analyses were performed with Student's unpaired t test.
Results

Co-expression of P2X$_4$ and P2X$_7$ increased the surface expression of P2X$_4$.

We examined the distribution of P2X$_4$ and P2X$_7$ when expressed either individually or together in HEK293 and NRK cells using immunocytochemical labelling. We previously showed that P2X$_4$ receptors undergo rapid and constitutive endocytosis and reside predominantly within intracellular compartments (Bobanovic et al., 2002; Royle et al., 2002). Figure 1 shows P2X$_4$ co-localized with the lysosomal marker, Lamp-1, whereas P2X$_7$ receptors containing a Glu-Glu tag at the C-terminus (P2X$_7$-EE) were predominantly co-localized with the ER marker, DsRed-ER (Fig. 1A). Using methanol rather than PFA to fix the cells enhanced antibody labelling of P2X$_7$ at the plasma membrane (Fig. 1B). When P2X$_4$ and P2X$_7$ were co-expressed in NRK cells, P2X$_4$ was still predominantly within endolysosomes and there was very little labelling of P2X$_7$-EE in these compartments, suggesting that these receptors are P2X$_4$ homomers. At the plasma membrane, however, there was overlap in the distribution of the two receptors. To look at any change in the surface expression of P2X$_4$ and P2X$_7$, surface proteins were biotinylated and analysed by western blot (Fig. 1, C and D). The biotinylated fraction of P2X$_4$ increased ~2-fold in the presence of P2X$_7$, although total P2X$_4$ levels did not change, suggesting that association with P2X$_7$ stabilises P2X$_4$ at the plasma membrane. In contrast, there was no change in the surface expression of P2X$_7$ with and without P2X$_4$.
Association of P2X4 and P2X7 receptor subunits.

To test whether or not P2X7 receptor subunits can associate with P2X4 receptor subunits, we performed immunoprecipitation (IP) experiments using HEK293 cells cotransfected with P2X7 and P2X4. Membrane proteins were solubilized using 1% n-Dodecyl-D-maltoside (DDM) as this was more effective at solubilizing P2X7 than 1% Triton X-100, NP-40 or CHAPs (data not shown). Following IP of the receptor complex using anti-P2X4 antibody, P2X7 was detected by immunoblotting with anti-P2X7 antibody (Fig. 2A) but only when P2X4 was also present. We also co-expressed P2X4-HA with P2X7 and were able to co-IP P2X7 with anti-HA antibody (Fig. 2B). This gel shows that although two bands were detected for P2X7 in the membrane fraction, which presumably represent fully and partially glycosylated forms, only the higher band was detected after co-IP. This suggests that the complex formed by P2X4 and P2X7 is not a misaggregate that is retained in the ER, but instead is trafficked along the secretory pathway to the trans golgi network and presumably from there to the plasma membrane.

Having shown that overexpressed P2X4 and P2X7 associate with one another we next tested whether or not the endogenous receptors in bone marrow derived macrophages could be co-immunoprecipitated. We performed the co-IP with anti-P2X4 and the immunoblot with anti-P2X7 and were able to detect a clear band running at the appropriate size for P2X7 (Fig. 2C). Thus native P2X4 and P2X7 receptors in mouse macrophages associate to form part of the same complex.
A functional interaction between P2X₄ and P2X₇ receptors

To investigate the functional significance of the interaction between P2X₄ and P2X₇ subunits we utilized two non-functional P2X₄ receptor mutants, C353W and S341W, which were previously characterized in *Xenopus* oocytes (Silberberg et al., 2005). When expressed alone in oocytes neither mutant produced a current in response up to 300 µM ATP although their surface expression was equivalent to the wild type (wt) P2X₄ receptor, indicating that the mutations interfered with channel functional and not maturation or trafficking. When co-expressed with wt P2X₄, the C353W mutant dramatically reduced the currents whereas the S341W mutant had no inhibitory effect (Silberberg et al., 2005). We obtained very similar results using the EGFP-tagged mutants, expressed alone or with wt P2X₄ in HEK293 cells (Fig. 3A). Both mutants expressed individually were non-functional in response to 30-100 µM ATP and when coexpressed with wt P2X₄, the C353W mutant reduced the peak current amplitude by ~75%, whereas the S341W mutant produced a small, but not significant potentiation. We next compared the effect of these mutants on the current carried by the wt P2X₇ receptor (Fig. 3B). The P2X₄C353W mutant inhibited the P2X₇ receptor currents evoked by 1 mM ATP⁺ by greater than 50% but the currents recorded from cells co-expressing the S341W mutant with P2X₇ were slightly increased compared to P2X₇ alone. Similar results were obtained with 100 µM ATP⁺ and also with the P2X₇ receptor preferred agonist, BzATP (Fig 3C). We compared the BzATP dose response relationship for P2X₇ alone and P2X₇ coexpressed with the S341W mutant and the EC₅₀ values were similar (11.4±1.1 µM and 9.1±0.8 µM respectively) (Fig 3D). In contrast the wt P2X₄ receptor produced very little response to BzATP up to concentrations of 100 µM. Neither the S341W nor C353W
mutants altered the surface expression of P2X7 as measured by biotinylating surface proteins (Fig. 3E), indicating that functional inhibition of P2X7 by the C353W mutant was not caused by a reduction in the number of receptors reaching the plasma membrane. If we assume that association of the C353W mutant with P2X7 abolishes receptor function, as suggested for receptors formed from wt P2X4 and the C353W mutant, then we can estimate that there was a >2-fold reduction in the number of functional homomeric P2X7 receptors at the plasma membrane in the presence of the C353W mutant. This suggests that more than half of the surface P2X7 receptor subunits were associated with the P2X4C353W mutant. In contrast to the inhibition of P2X7 by P2X4C353W, there was no change in P2X2 receptor currents upon co-expression with either P2X4C353W or S341W (Fig 3F).

Having demonstrated an interaction between the P2X4 mutants and wt P2X7 we tested how co-expression of wt P2X4 and P2X7 affected the responses to BzATP and MgATP (Fig. 4, A and B). MgATP activated large currents in cells expressing P2X4 alone and BzATP activated large currents in cells expressing the P2X7 receptor. In cells co-expressing these receptors, summation of the response produced by each receptor expressed individually would suggest two independent pools of homomeric receptors. The currents evoked by both agonists were, however, significantly reduced compared to what one would predict for a simple summation suggesting a functional interaction between the two receptors. This was not the case for P2X2 and P2X7 (Fig. 4C), and the apparent lack of a functional interaction between these two subtypes was consistent with their inability to co-IP (Supplementary Fig. 1).
Co-expression of P2X₄ with P2X₇ confers ivermectin (IVM) sensitivity to BzATP evoked currents

To further test whether or not an interaction between P2X₄ and P2X₇ alters the functional properties of the receptors we compared some of their pharmacological properties when expressed individually and together. P2X₇ receptors have been shown to be sensitive to extracellular (EC) Na⁺ (Ma et al., 2006). Substituting Cs⁺ for Na⁺ in the EC solution slowed the activation and deactivation kinetics of P2X₇ receptor currents and enhanced the difference in its time course compared with P2X₄ receptor currents (Fig. 5). It also potentiated the amplitude of both BzATP-evoked P2X₇ receptor currents and currents recorded from cells co-expressing P2X₄ and P2X₇ (Supplementary Fig. 2), whereas there was minimal activation of P2X₄ receptors using 3 µM BzATP (Fig 5A). Ivermectin (IVM) is an allosteric modulator of P2X₄ receptors that augments currents by stabilizing the agonist-induced open state (Priel & Silberberg 2004). We tested its effects on BzATP evoked currents and whereas there was no effect on currents from cells transfected with P2X₇ alone, in cells co-expressing P2X₄ and P2X₇ the currents were potentiated >2-fold following prior incubation with IVM. This suggests that association of P2X₄ with P2X₇ confers IVM sensitivity to the receptor although this interpretation is confounded by the finding that BzATP is a much more effective agonist at homomeric P2X₄ receptors following IVM treatment. The time course of the P2X₄ receptor currents differed however from those recorded from cell co-expressing the two receptors. In order to remove any component of the whole cell current that was mediated by P2X₄ homomeric receptors a similar experiment was performed but using the P2X₄S341W mutant coexpressed with P2X₇. This mutant expressed alone was non-functional with and
without IVM pre-treatment but conferred IVM sensitivity to BzATP-evoked currents recorded from cells co-expressing this mutant with P2X7 (Fig. 5B). Similar results were obtained with Na+ EC solution (Fig. 5C) and using MgATP as the agonist, although the currents were much smaller (Fig. 5D).

TNP-ATP and Brilliant Blue G (BBG) inhibit P2X4/7 receptor currents

We next tested the effects of the P2X4 receptor antagonist, TNP-ATP, and the P2X7 receptor antagonist BBG (Tsuda et al., 2003; Virginio et al., 1998; Jiang et al., 2000). TNP-ATP (2 µM) inhibited MgATP-activated P2X4 receptor currents by ~70% but had no significant effect on the amplitude of BzATP-evoked P2X7 receptor currents. In contrast it significantly inhibited BzATP-evoked currents from cell co-expressing P2X4 and P2X7 (Fig. 6A). At this concentration of BzATP, P2X4 homomeric receptor currents are not expected to make a significant contribution to the whole cell current amplitude, however to rule out the possibility that there was a significant P2X4 receptor mediated component, the experiment was repeated using the S341W mutant. Currents recorded from cells co-expressing P2X4 S341W and P2X7 were reduced by ~70% following incubation with TNP-ATP.

Finally we tested the effects of BBG which almost completely abolished BzATP-activated P2X7 receptor currents, but had very little effect at P2X4 receptors (Fig. 6B). It substantially reduced currents recorded from cells co-expressing P2X7 and P2X4 S341W, although these were significantly less sensitive as judged by the amplitude of the BzATP evoked response following a 10 minutes incubation with 1 µM BBG.
Discussion

The P2X\textsubscript{7} receptor represents an important therapeutic target in a number of diseases such as stroke and arthritis pain. ATP-mediated responses in native tissues are frequently ascribed to P2X\textsubscript{7} however often display characteristics that are shared by other P2X receptors (Inoue, 2006; North, 2002). A molecular basis for these responses has not been established because the P2X\textsubscript{7} receptor is not thought to associate with any other P2X subunits. Our results provide evidence that the P2X\textsubscript{7} receptor can associate with another P2X subunit, which has an emerging role in pain and inflammation, namely P2X\textsubscript{4} (Guo and Schluesener, 2005; Inoue et al., 2004; Tsuda et al., 2003). This interaction was demonstrated not only in HEK293 cells overexpressing both receptors, but also endogenously, for native receptors present in primary cultures of BMDMs. Our results differ from those of an earlier study which failed to co-IP P2X\textsubscript{4} and P2X\textsubscript{7} from HEK293 cells (Torres et al., 1999). A possible explanation is the use of different detergents; we used DDM, which often preserves protein activity better than other detergents including NP-40. The association with P2X\textsubscript{7} affected the trafficking properties of P2X\textsubscript{4}, increasing its stability at the plasma membrane, although it was still predominantly located within intracellular compartments. Co-expression with a dominant negative mutant of P2X\textsubscript{4}, (C353W), knocked down P2X\textsubscript{7} receptor currents by >50% without reducing its surface expression, suggesting that more than half of the surface P2X\textsubscript{7} subunits were in complexes associated with the C353W mutant. By using a non-functional but non-dominant negative P2X\textsubscript{4} mutant we provide evidence that a heteromer formed from P2X\textsubscript{4} and P2X\textsubscript{7} has properties in common with both of the parent homomeric receptors. A question that remains to be answered is whether or not P2X\textsubscript{4} and P2X\textsubscript{7} subunits
coassemble to form heterotrimeric structures with a common central conduction pore. In light of our findings, however, the prevailing hypothesis of P2X7 receptors as unique members within the P2X family forming exclusively stable homotrimers seems unlikely to be correct.

The identification of novel functional properties that cannot be attributed to the parent homomeric receptors is a well established approach for demonstrating heteromerization between different members of the same family of receptor. In this study, in order to distinguish between homomeric and heteromeric receptor currents we took advantage of a P2X4 receptor mutant (S341W) which, although non functional when expressed alone, had previously been shown to traffic to the surface in the normal way and to produce no inhibition of wt P2X4 receptor currents (Silberberg et al., 2005). When coexpressed with wt P2X7, this mutant produced a small potentiation of BzATP and ATP4- evoked currents and we have made the assumption that currents with P2X4-like pharmacological properties were mediated by a heteromer composed of P2X4S341W and P2X7. Our conclusions are that the heteromeric receptors are preferentially activated by BzATP compared with MgATP, they are allosterically modulated by IVM and inhibited by both TNP-ATP and BBG. In Cs+ EC solution, the IVM-sensitive component of the whole cell current was larger in amplitude and with slower activation and deactivation kinetics than in Na+ EC solution suggesting that the P2X4/7 complex is inhibited by EC Na+ similar to P2X7 homomeric receptors. The increase in receptor diversity as a result of functional heteromeric as well as homomeric P2X receptors being expressed in cells such as macrophages and microglia, which predominantly express P2X4 and P2X7, clearly has
implications for the development of new therapies that target purinergic receptors for the treatment of neuropathic pain.

P2X4 and P2X7 are co-expressed in epithelial and endothelial cells as well as immune cells (Bowler et al., 2003; Ma et al., 2006; Xiang and Burnstock, 2005). In airway epithelia, P2X receptor agonists stimulate Cl− transport across nasal mucosa and are involved in the regulation of ciliary beat (Hayashi et al., 2005; Zsembery et al., 2004). Manipulation of both of these processes may be of therapeutic benefit for patients with cystic fibrosis and defining the subunit identity and functional properties of the native receptors is important if these receptors are to be targeted for CF therapy. Ma et al. (2006) described the pharmacological features of the P2X receptor in airway ciliated cells and several properties are similar to what we report here for the heterologously co-expressed receptors. The native receptor currents were inhibited by BBG and EC Na+, and augmented by IVM. Based upon this pharmacological profile they hypothesized that the P2X receptor in ciliated cells is an assembly of P2X4 and P2X7 subunits, which is supported by our results.

The association between P2X4 and P2X7 may alter downstream signalling pathways, for example activation of the MAP kinase cascade (Donnelly-Roberts et al., 2004), phosphatidylserine translocation (Dutot et al., 2006) and coupling to ABC transporters (Marty et al., 2005). The hemichannel pannexin-1 was recently shown to form a complex with P2X7 and to play an important role in coupling activation of the receptor to increased membrane permeability to large molecules such as ethidium, and to IL-1β.
synthesis and release (Pelegrin and Surprenant, 2006). Whether or not pannexin-1 can functionally couple with P2X₄/₇ receptors remains to be established. Our results provide a molecular basis for the existence of P2X₄/₇ receptors and further studies will be required to elucidate the precise nature of the interaction between the constitutive subunits. These data also present functional significance for the heteromeric assembly between P2X₄ and P2X₇ and we foresee the importance of this interaction in purinergic receptor-mediated signalling of pain in health and disease.
Acknowledgements

The assistance of A. Paramasivan in the preparation of BMDMs cells is gratefully acknowledged.
References

Footnotes

This work was supported by the Biotechnology and Biological Sciences Research Council.

Reprint requests to:
Dr Ruth Murrell-Lagnado
Department of Pharmacology
Tennis Court Road
Cambridge
CB2 1PD
UK
Email: rdm1003@cam.ac.uk
Legends for Figures

Fig. 1.

Co-expression of P2X₇ and P2X₄ increased P2X₄ at the plasma membrane. A, confocal images of HEK293 cells transfected with either P2X₄ or P2X₇. P2X₄ receptors (green) were co-localized with LAMP-1 (red) and P2X₇ receptors (green) were co-localized with an ER marker, DsRed-ER. Cells were fixed with 3% PFA and permeabilised with 0.1% Triton X-100 in PBS for 10 minutes at 4°C. B, NRK cells transfected with either P2X₇ or P2X₄ alone (top panel) or co-transfected with P2X₇ and P2X₄-EGFP (lower panel) were fixed with 100% methanol. Methanol fixation increased the detection of P2X₇ at the plasma membrane. In co-transfected cells there was overlap between P2X₄ and P2X₇ at the plasma membrane. Scale bars, 10 µm. C, transfected NRK cells were incubated with biotin (1 mg/ml) for 20 minutes at 4°C to label surface proteins and were then solubilized and surface proteins precipitated with streptavidin beads. Surface expression of P2X₄ increased in the presence of P2X₇ (n = 4) although totals show equivalent P2X₄ expression. D, surface expression of P2X₇ was unchanged in the presence of P2X₄; in both cases the proportion biotinylated was ~10% of the total P2X₇. The first lane shows no detectable expression of P2X₇ in untransfected cells.
Fig. 2.

P2X$_7$ and P2X$_4$ subunits physically associate both when overexpressed in HEK293 cells and in native tissue, as shown by co-immunoprecipitation. A, HEK293 cells were transfected with P2X$_4$ and P2X$_7$, or P2X$_7$ alone, and membrane protein complexes were immunoprecipitated with the anti-P2X$_4$ antibody, separated by SDS-PAGE and immunoblotted with anti-P2X$_4$ (left) and anti-P2X$_7$ (right) polyclonal antibodies. The total membrane protein fractions (input, 2.5 µg) were also blotted with the same antibodies for comparison. B, cells were co-transfected with P2X$_4$-HA and P2X$_7$, or P2X$_7$ alone, and membrane proteins were immunoprecipitated with an anti-HA antibody, showing that the complex can be isolated via a non P2X-specific antibody. Blots were performed with anti-P2X$_7$ (left) and anti-HA (right) antibodies. C, membrane protein fractions isolated from mice bone marrow derived macrophages (BMDMs) were subjected to immunoprecipitation with the anti-P2X$_4$ antibody and the isolated complex was resolved by SDS-PAGE and blotted with both anti-P2X$_4$ (left) and anti-P2X$_7$ (right) antibodies, demonstrating the physical association between P2X$_4$ and P2X$_7$ in native tissue.

Fig. 3.

Inhibition of P2X$_7$ receptor function by co-expression with a dominant negative P2X$_4$ mutant. A, whole-cell patch-clamp recordings were carried out on HEK293 cells expressing P2X$_4$ alone or together with either the P2X$_4$C353W or P2X$_4$S341W mutants. The mutants were also expressed alone. Mutants were tagged with EGFP to enable the transfected cells to be detected. Inward currents, evoked by 30 µM MgATP at a holding
potential of -30 mV were measured in normal Na\(^+\) EC solution. The histogram shows the normalized, mean peak current densities (mean ± S.E.M., \(n > 8\)). B, similar experiments were carried out, co-expressing P2X\(_7\) and the P2X\(_4\)C353W and S341W mutants. Currents were evoked by applying 1 mM ATP\(^+\) in Na\(^+\) EC solution with a low divalent cation concentration, at a holding potential of -30 mV. Histogram on the right shows a comparison of the normalized peak current densities (mean ± S.E.M., \(n > 10\)).

C, similar results were obtained using either ATP\(^+\) (100-1000 \(\mu\)M) or BzATP (10-100 \(\mu\)M). D, concentration-response curves for BzATP in HEK293 cells expressing P2X\(_7\), P2X\(_7\) and P2X\(_4\)S341W or P2X4 alone. The data were fit with a Hill equation and the EC\(_{50}\) values obtained were 11 ± 1 \(\mu\)M BzATP for P2X\(_7\) and 9.1 ± 0.8 \(\mu\)M BzATP for P2X\(_7\) with P2X\(_4\) S341W (n=4-7), and the correspondent Hill slopes were 1.7 ± 0.2 and 2.0 ± 0.3, respectively. E, the surface expression of P2X\(_7\), as measured by biotinylation of surface proteins at 4°C, was unchanged in the presence of the two P2X\(_4\) mutants. F, co-expression of the P2X\(_4\) mutants with P2X\(_2\) did not inhibit P2X\(_2\)-receptor mediated currents evoked by 30 \(\mu\)M ATP (mean ± S.E.M., \(n > 10\)). *\(p < 0.05\), **\(p < 0.01\), and ***\(p < 0.001\).

Fig. 4.

P2X\(_4\) but not P2X\(_2\) functionally interacts with P2X\(_7\). Whole cell currents were recorded from HEK293 cells expressing the constructs shown. Normalized mean current densities are for \(n > 8\) for each condition and \(V_h=\text{-30 mV}\). A, inward currents were evoked by 10 \(\mu\)M BzATP in Na\(^+\) EC solution with low divalent. B-C, inward currents were evoked by 200 \(\mu\)M MgATP in Na\(^+\) EC solution with 1.58 mM Ca\(^{2+}\).
Fig. 5.

P2X_{4/7} receptor currents were potentiated by IVM. Whole-cell patch-clamp recordings from HEK293 cells expressing the constructs indicated with and without pre-incubation with 3 µM IVM for 5 minutes. $V_h=-30$ mV. All histograms represent peak current densities (mean ± S.E.M., $n>10$). **A, B,** Recordings were made in Cs⁺ EC solution with low divalent cations in response to 3 µM BzATP. **C,** BzATP-activated currents were recorded in Na⁺ EC solution with low divalent cations and **D,** currents were recorded in Na⁺ EC solution containing 1.58 mM Ca²⁺ and in response to 200 µM MgATP.

Fig. 6.

Inhibition of P2X_{4/7} receptor currents by TNP-ATP and Brilliant Blue G (BBG).

A, whole cell currents recorded in Na⁺ EC solution, with and without pre-incubation with 2 µM TNP-ATP for 8 minutes. $V_h=-30$ mM. Histogram shows the peak current amplitudes (mean ± S.E.M., $n>10$). **B,** representative currents recorded from HEK293 cells expressing either P2X₇, or with P2X₄ S341W EGFP in response to 30 µM BzATP in Na⁺ ES solution with low divalent. BBG (1 µM) was applied for 10 minutes. $V_h=-30$ mM. Histogram shows mean current densities ± S.E.M. The data for P2X₄ was obtained using 30 µM MgATP ($n>4$) instead of BzATP.
Fig. 2

A

<table>
<thead>
<tr>
<th>Input</th>
<th>Co-IP</th>
</tr>
</thead>
<tbody>
<tr>
<td>P2X7</td>
<td>P2X4</td>
</tr>
<tr>
<td>P2X7</td>
<td>P2X4</td>
</tr>
</tbody>
</table>

77 KDa
64 KDa

Co-IP: Anti P2X4
WB: Anti P2X4

B

<table>
<thead>
<tr>
<th>Input</th>
<th>Co-IP</th>
</tr>
</thead>
<tbody>
<tr>
<td>P2X7</td>
<td>P2X4-HA</td>
</tr>
<tr>
<td>P2X7</td>
<td>P2X4-HA</td>
</tr>
</tbody>
</table>

77 KDa
64 KDa

Co-IP: Anti HA
WB: Anti P2X7

C

<table>
<thead>
<tr>
<th>Input</th>
<th>Co-IP</th>
</tr>
</thead>
<tbody>
<tr>
<td>P2X7</td>
<td></td>
</tr>
<tr>
<td>P2X7</td>
<td></td>
</tr>
</tbody>
</table>

77 KDa
64 KDa

Co-IP: Anti P2X4
WB: Anti P2X4
Fig. 3

A

MgATP 30μM

B

ATP^4⁻ (1 mM)

C

Normalized current densities

D

Current densities (pA/μF)

E

Surface P2X₇

Total P2X₇

F

Normalized current densities
Fig. 4

A

P2X₇+EGFP P2X₄-EGFP P2X₇
BzATP 10µM

Normalized current densities

B

P2X₇+EGFP P2X₄-EGFP P2X₇
MgATP 200µM

Normalized current densities

C

P2X₇+EGFP P2X₂-EGFP P2X₇
MgATP 200µM

Normalized current densities
Fig. 5

A.

B.

C.

D.

E.

F.

G.

H.

I.

J.

K.

L.

M.

N.

O.

P.

Q.

R.

S.

T.

U.

V.

W.

X.

Y.

Z.
Fig. 6

A

<table>
<thead>
<tr>
<th>Condition</th>
<th>Current Density (pA/pF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P2X₄-EGFP, MgATP 30 μM</td>
<td>60</td>
</tr>
<tr>
<td>P2X₇+EGFP, BzATP 10 μM</td>
<td>60</td>
</tr>
<tr>
<td>P2X₇+P2X₄-EGFP, BzATP 10 μM</td>
<td>**</td>
</tr>
<tr>
<td>P2X₇+P2X₄ S341W-EGFP, BzATP 10 μM</td>
<td>***</td>
</tr>
</tbody>
</table>

* +TNP-ATP (2 μM) 8 min

B

<table>
<thead>
<tr>
<th>Condition</th>
<th>Current Density (pA/pF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P2X₇+EGFP, BzATP 30 μM</td>
<td>150</td>
</tr>
<tr>
<td>P2X₇+P2X₄ S341W-EGFP</td>
<td>150</td>
</tr>
</tbody>
</table>

* +BBG 1 μM 10 min

** p < 0.01, *** p < 0.001