Targeting *MDR1* Gene: Synthesis and Cellular Study of Modified Daunomycin-TFO Conjugates Able to Inhibit Gene Expression in Resistant Cell Lines

Vérène Stierle, Maria Duca, Ludovic Halby, Catherine Senamaud-Beaufort, Massimo L. Capobianco, Alain Laigle, Béatrice Jollès, Paola B. Arimondo

Running title: TFO-DNM conjugates inhibit MDR1 expression in resistant cells.

Address correspondence to: Paola B. Arimondo, UMR5153 CNRS-MNHN USM0503, INSERM UR565, 43 rue Cuvier, 75005 Paris, France, phone: +33 1 40793859, fax: +33 1 40793705, E-mail: arimondo@mnhn.fr.

Number of text pages: 22
Number of tables: 2
Number of figures: 8
Number of references: 43
Number of words in the Abstract: 137
Number of words in the Introduction: 723
Number of words in the Discussion: 1675

ABBREVIATIONS: TFO= triplex-forming oligonucleotide; DNM= daunomycin; C₅₀ = concentration at which 50% of triplex is formed; Tm= melting temperature; HEPES=N-(2-hydroxyethyl)piperazine-N’-(2-ethanesulfonic acid); R= oligopurine strand of the duplex; Y= oligopyrimidine strand of the duplex; OFA= Oligofectamine; P-gp= P-glycoprotein
ABSTRACT

Reversal of the multidrug resistant (MDR) phenotype is very important for chemotherapy success. In fact, the expression of the *MDR1* gene-encoded P-gp actively expels antitumor agents such as daunomycin (DNM) out of the cells, resulting in drug resistance. We show that upon conjugation to triplex-forming oligonucleotides it is possible to address DNM in resistant cells (MCF7-R and NIH-MDR-G185). The oligonucleotide moiety of the conjugate changes the cellular penetration properties of the antitumor agent that is no more the target of P-gp in resistant cells. We observe an accumulation of conjugated DNM in cells up to 72h. For more efficient delivery in the cells nuclei, tranfectant agents must be used. In addition, the conjugate recognizes a sequence located in exon 3 of *MDR1* and inhibits its gene expression as measured both by Western blot and RT PCR.
Conventional cancer chemotherapy is seriously limited by the multidrug resistance (MDR) commonly acquired by tumor cells (Perez-Tomas, 2006). One mechanism by which a living cell can achieve multiple resistances is via the active efflux by MDR proteins of a broad range of anticancer drugs through the cellular membrane. MDRI (ABCB1) overexpression is one form of MDR; the gene encodes for the 170 kDa P-glycoprotein (P-gp), a transmembrane pump that causes efflux of organic compounds out of cells. Among drugs that commonly act as substrates of P-gp is, for example, the family of the anthracyclines such as daunomycin (DNM). A consistent amount of research has been devoted to MDR reversal. Many compounds able to modulate this phenotype in vitro by inhibiting the efflux pump activity of P-gp have been found. However, their clinical application is limited because of their high toxicity. Therefore, attention has been drawn to the selective down-regulation of MDRI expression through antisense (Alahari et al., 1996; Bertram et al., 1995; Liu et al., 1996; Quattrone et al., 1994) and, more recently, small interfering RNA (siRNA) (Duan et al., 2004; Nieth et al., 2003; Wu et al., 2003).

In addition to these approaches, the antigene strategy can also be used to specifically modulate gene expression. It is based on triplex-forming oligonucleotides (TFOs) that bind DNA and target specifically purine-rich sequences by forming a DNA triple helix. The high frequency of triplex target sequences in the genome, together with the high sequence specificity of TFOs, makes these molecules effective tools to modulate in a selective manner gene expression via transcriptional repression, mutagenesis and recombination. In fact, triplex approaches have been applied with success in various experimental models, including living cells and animals, and may provide the means for the design of novel gene targeted therapeutics (Hurley, 2002).

The strategy has been already used to target the MDRI gene obtaining inhibition of transcription as revealed by a meaningful reduction of mRNA amount (Labroille et al., 1998; Morassutti et al., 1999; Scaggiante et al., 1994). However, no detectable functional reversion of
the drug was observed after TFO treatment. In the present study, we conceived, synthesized and investigated for their biological activity new TFO conjugates of the anticancer drug DNM directed against \textit{MDR1}. DNM belongs to the family of the anthracyclins, which are among the most commonly used and effective anticancer drugs; they are employed in breast cancer, lymphomas and mainly in acute leukemias (Hande, 2003). In the past, TFO conjugates of anthracycline derivatives have been synthesized to target a oligopyrimidine-oligopurine sequence in exon 2 of \textit{MDR1} (Capobianco et al., 2001; Garbesi et al., 1997) and, recently, in the P2 promoter of \textit{c-myc} (Carbone et al., 2004; Napoli et al., 2006). Importantly, DNM is also the target of the P-gp pump and, upon over-expression of \textit{MDR1}, resistance to DNM is observed, which is very hampering for its use in chemotherapy. In a general effort to reverse multidrug resistance and find more active and specific anticancer drugs, we show here for the first time that it is possible to combine (and take advantage of) three different properties of DNM conjugates: (i) DNM biological activity, (ii) oligonucleotide chemical properties and (iii) ability of the TFO to specifically inhibit gene expression. These three properties allowed us to (i) inhibit the efflux of DNM conjugates from resistant cells (cells overexpressing the gene \textit{MDR1}) and at the same time to (ii) reduce the expression of both P-gp mRNA and protein levels in these cells. We exploited the oligopyrimidine-oligopurine tract in exon 3 of the \textit{MDR1} gene described previously (Labroille et al., 1998; Morassutti et al., 1999; Scaggiante et al., 1994) and conceived modified DNM-oligonucleotides able to specifically target this sequence. The use of different types of oligonucleotides (parallel and antiparallel) containing different chemical modifications, such as: thymidines substituted by 5-propynyluraciles, cytosines substituted by 5-methylcytosines and locked nucleic acids (LNA), allowed us to choose the best chemistry in order to obtain a stable triplex. DNM was coupled to oligonucleotides, forming stable triple helices on the sequence target, and efficiently inhibited P-gp expression. Furthermore, we studied the conditions allowing
the accumulation of the conjugates in cell nuclei by imaging and microspectrofluorescence. Upon use of DNM-resistant cell lines, we show that the DNM/TFO conjugates are able to pass the cell membrane, remain in DNM-resistant cell lines and inhibit the expression of $MDR1$ gene.
Materials and Methods

Methods. For all oligonucleotide conjugates, mass determination was accomplished by electrospray ionization on a Q-STAR pulsar I (Appleura) and HPLC purifications were performed upon Agilent 1100 using a Xterra reversed phase C18 column (4.6 x 50 mm, 2.5 µm). Absorbance spectrophotometry was performed on a Uvikon 860 (Kontron).

Materials. All chemicals were purchased from Aldrich Chemical Company. All solvents were of analytical grade.

Oligonucleotides. Oligonucleotides PM, PM-NH2, SC and GT1-4 were purchased from Eurogentec (P = 5-propynyl uracil and M = 5-methylcytosine). LNA1-3 were purchased from ProOligo. Concentrations were determined spectrophotometrically at 25 °C using molar extinction coefficients at 260 nm calculated from a nearest-neighbor model (Cantor et al., 1970). PM-NH2 contains a (CH2)6-NH2 linker at its 3’ end. SC of following sequence 5’ MMPMMPMMPMMPMMM 3’ was coupled with the same procedure as PM to DNM at its 3’ end. si1 was an siRNA targeting the human MDR1 mRNA at the level of region 88–108 relative to the start codon (antisense, 5’ -UACACUGACAGUUGGUUUCdTdT; sense, 5’-GAAACCAACUGUCAGUGUAdTdT) (Stierle et al., 2004; Stierle et al., 2005). An all-phosphorothioate antisense (AS) oligonucleotide, 5’-d(CCATCCCGACCTCGCGCTCC), was directed toward the region of the start codon (-16/+3) (Alahari et al., 1996; Brigui et al., 2003).

Synthesis. Daunomycin-conjugated oligonucleotides PM, SC and LNA2, with a hexamethylene bridge connecting the 5’ end of the oligonucleotides to the O-4 position in the D ring of the anthraquinone, were synthesized accordingly to a previously described procedure (Capobianco et al., 2005). The iodoalkyl derivative of daunomycin was initially prepared with the amino group of daunomycin protected as trifluoroacetate. Synthesis of the daunomycin-conjugated oligonucleotides was then accomplished by reaction of the iodoalkyl derivative of...
daunomycin with phosphodiester oligonucleotides carrying a 3’ or 5’ thiophosphate group. After extraction of the excess of iodoalkyl derivative, the trifluoroacetyl protecting group was removed from the amino group of the daunomycin by mild basic hydrolysis. The daunomycin conjugated oligonucleotides were then purified by reverse-phase HPLC. The structure of conjugates was confirmed by MS and UV-vis spectroscopy. A mean yield of 65% was obtained.

PM-DNM MS (ES⁻) m/z: 5452 [M-H]⁻ (calculated: 5453)
DNM-PM MS (ES⁻) m/z: 5448 [M-H]⁻ (calculated: 5453)
SC-DNM MS (ES⁻) m/z: 5277 [M-H]⁻ (calculated: 5278)

Gel retardation assay. The oligopyrimidine strand of the duplex was 5’ end-labeled with [α-³²P] ATP (Amersham) by T4 polynucleotide kinase (New England Biolabs) according to the manufacturer instructions. Increasing concentrations (10 nM-5 µM) of the triplex-forming oligonucleotides were added to 10 nM of the radiolabeled duplex in 10 mM MgCl₂, 50 mM NaCl, 50 mM HEPES pH 7.2, 10% sucrose and 0.5 mg/mL tRNA followed by sample incubation at 37 °C during 2-48 h. Electrophoresis was performed on a non-denaturing 15% polyacrylamide gel containing 10 mM MgCl₂ and 50 mM HEPES pH 7.2 at 37 °C. To quantify the formation of the triplex, gels were scanned with a Typhoon 9410 (Amersham Biosciences). The concentration of conjugate or TFO necessary to obtain 50% of formed triplex (C₅₀) was calculated and a mean value corresponding to three to five different experiments is reported.

UV melting experiments. A Kontron Uvikon 940 spectrophotometer with 1 cm optical path length quartz cuvettes was used to study thermal denaturation and renaturation of triplex formation. The cell holder was thermoregulated by an 80% water/20% ethylene glycol circulating liquid. Sample temperature was decreased from 60 to 0 °C and increased back to 60 °C at 0.2 °C/min with absorption readings at 245 nm, 260 nm, 295 nm, 520 nm and 620 nm taken every 1-
1.2 °C during 3 cycles. Samples were maintained at each extreme temperature for an additional 10 min. Experimental conditions were as described in the figure and table legends. All samples contained 10 mM Na cacodylate at the indicated pH, 50 mM NaCl, 10 mM MgCl₂. Oligonucleotides concentration was: 1 µM R, 1.05 µM Y and 1.2 µM TFO in the triplex experiments.

Cells and transfection. MCF7-S (the parental human mammary adenocarcinoma cell line) and MCF7-R (the doxorubicin-resistant line) were a gift from M. F. Poupon (Paris, France). NIH-3T3 cells were obtained from the American Type Culture Collection (ATCC, Rockville, MD). NIH-MDR-G185 cells stably transfected with a plasmid containing the human *MDRI* gene (pSK1 MDR) were a gift from M. Gottesman (Bethesda, MD). Cells were grown in RPMI medium supplemented with 10% decomponented foetal bovine serum (FBS), 50 U/ml penicillin, 50 µg/ml streptomycin, 2 mM glutamine in a 5% CO₂ atmosphere. Transfection with Oligofectamine™ (OFA) (Invitrogen) or SuperFect® (Qiagen) was carried out as directed by the manufacturer. Cells (3 × 10⁵/well) were plated in 6-well plates. They were transfected at 30%-40% confluence. The final concentrations in oligonucleotide were 500 nM for TFOs or AS and 10 nM for siRNA.

Fluorescence imaging and microspectrofluorometry. MCF7-R or NIH-3T3 cells were washed with cold PBS and observed by fluorescence microscopy on a Nikon Optiphot-2-epifluorescence microscope 24 h, 48 h or 72 h after treatment with the DNM conjugates (alone or transfected with OFA). Non transfected MCF7-S and MCF7-R were incubated with DNM (0.5 µM for 1 h) and were used as positive and negative controls of DNM incorporation. Images were detected with a cooled CCD camera (Micromax, Princeton Instruments) with a 12-bit detector (RTEA-1317K, Kodak). Standard rhodamine filter set has been used. Analysis was performed using IPLab software (Scanalytics).
48 h or 72 h after treatment, the location of DNM conjugates inside the cells has been evaluated with a UV-visible microspectrofluorometer confocal prototype developed in our laboratory (Sureau et al., 1990). The excitation was the 488 nm wavelength of an Argon laser (Spectra Physics). The beam power was reduced to 0.1 µW by the use of neutral density filters. The integration time of spectrum was 1s. A water immersion 63X objective was used.

Western blotting. Cells were lysed 72 h after transfection. Nontreated MCF7-R cells were used as reference of resistant cells. Cells were trypsinized, washed in phosphate buffered saline (PBS), counted, and resuspended in RIPA lysis buffer (50 mM Tris–HCl, pH 7.5, 150 mM NaCl, 0.1%SDS, 1% nonidet-P40, 0.5% deoxycholate) containing 5 mM EDTA and protease inhibitors (PMSF, leupeptin, aprotinin) at the ratio of 100 µL buffer for 3 X 10^6 cells. After 30 min on ice with some vortexing, the lysates were centrifuged at 13,000 g for 20 min at 4 °C. Protein concentration was determined with a protein assay kit (Sigma). Equal amounts of proteins (20 µg) were mixed with SDS reducing buffer. Protein samples were separated on 7.5% acrylamide SDS-PAGE then transferred onto PVDF membrane (Hybond-P, Amersham Pharmacia Biotech). The membrane was blocked with 5% nonfat dry milk in 0.1% Tween PBS and treated with 0.65 µg/ml C219 monoclonal anti-P-gp antibody (DAKO) or 2 µg/ml AC-74 monoclonal anti β-actin antibody (Sigma). Detection by enzyme-linked chemiluminescence was performed according to the manufacturer’s protocol (ECL plus®, Amersham Pharmacia Biotech). P-gp expression was quantified by NIH Image software.

RT-PCR. Total RNA was extracted (RNeasy kit, Qiagen) 48h and 72 h after transfection of MCF7-R cells, and cDNA was synthesized using Omniscript reverse transcription kit (Qiagen) and 0.5 µM gene-specific reverse primer of *MDR1* or β-actin which was chosen as an internal control. PCR Master Mix (Fermentas) was used for DNA amplification, which was kept in its
exponential phase (23 cycles). Primers used for *MDRI* amplification (0.5 µM) were: sense, 5’d(TCTTGAAGGGCCTGAACCTG) and reverse, 5’d(AGTCATAGGCATTGGCTTCC). The 300 nt amplified region was located on exons 12-13. Primers for β-actin amplification (0.3 µM) were: sense, 5’d(ACCAACTGGGACGACATGGA) and reverse, 5’d(CTCCTTAATGTCACGCACGA). Amplicon length is 237 nucleotides. Amplification products were separated on a 1.8% agarose gel stained with ethidium bromide (6 µg/ml). Gene expression level was quantified by NIH Image software.
Results

Choice of the target site and TFOs. In order to choose a site to form a triple helix, the MDR1 gene was screened with BLAST (http://www.ncbi.nlm.nih.gov/BLAST/) for oligopurine-oligopyrimidine sequences. In the whole gene, three regions are susceptible to form a stable triple helix: (i) a 12 bp region in exon 2, (ii) a 21 bp region in exon 3 and (iii) a long sequence of 410 bp in intron 14 (Figure 1A) (Chen et al., 1990; Pauly et al., 1995). The sequence of exon 2 containing only 12 bp was judged too short in view of the specificity of action of the TFOs. Therefore, the oligopurine-oligopyrimidine sequence located in exon 3 and illustrated in Figure 1B was chosen as the target for TFOs and DNM conjugates. This sequence contains a mismatched site that has to be taken into account during the conception of new and efficient TFOs.

TFOs form Hoogsteen or reverse Hoogsteen hydrogen bonds with the purine-rich strand of the duplex DNA (Buchini and Leumann, 2003). Purine-rich (GA) and mixed purine/pyrimidine (GT) TFOs bind preferentially antiparallel to the purine-rich strand, while pyrimidine-rich (TC) TFOs bind parallel. In both parallel and antiparallel triplex motif, the TFO is located in the major groove of the double helix. GA and GT TFOs form stable triplexes at physiological pH, whereas the ability of TC TFOs to form stable triplexes at neutral pH is very limited, because of the required protonation of the cytosines to form the C*G*C+ triplets. However, it is possible to introduce chemical modifications in the structure of the oligonucleotide that improve the stability of the formed triplex and allow triplex formation at neutral pH (Buchini and Leumann, 2003).

The TFOs chosen to target the selected sequence in exon 3 are reported in Figure 1B. Several oligonucleotides, with or without chemical modifications, have been conceived. Four TFOs with (G,T) motif were chosen in the aim to avoid pH dependence. The oligonucleotide
indicated as GT1 corresponds to the one used in a previous study and contains a single base interruption in the purine strand (indicated in red in the duplex sequence) (Scaggiante et al., 1994). Oligonucleotides GT2 and GT3 encompass together GT1, and are in the parallel orientation. GT2 covers the region with the single base interruption in the purine strand. GT4 has been chosen in order to form an antiparallel triplex. Furthermore, (T,C) oligonucleotides (directed against box a, Fig. 1) were used and two types of modifications were introduced to increase triplex stability. In PM, thymidines are substituted by 5-propynyluraciles (P) and cytosines by 5-methylcytosines (M). These two modifications are already known to stabilize the triplex (Duca et al., 2005). Finally, locked nucleic acids (LNA) have been studied. Oligonucleotides LNA1, LNA2 and LNA3 alternate T, M, LNA-modified thymidines (T) or cytidines (C) that have been shown to improve triplex formation at physiological pH (Sun et al., 2004).

Triplex formation. At first, we studied the ability of the described oligonucleotides to form a triple helix by using both gel retardation assays and UV-vis absorbance melting experiments. In our experimental conditions, the (G,T) oligonucleotides (GT1-4) are unable to form a triple helix even at high concentrations (10 µM) and long incubation times (up to 48 h). All other chosen oligonucleotides (PM and LNA1-3) are able to form a triple helix, with different efficacies. As shown in Figure 2A and 2B (top), after 2 h incubation at 37 °C, oligonucleotide PM was the most efficient in forming the triplex. LNA1 and LNA2 are slightly less efficient, while LNA3 has the lowest ability to form the triplex. Figure 2A and 2B (bottom) show the gel retardation assay after 24 h of incubation at 37 °C and we can observe that the efficacy of all oligonucleotides is comparable. These results are summarized in Table 1, where both C₅₀ values and Tm values are reported. Melting temperatures values for all these oligonucleotides do not present relevant differences, but the small variations correspond well to the differences recorded by gel shift assays. Observed values of Kd and Tm are in good agreement with what reported for
the same type of modified triplex-forming oligonucleotides in similar experimental conditions (Sun et al., 2004). To further compare these four oligonucleotides we studied the kinetic of formation of the triple helix over 48 h. As reported in Figure 3, PM, and LNA1-3 formed triplexes of comparable stability after 48 h, but the rate of formation is different. Triplex formation is faster for the PM oligonucleotide. Based on these observations, the study was pursued coupling PM and LNA2 oligonucleotides to DNM in order to perform cellular experiments.

Synthesis of the daunomycin-conjugated TFOs. PM and LNA2 have been coupled to DNM in 3’ position leading to conjugates PM-DNM and LNA2-DNM (Figure 4). The presence of DNM at the 3’ end of the oligonucleotides protects them against exonuclease degradation in cells. Furthermore, it is well-established that for pyrimidine triplexes the conjugation in 5’ of DNA intercalators, such as acridine (Birg et al., 1990; Sun et al., 1989) or more recently DNM (Carbone et al., 2004; Garbesi et al., 1997; Napoli et al., 2006), stabilizes triplex formation. For this reason, PM has been coupled to DNM also in 5’ position resulting in DNM-PM. In the latter case, the oligonucleotide was protected in 3’ position toward exonuclease degradation by introduction of an amino group ((CH$_2$)$_6$-NH$_2$) instead of the terminal phosphate group. As negative control, daunomycin was coupled to the 3’ end of another oligonucleotide (SC) (the sequence is reported in the Experimental Section) that is unable to form a triple helix on the desired MDRI sequence (conjugate SC-DNM).

For the synthesis of the conjugates, as shown in Figure 4, TFOs were coupled to an ω-iodoalkyl derivative of daunomycin, whose synthesis was described previously (Capobianco et al., 2005). In the first step the thiophosphate group of the oligonucleotide is activated by a 0.5 M solution of dithiothreitol (DTT) and crown ether 18-crown-6 in DMF. The coupling is followed
by the deprotection of the DNM moiety using a 0.2 M solution of NaOH. After HPLC purification the product has been obtained in 65% yield over two steps.

Once synthesized, the stability of the formed triplex was evaluated by gel shift assay (Table 2, Supplementary Figure 1). As expected, the coupling of DNM to the 5’ end of the TFO (DNM-PM) induced a stabilization of the triplex compared to PM alone. This is probably due to the intercalation of the DNM moiety at the 5’ end of the triplex, as observed in previous works with various acridine-conjugated oligonucleotides analogs (Arimondo et al., 2000) and other GT and TC triplex-forming oligonucleotides (Capobianco et al., 2001; Carbone et al., 2004; Napoli et al., 2006). Noteworthy, the presence of the intercalating agent at the 5’ end of the TFO speeds up triplex formation (Figure 5). The attachment of the DNM moiety to the 3’ end of the TFO (PM-DNM), both in the case of the PM and LNA2 oligonucleotide, induces a destabilization of the triple-helical structure, which is in agreement with previous findings with acridine-TFO conjugates suggesting marked differences between the 5’ and 3’ triplex/duplex junction (Arimondo et al., 2000; Sun et al., 1989). This destabilization effect is more pronounced for LNA2-DNM (Table 2).

Cellular uptake of PM-DNM. After the synthesis of TFO-DNM conjugates, we turned our attention to their application in the cellular context. The first question we wanted to address was the cellular uptake in *MDRI* resistant cells of conjugated DNM compared to free unconjugated DNM. We chose for these experiments to use PM-DNM, which is protected from exonuclease degradation in 3’ by the DNM moiety. To our knowledge, 3’ DNM conjugates have never been studied before.

MCF7-S cells (the parental cell), MCF7-R cells (the doxorubicin-resistant line), parental NIH-3T3 and resistant NIH-MDR-G185 overexpressing the human *MDRI* gene were treated for 1 h with 0.5 µM DNM, and then examined under a fluorescence microscope. MCF7-S cells were
highly fluorescent, with a predominant accumulation of DNM in the nucleus (Figure 6A), whereas no fluorescence was observed in MCF7-R cells. As expected, high cell surface expression of P-gp in resistant MCF7-R cells leads to DNM efflux. Similar results were obtained with NIH-3T3 and NIH-MDR-G185 cells (data not shown).

After this control experiment, the cellular uptake of 0.5 µM PM-DNM or LNA2-DNM in MCF7-S cells, MCF7-R cells, NIH-3T3 and NIH-MDR-G185 cells was followed by fluorescence imaging at 24 h, 48 h and 72 h. Figure 6B shows the results obtained after treatment of MCF7-R cells with PM-DNM conjugate alone (first column), with PM-DNM conjugate and Oligofectamine™ (OFA, a cationic lipid formulation) as transfectant agent (second column) and with PM-DNM conjugate and Superfect® (a cationic dendrimer) as transfectant agent (third column). Because of the important cell mortality observed as soon as 24 h after treatment with LNA2-DNM, we chose PM-DNM to pursue the cellular study. The first remarkable observation derived from the comparison of Figure 6A and 6B is that PM-DNM conjugate is able to entry in resistant cells, with or without transfectant agent. This shows that, in contrast to DNM alone, the oligonucleotide confers to DNM the ability to overcome cellular resistance, i.e. the efflux activity of the Pg-P pump. Similar results were obtained for NIH-MDR-G185 cells (Supplementary Figure 2). No significant differences in intensity or intracellular distribution of the DNM–conjugated oligonucleotides were observed between parental and resistant cells. The second noteworthy observation is that the hydrophobicity of the anthraquinone moiety of DNM increases the affinity of the conjugate for the cell membrane and helps the uptake of the conjugates by endocytosis. In fact even in the absence of a transfectant agent the conjugate is able to entry the cell membrane, result very difficult to obtain for an oligonucleotide alone. The two moieties that constitute the conjugate, the anthracycline and the TFO, thus act synergistically and favor cell
penetration. It is then conceivable that, when coupled to an oligonucleotide, DNM can bypass cell resistance and still exert some form of anticancer effect.

Regarding the cellular distribution of PM-DNM in cells, this is very different from the one of DNM. Whereas DNM has been shown to accumulate in nuclei (Figure 6A), PM-DNM is largely localized in cytoplasm with perinuclear accumulation (Figure 6B). Furthermore, the presence of fluorescent vesicles can be observed suggesting the involvement of an endocytic pathway in the internalization of the conjugates (Hu et al., 2002; Tonkinson and Stein, 1994). Whereas anthracyclines quickly accumulate in cell nuclei, and in a smaller proportion in organelles (Rutherford and Willingham, 1993), oligonucleotides initially incorporate into endosomes and are localized in the nucleus much later after their release into the cytoplasm. In agreement with our results, 5’ DNM conjugates of a 11mer (G,T) TFO have been shown to accumulate primarily in the cytoplasm of MCF7-S cells in absence of transfectant (Carbone et al., 2004). We suggest that, in the case of the PM-DNM, the DNM moiety allows cell internalization of the conjugates into parental as well as resistant cells, whereas the oligonucleotide moiety is responsible of the cytoplasmic localization of PM-DNM.

As shown in Figure 6B, the cell fluorescence intensity 24 h after transfection of PM-DNM into MCF7-R cells in the presence of OFA or Superfect is comparable to the one without transfectant. However, fluorescent speckles are now observable (indicated by an arrow). In the presence of transfectant, some conjugates are trapped in vesicles as reservoir of PM-DNM, which will be released in the course of time. After 48 h, there is an enhancement in the fluorescence intensity of cells that have been transfected in the presence of the transfectant agent. Their speckled pattern is also increased. A cationic lipid–mediated uptake has already been shown in non resistant cells to increase the intracellular pool of 5’ DNM conjugates (Carbone et al., 2004) with a corresponding increase in nuclear accumulation. Here we used also a cation dendrimer
agent observing the same effect. Finally, 72 h after transfection, cells are observed with a magnifying X 63 and nuclear fluorescence is observed when PM-DNM is transfected in the presence of OFA. Nevertheless, the nuclear fluorescence quenching of DNM (DNM fluorescence decreases 20 time after its intercalation in DNA) (Laigle et al., 1996) is a limitation for fluorescence imaging. Microspectrofluorimetry allowed the nuclear localization of PM-DNM as soon as 48 h after transfection with OFA to be confirmed (Figure 7A). A large band centered around 596 nm is observable. Very little nuclear accumulation was measured in the absence of OFA. In that case, similar spectra were observed in the cytoplasm and in the nucleus (Figure 7C, two bands around 560 nm and 590 nm), which resemble the spectrum recorded in the cytoplasm when the transfecting agent OFA is used (Figure 7B). DNM presents two major emission maxima at ~560 nm and ~592 nm (I_{560 nm}/I_{592 nm} = 0.8) (Karukstis et al., 1998). The peak at ~592 nm dramatically increased in the DNM conjugates (the spectrum of PM-DNM in PBS is reported in Figure 7D for comparison). In contrast, inversion of the 560 nm/592 nm intensity ratio has been observed in relation to doxorubicin degradation (Fiallo et al., 1993). Therefore, the enhancement of the peak at ~560 nm in the cytoplasm when using OFA (Figure 7B) or in both nucleus and cytoplasm in its absence (Figure 7C) might indicate a degradation of the conjugate with liberation of free DNM. However we did not succeed to reproduce this potential degradation of the conjugates in vitro in cell lysates or in various cell media in the absence or presence of salmon sperm DNA. Importantly, no free DNM was detected in the nucleus when OFA was used as transfectant (Figure 7A). In that case, the enlargement of the fluorescence peak observed in the nucleus (Figure 7A) in comparison to the peak of the conjugate in PBS (Figure 7D) can result from a 10 nm blue shift that we observe when PM-DNM is incubated in the test tube with cell lysates (data not shown). Similar results were obtained with NIH-MDR-G185 cells and with the non specific 3’ DNM conjugate SC-DNM (data not shown).
Down-regulation of MDR1 gene expression with the triplex-forming PM-DNM. With the experiments described above, we have established that the PM-DNM and DNM-PM conjugates form a stable triplexes on the DNA target (Table 2) and that they are less cytotoxic than LNA2-DNM. Furthermore, when transfected in the presence of OFA, they accumulate in the nucleus of resistant cells and are not ejected by the P-gp pump (Figures 6 and 7). Thus, we wanted to investigate whether the conjugates are able to reach their target (the MDR1 gene) and modulate its expression.

The ability of PM-DNM and DNM-PM to down-regulate the MDR1 expression in MCF7-R cells was studied at the level of the protein and the mRNA by Western blot and RT-PCR, respectively (Figure 8). An efficient siRNA (si1) (Stierle et al., 2004; Stierle et al., 2005) and an antisense (AS) (Brigui et al., 2003) directed against MDR1 were chosen as positive controls. SC-DNM (a scrambled control of PM-DNM) and PM-NH2 (PM containing the linker arm (CH$_2$)$_6$-NH$_2$ in 3’ and no DNM) were used as negative controls. We have previously shown that with si1 the decrease in P-gp levels in MCF7-R cells is best followed after 72 h of treatment, whereas the highest reduction in MDR1 mRNA was obtained after 48 h (Stierle et al., 2004). This 24 h gap results from P-gp long half-life (Nieth et al., 2003; Stierle et al., 2004). Therefore, we studied the effect of the conjugates on mRNA expression after 48 h of treatment and on P-gp levels after 72 h.

All oligonucleotides were used at a concentration of 500 nM, made exception for si1 that was used at a concentration of 10 nM. Figure 8A and B shows the results obtained for P-gp and mRNA expression, respectively. Taking for reference SC-DNM (unable to form triplex on MDR1 gene), PM-NH2 caused a slight decrease in P-gp (85% remaining signal) and had no effect on mRNA (96% remaining signal) expression. Concerning the positive controls, si1 gave, as expected, a very efficient decrease of P-gp levels, with only 30% of signal observed, and mRNA
expression (40% remaining). Again, treatment with the positive antisense control, AS, led to 68% P-gp expression remaining and 36% mRNA expression remaining. Regarding the conjugates, a significant decrease in P-gp expression (46% remaining) and mRNA (64% remaining) was obtained with PM-DNM, while DNM-PM gave only 75% and 88%, respectively. The conjugate containing the DNM residue in 3’ position is thus clearly more active in inhibiting MDRI gene expression than the 5’ one.
Discussion

Anthracyclines, and in particular DNM, are used for the treatment of a wide range of malignancies, but the emergence of multidrug resistance, as well as myelosuppression and cardiotoxicity, limit their effectiveness in the clinic. In this study we demonstrate that it is possible to specifically target DNM to specific sites on the DNA, by using conjugates of oligonucleotides able to form a triple helix on the DNA and the DNM moiety. Moreover, the conjugation of DNM to the oligonucleotides was shown to improve their cellular uptake and the DNM conjugates were able to deliver the drug on the \(MDRI \) gene even in DNM resistant cells. In the literature, DNM has been coupled to several triplex-forming oligonucleotides and in particular to the 5’ end of a 11mer (G,T) TFO, which revealed to be highly specific for its target sequence leading to reduction of transcription of c-myc \(\textit{in vitro} \) and in cancers cells (Carbone et al., 2004; Napoli et al., 2006). Such 5’ conjugates showed a higher degree of affinity than native oligonucleotides for the oligopyrimidine•oligopurine duplex target and the presence of the amino sugar of DNM increased such stability (Garbesi et al., 1997). In fact, in the DNM-TFO conjugates, the anthraquinone moiety intercalates in duplex DNA. Once intercalated in DNA, ring D of the anthraquinone protrudes into the major groove of DNA while ring A reaches out into the minor groove. The amino sugar, which is linked to ring A, is therefore located in the minor groove and stabilizes the complex (Frederick et al., 1990).

In this study, we investigated three types of TFOs: (i) (GT)-containing oligonucleotides, (ii) PM oligonucleotides (where thymidines have been substituted by 5-propynyluraciles (P) and cytosines by 5-methylcytosines (M)) and (iii) LNA-containing oligonucleotides (Figure 1). Surprisingly, the (GT)-TFOs did not form a triplex helix in our experimental conditions (pH7.2, 37°C, 100 mM NaCl, 10 mM MgCl\(_2\)). The previously studied GT1 was, in fact, shown to form a stable triplex only in the presence of cationic spermidine and at 20°C (Scaggiante et al., 1994).
conditions that favor triplex formation. On the other hand, the pyrimidine chemically modified TFOs (PM and LNA) formed observable triplexes. The kinetics is different for the LNA-modified TFOs and the PM one, the latter being faster and more stable (2-folds, Figure 3 and Table 1). Among the LNA TFOs, the most efficient contains 5-methyl-cytosines instead of cytosines and alternated LNA thymines, starting with a non LNA base in 5'. This is in agreement with previous observations indicating that the most stable LNA forming triplexes contain alternate LNA thymidines (every 2-3 bases) and 5-methylcytosines (Sun et al., 2004). Thus, among the 8 oligonucleotides studied for their ability to form a triple helix, we found 4 of them (PM and LNA1-3) suitable to be used in an antigene approach. We finally chose PM and LNA2 for the conjugation to DNM since they were able to attain 100% of triplex formed rapidly (Figure 2 and 3). Upon conjugation to DNM at the 3' end, triplex stability decreased and also the kinetics of formation (Table 2). Coupling to the 5’ end stabilized triplex formation and increased the kinetics, confirming what previously reported (Capobianco et al., 2005; Capobianco et al., 2001; Garbesi et al., 1997). However, the stabilization observed in our study is lower than previously observed. Noteworthy, the experiments are not comparable since, in the literature, in the absence of DNM the TFOs hardly formed a triplex in near physiological conditions, while, in our case, the TFO used already forms a very stable triplex on the target site. We can thus not conclude whether there is a lower stabilization effect by DNM than expected and if the lack of a CpG sequence at the intercalation site, preferred by DNM (Capobianco et al., 2001; Quigley et al., 1980), or structural variations of the triplex induced by the chemical modifications on the TFOs play any role. Concerning the difference 3’ versus 5’ conjugation, it is in agreement with what previously reported for acridine and (T,C) TFO conjugates (Sun et al., 1989; Sun et al., 1991). Briefly, it has been observed that intercalating agents stabilize triplex formation when attached to the 5’ of pyrimidine TFOs and thus when positioned at the 5’ duplex/triplex junction. Because of
the lack of a systematic study on antiparallel triplexes, it is not possible to compare our conjugates to the 5’ DNM-(GT) TFOs (3’ triplex/duplex junction) that were used for cellular studies (Carbone et al., 2004; Napoli et al., 2006).

On the cellular aspect, we observed, interestingly, that the DNM-PM conjugates are able to penetrate in the cells and to remain up to 72 h, in breast cancer resistant MCF7-R cells and in the mouse fibroblasts NIH-MDR-G185 over-expressing MDR1, cells known to induce DNM efflux by the P-gp pump. Importantly, the amount of fluorescence observed is 2 times higher than that of DNM alone. Therefore, the conjugates are able to enter resistant cells thanks to both the DNM moiety that increases the lipophilicity of TFO and the oligonucleotide moiety that is not recognized by the P-gp pump. The use of transfectant agents increases the penetration efficacy (2.3-fold) and favors nuclear localization that increases up to 72h, as previously described for the DNM-(GT) TFO in prostate cancer cells DU145 and PC3 (Carbone et al., 2004). Even if the use of transfectant was necessary in order to enhance TFO nuclear accumulation of the conjugates and therefore antigenic effect, the fact that these conjugates overcome MDR resistance and are able to enter cells without transfecting agents and to remain up to 72 h make them interesting tools to deliver DNM in drug resistant cells, upon use eventually of a cleavable linker between the two entities. By microspectrofluorimetry we monitored the fluorescence spectra in the nucleus and in the cytoplasm of cells. Even if there might be a partial degradation of the conjugate with release of free DNM (as suggested by an enhancement of the shoulder at ~ 560 nm, Figure 7), especially in the absence of the transfecting agent, we observe a clear peak at ~ 590 nm due to the intact conjugate, particularly in the nucleus (Figure 7A). This intact conjugate is responsible for modulation of the expression of the target MDR1 as observed by RT PCR and Western blot (Figure 8).
Noteworthy, *in vitro* studies showed that conjugation of DNM at the 5’-end of PM (DNM-PM) led to stabilization of the triplex and conjugation at its 3’-end (PM-DNM) to destabilization; in contrast, western blot and RT PCR analysis revealed that, at the cellular level, PM-DNM is the most efficient: only 46% of *MDR1* expression was observed, as compared to 75% with DNM-PM and 85% with PM-NH₂. This is a clear indication that there is not always a correlation between triplex stability *in vitro* and the biological effect. The results here obtained seem to suggest that the DNM moiety of the conjugates plays an important and active role in the biological effect, regardless of its capacity of stabilizing the triple helix. The molecular mechanism of action *in vivo* of DNM is not completely elucidated, although it is known that its intercalation in the DNA double helix plays an essential role in the cytotoxic action. After intercalation, three mechanisms are conceivable: (i) topoisomerase II poisoning, by stabilizing the cleavage complex formed by the enzyme and DNA as amsacrine or epipodophyllotoxins (Baldwin and Osheroff, 2005); (ii) DNA alkylation (Swift et al., 2006) and (iii) generation of hydroxyl radicals responsible for double-stranded breaks of DNA. Furthermore, other possible mechanisms of action have been proposed recently (Gewirtz, 1999). We tested whether the mechanism of action of the conjugate could be due to sequence-specific topoisomerase II DNA cleavage (Supporting Information, Figure 3). No sequence-specific DNA cleavage could be observed due to the action of the conjugates, even if it is clearly seen that the DNM is well positioned at the triplex end (a longer footprint is observed). We also controlled whether the difference could be due to an antisense effect of the TFO that can bind to the purine-rich RNA. We observed in fact that the TFOs bind to the RNA purine strand of the target sequence, especially LNA₂ (C₅₀=0.03 μM±0.01, Supplementary Figure 4). This is not surprising since the LNA chemistry was developed to increase the stability of the antisense oligonucleotides. Finally, DNM-PM forms also a more stable duplex on the RNA purine strand of the target sequence
(C50: 0.04 µM±0.02, 0.06 µM±0.02 and 0.07 µM±0.01 for DNM-PM, PM and PM-DNM, respectively) and this antisense effect cannot account for the inhibition of \textit{MDR1} that is observed in cells. We also excluded the degradation of DNM-PM conjugate, which is protected in the 3’ by the presence of a (CH$_2$)$_6$-NH$_2$ linker arm, in cells, both conjugates are stable up to 72 h (data not shown). All together these results indicate, for the first time, an active role of DNM in the biological effect of the conjugates, which it is not related to a pure binding effect, whatever is the mechanism of action (DNA damage, topoisomerase poisoning, impaired DNA repair, etc). The difference 5’ \textit{vs.} 3’ can be explained in part by the different way of intercalation of the DNM at the two junctions, and thus a different orientation/availability of the drug for its action, -the 5’ junction being presumably more prone to intercalation. The neighboring sequences may also influence the activity of DNM (ATA/TAT in 5’ \textit{vs.} ACC/TGG in 3’), it has been shown for example that DNM lesions are induced principally 5’ of GpC (Swift et al., 2006).

In conclusion, we found that upon conjugation between the anticancer drug DNM and \textit{MDR1}-directed TFOs it is possible to (i) bypass multidrug resistance rendering DNM conjugates immune to P-gp action (oligonucleotide action), (ii) favor cellular penetration of oligonucleotides (thanks to DNM) and (iii) accumulate the conjugate in the nuclei thus allowing the action of antigene oligonucleotides and DNM specifically on \textit{MDR1} gene. The success of this approach at a cellular level opens the possibilities of further studies \textit{in vitro} and \textit{in vivo}.
References

Laigle A, Fiallo MM and Garnier-Suillerot A (1996) Spectral shape modifications of

Liu C, Qureshi IA, Ding X, Shan Y, Huang Y, Xie Y and Ji M (1996) Modulation of multidrug
resistance gene (mdr-1) with antisense oligodeoxynucleotides. *Clin Sci (Lond)* 91(1):93-
98.

Reduction of mdr1 gene amplification in human multidrug-resistant LoVo DX cell line is

inhibition and apoptosis induced by daunomycin-conjugated triplex-forming

(multidrug-resistance) gene harbours a long homopyrimidine.homopurine sequence next

Quattrone A, Papucci L, Morganti M, Coronello M, Mini E, Mazzei T, Colonna FP, Garbesi A
and Capaccioli S (1994) Inhibition of MDR1 gene expression by antimessenger

FOOTNOTES

V.S. and M.D. have contributed equally to this work. We thank Lionel Dubost of the Mass Spectroscopy Service of the MNHN for the mass spectra analysis. This work was supported by grants from the Ligue Nationale contre le Cancer, Ministère de la Recherche et de l’Industrie ACI “Molécules et Cibles Thérapeutiques” (to P.B.A.), Coopération CNRS-CNR (to P.B.A. and to M.C.), and Association pour la Recherche contre le Cancer (ARC) (to M.D.).
FIGURE LEGENDS

Fig. 1. A. Potential triplex sites in the *MDRI* gene. B. Oligopurine-oligopyrimidine sequence within exon 3 of *MDRI* gene. The 15 bp target sequence (a) is encircled by a continuous line. A longer 24 bp region containing a mismatched site (bold bases) is indicated by a dotted line (b). Oligonucleotides used to study triplex formation against region a and base and sugar modifications used in this study.

Fig. 2. Gel retardation assays obtained after 2 (top) and 24 hours (bottom) of incubation at 37°C in HEPES 50 mM, pH 7.2, NaCl 50 mM and MgCl$_2$ 10 mM. A. Lane 1, radiolabeled Y strand; lane 2, radiolabeled duplex RY; lanes 3-8 duplex RY incubated with TFO PM at 0.01, 0.05, 0.1, 0.5, 1 and 5 µM respectively. B. Lane 1, radiolabeled Y strand; lane 2, radiolabeled duplex RY; lanes 3-8, duplex RY incubated with TFO LNA1 at 0.01, 0.05, 0.1, 0.5, 1 and 5 µM respectively; lanes 9-14, duplex RY incubated with TFO LNA2 at 0.01, 0.05, 0.1, 0.5, 1 and 5 µM respectively; lanes 15-20, duplex RY incubated with TFO LNA3 at 0.01, 0.05, 0.1, 0.5, 1 and 5 µM respectively.

Fig. 3. Graph reporting the kinetic of the formation of triple helix with the selected DNA sequence by oligonucleotides PM (circles), LNA1 (diamonds), LNA2 (crosses) and LNA3 (squares) over 72 h of incubation at 37°C in HEPES 50 mM, pH 7.2, NaCl 50 mM and MgCl$_2$ 10 mM. The error bars indicate the standard deviation.

Fig. 4. Synthesis of daunomycin conjugates. Reagents: a) DTT, 18-crown-6, DMF; b) NaOH 0.2M 65%. Chemical structure of the conjugates.

Fig. 5. Graph reporting the kinetic of the formation of triple helix with the conjugates oligonucleotides over 72 h of incubation at 37°C in HEPES 50 mM, pH 7.2, NaCl 50 mM and
MgCl₂ 10 mM (PM-DNM (circles), DNM-PM (squares) and PM as control (diamonds). The error bars indicate the standard deviation.

Fig. 6. Fluorescence imaging. (A) 0.5 µM DNM in MCF7-S and MCF7-R cells after 1h incubation (top: fluorescence, bottom: bright field). (B) 0.5 µM PM-DNM in MCF7-R cells after 24h, 48h or 72h treatment without transfectant, transfected with OFA or with Superfect.

Fig. 7. Microspectrofluorometry ($\lambda_{exc} = 488$ nm) of PM-DNM (0.5 µM) in MCF7-R cells after 48h treatment. Top: with OFA. Fluorescence spectra recorded in the nucleus (A) and in the cytoplasm (B). Bottom: without OFA. Similar spectra were recorded in the nucleus or the cytoplasm (C). For comparison : PM-DNM (0.5 µM) in PBS (D).

Fig. 8. MDR1 expression after treatment with SC-DNM, PM-DNM, DNM-PM, PM-NH₂, si1 and AS of MCF7-R cells transfected in the presence of OFA. [Oligonucleotides] = 500 nM, except [si1] = 10 nM. β-actin was used as an internal control. (A) Western blotting analysis at 72h. Average of the remaining P-gp expression including standard deviation. *p<0.01 compared to SC-DNM; **p<0.05. All experiments were performed at least in duplicate and three Western blots were performed for each cell lysis preparation. (B) RT-PCR analysis at 48h. Average of the remaining P-gp expression including standard deviation. *p<0.01 compared to SC-DNM; **p<0.05. Three transfection experiments have been performed and PCR was in duplicate for each of them.
TABLES

Table 1. Concentration at which 50% of triplex is formed (C50) and melting temperature (Tm) values for triple helix formation of the studied oligonucleotides. C50 values are calculated by gel shift assay after 2 and 24 hours incubation at 37°C in HEPES 50 mM, pH 7.2, NaCl 50 mM and MgCl2 10 mM. Tm values have been obtained by absorbance measurements (from 260 to 295 nm) in function of temperature (from 0°C to 80°C, 0.2 °C/min) in sodium cacodylate 10 mM pH 7.2, MgCl2 10 mM and NaCl 50 mM.

<table>
<thead>
<tr>
<th>Oligonucleotide (5' - 3')</th>
<th>C50 (µM)</th>
<th>Tm (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2h</td>
<td>24h</td>
</tr>
<tr>
<td>GT1 5' GTTTTTGTTTTGTGTTTTGTTT 3'</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>GT2 5' GTTTTTGTTTTTG 3'</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>GT3 5’ GTTGTTTTGTGTTTT 3’</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>GT4 5’ TTGTTTTGTGGTTG 3’</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>PM 5’ PPMPPMPPPPPPMPPP 3’</td>
<td>0.46±0.07</td>
<td>0.05±0.01</td>
</tr>
<tr>
<td>LNA1 5’ TTTCTMMCTTTTTM 3’</td>
<td>0.87 ± 0.10</td>
<td>0.12±0.05</td>
</tr>
<tr>
<td>LNA2 5’ TTMTMMMMTTTTMTT 3’</td>
<td>0.67 ± 0.11</td>
<td>0.06±0.02</td>
</tr>
<tr>
<td>LNA3 5’ TTTTTCTTTTTTTTTT 3’</td>
<td>1.4 ± 0.2</td>
<td>0.08±0.01</td>
</tr>
</tbody>
</table>

1 M= 5’-methyl-deoxycytidine; P= 5’-propynyl-deoxyuracil; underlined base is a LNA base.

2 ± 0.5 °C
Table 2. Concentration at which 50% of triplex is formed (C$_{50}$) values for triple helix formation of the DNM conjugates. Details as in Table 1.

<table>
<thead>
<tr>
<th>Oligonucleotide</th>
<th>C$_{50}$ (µM) 2h</th>
<th>C$_{50}$ (µM) 24h</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM-DNM</td>
<td>0.83± 0.07</td>
<td>0.19±0.10</td>
</tr>
<tr>
<td>LNA2-DNM</td>
<td>1.0± 0.3</td>
<td>0.39±0.09</td>
</tr>
<tr>
<td>DNM-PM</td>
<td>0.38±0.07</td>
<td>0.04±0.01</td>
</tr>
</tbody>
</table>
A)

```
\begin{align*}
\text{triplex site} & \quad 12\text{pb} \\
\text{triplex site} & \quad 21\text{bp with} \\
\text{1 mismatch} & \\
\text{410pb} & \quad \text{oligopyrimidine oligopurine}
\end{align*}
```

B) **Target sequence:**

```
\begin{align*}
5' & -\text{CAATAAAAGTGAAAGGATATTGGAGAAGAGACCAACTG} - 3' \quad 41\text{R} \\
3' & -\text{GTATTTTCACCTTTTCTATTCTCCTTCTTTTGGTTGAC} - 5' \quad 41\text{Y}
\end{align*}
```

C) **Oligonucleotides:**

- **GT1**
 \[5' - \text{GTTTTTGGTTTTGGTTTTGGTTTT} - 3'\]
- **GT2**
 \[5' - \text{GTTTTTGGTTTT} - 3'\]
- **GT3**
 \[5' - \text{GTTGTTTTGGTTTT} - 3'\]
- **GT4**
 \[3' - \text{GTTGTTTTGGTTTT} - 5'\]
- **PM**
 \[5' - \text{PPPPPPPPPPPPPPPPPPPPPPPP} - 3'\]
- **LNA1**
 \[5' - \text{TTCTTTCTTTTTTTTTTTTT} - 3'\]
- **LNA2**
 \[5' - \text{TTTTTTTTTTTTTTTTTTTTTTTT} - 3'\]
- **LNA3**
 \[5' - \text{TTTTTTTTTTTTTTTTTTTTTTTT} - 3'\]

D) **Employed modifications:**

- **M**
- **P**
- **LNA**
Figure 4
Figure 5
PM-DNM + OFA in MCF7-R cells

A

Nucleus

B

Cytoplasm

PM-DNM in MCF7-R cells

C

Nucleus

Cytoplasm

D

PM-DNM

Figure 7
Figure 8

Graphs showing the expression levels of P-gp and MDR1 mRNA under different conditions.

(A) Western blot analysis of P-gp expression.

(B) RT-PCR analysis of mdr1 expression.

Bars represent the fold change in expression compared to the control, with control set as 100%. Error bars indicate standard deviation. Asterisks indicate statistically significant differences compared to control: * p < 0.05, ** p < 0.01.