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ABSTRACT 

Ionotropic glutamate receptor (iGluR) desensitization can be modulated by mutations that change 

the stability of a dimer formed by the agonist binding domain. Desensitization of AMPA 

receptors can be blocked by a single point mutation (e.g. GluR2 L483Y) that stabilizes this dimer 

in an active conformation. In contrast, desensitization of kainate receptors can be slowed, but not 

blocked, by similar dimer interface mutations. Only covalent cross-linking via introduced 

disulfides has been previously shown to block kainate receptor desensitization completely. We 

have now identified an apparently non-desensitizing GluR6 point-mutant (Asp776 to lysine; 

D776K), located at the apex of the ligand binding (S1S2) domain dimer interface. Asp776 is one 

of a cluster of four charged residues in this region, which together mediate direct dimer 

interactions, and also contribute to the binding sites for one chloride and two sodium ions. 

Despite the localized +4 change in the net-charge of the S1S2 dimer, the D776K mutation 

actually increased the thermodynamic stability of the dimer. Unlike GluR6 wild-type, the D776K 

mutant is insensitive to external cations, while retaining sensitivity to external anions. We 

therefore hypothesize that the unexpected phenotype of this charge-reversal mutation results from 

the substitution of the sodium ions bound within the dimer interface by the introduced lysine 

NH3
+ groups. The non-desensitizing D776K mutant provides insights into kainate receptor 

gating, as well as representing a potentially useful new tool for dissecting kainate receptor 

function. 
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Desensitization, receptor inactivation in the continued presence of agonist, has a profound 

influence on the magnitude and duration of kainate- and AMPA-selective iGluR responses. 

Following activation by the endogenous agonist glutamate (Glu), desensitization is generally 

rapid (time constants typically ~1-10 ms) and substantially complete (96-99.7%) (Dingledine et 

al., 1999; Ozawa et al., 1998). Desensitization is an intrinsic property of the receptor subunits 

themselves, and is therefore an integral part of the overall gating mechanism of these receptors. 

Functionally, desensitization occurs independently of channel opening. As tetramers, iGluRs can 

bind up to four agonist molecules; agonist binding to at least two subunits is required to drive 

channel gating (Clements et al., 1998; Heckmann et al., 1996; Rosenmund et al., 1998), but 

agonist binding to one or more subunits is sufficient for entry into desensitized states (Heckmann 

et al., 1996; Robert and Howe, 2003). Concentrations of agonist too low to activate responses are 

therefore able to cause desensitization. The process of desensitization is reversible, with agonist 

responses recovering completely once agonist is removed. The rate of this recovery from 

desensitization varies significantly between iGluR subtypes, with multiple overlapping time-

constants revealing the existence of a number of distinct desensitized states (Robert and Howe, 

2003). 

From a structural standpoint, our view of the desensitization process comes largely from 

crystallographic studies of the isolated agonist-binding or “S1S2” domain. Structures of the S1S2 

domain have been determined for both AMPA and kainate receptor subunits, revealing a 

conserved bilobate structure (Gouaux, 2004; Mayer, 2006). In both subtypes S1S2 domains have 

been observed to form two-fold symmetrical, back-to-back dimers (Armstrong and Gouaux, 

2000; Nanao et al., 2005). The stability of the S1S2 dimer has been found to correlate inversely 

with desensitization rates. In particular, a leucine to tyrosine AMPA-receptor point-mutant, 
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which completely blocks desensitization (Stern-Bach et al., 1998), stabilizes the S1S2 dimer by 

strengthening inter-subunit contacts (Sun et al., 2002). These observations suggest that dimer 

rearrangement is required for desensitization, an interpretation subsequently corroborated for 

both AMPA- and kainate-receptor subtypes (Horning and Mayer, 2004; Priel et al., 2006; Weston 

et al., 2006; Zhang et al., 2006). 

Despite the common role of the S1S2 dimer interface, there are also differences between AMPA 

and kainate receptor desensitization. For one thing, it has proven difficult to suppress 

desensitization in the kainate receptors by stabilizing purely non-covalent interactions. In 

addition, in kainate receptors response amplitudes and desensitization rates are dependent on 

external ions (Bowie, 2002; Paternain et al., 2003). Binding sites have been identified at the apex 

of the S1S2 dimer for both anions and cations (Plested and Mayer, 2007; Plested et al., 2008), 

consistent with studies in which mutations in this region affected desensitization rates (Fleck et 

al., 2003; Wong et al., 2006; Wong et al., 2007). In this study we have characterized the 

electrophysiological and biochemical consequences of additional apical mutations; in particular 

the effects on receptor responses of charge-reversal mutations. Their effects highlight the key role 

of this region as a regulator of receptor desensitization. 

 

 

MATERIALS AND METHODS 

Mutagenesis 

All mutagenesis was carried out on a rat GluR6(Q) cDNA clone. Residue numbering is from the 

start methionine (subtract 31 for GluR6 and 30 for GluR5 to obtain numbering based on 

predicted mature polypeptide). Mutants were generated using the QuikChange protocol and Pfu 
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turbo polymerase (Stratagene, La Jolla, CA), essentially as described in Zhang et al. (2006). All 

mutants were confirmed either by sequencing of the entire open reading frame, or by sequencing 

after subcloning of the 1.65kb XagI-Eco47III fragment. Crystal structures for GluR6 S1S2-Dom 

(RCSB protein data bank accession 1YAE) (Nanao et al., 2005) and GluR5 S1S2-KA (accession 

3C32) (Plested et al., 2008) were used to generate figures using MacPyMOL 

(http://pymol.sourceforge.net/). 

Cell culture, Electrophysiology & Data Analysis 

HEK-293 cell culture, whole-cell patch clamp and data analysis were carried out as described 

previously (Zhang et al., 2008). Whole-cell recordings were made 48-72 h after transfection at a 

holding potential of -70 mV using a HEKA Elektronic EPC 10 amplifier. The electrode solution 

contained (in mM): 110 CsF, 30 CsCl, 4 NaCl, 0.5 CaCl2, 10 HEPES, and 5 EGTA (adjusted to 

pH 7.3 with CsOH). The external bath solution contained (in mM): 150 NaCl, 2.8 KCl, 1.8 

CaCl2, 1.0 MgCl2, and 10 HEPES (adjusted to pH 7.3 with NaOH). Rapid agonist application 

was achieved using the Burleigh LSS-3200 piezo-based system. The rate of solution exchange in 

this system (determined by open-tip junction currents) was <250 µs, and 20-80% rise-times for 

control (GluR6 WT) responses were <1 ms. Recordings were performed on small-diameter cells 

(20 µm), lifted into the perfusion stream to ensure rapid solution exchange (Zhang et al., 2008). 

Time constants were determined using single-exponential fits in PulseFit (HEKA). For GluR6 

WT, steady-state decay rates were determined from responses with clear steady states (those 

fitted ranged between 15-75 pA from peak responses of 3-15 nA). 

Oocytes were injected with cRNA (~50 nl; 0.8 mg/ml) transcribed from the GluR6 WT and 

mutant cDNAs (in pcDNA3.1; linearized with Xba I) using the mMessage mMachine T7 kit 

(Ambion, Warrington, UK). Current recordings were made 48-56 h after injection using the set-
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up described in Thompson & Lummis (2008). The control external medium (in mM: 96 NaCl, 

1.1 KCl, 1.8 BaCl2, 5 HEPES, adjusted to pH 7.5 with NaOH) was modified by substitution of 

NaCl with NaF, NaNO3, CsCl or RbCl as appropriate. Where the cation was exchanged the pH 

was adjusted using CsOH instead of NaOH. Recordings were made at a holding potential of 

-60mV, with agonist (10 mM Glu) applied for 10 s at a flow rate of 10 ml/min. Oocytes 

expressing GluR6 WT were pre-treated with concanavalin A (0.3 mg/ml, 0.2 µm filtered; 

incubated for 5-10 min) prior to recording. The program WCP (J. Dempster, University of 

Strathclyde, UK) was used for oocyte data recording and analysis. 

All data are presented as mean±S.E.M. Statistical analyses were carried out using Prism (v5; 

GraphPad Software). Significant differences compared to the GluR6 WT control were identified 

by unpaired t-test for single comparisons and using 1-way ANOVA for multiple comparisons. In 

the latter case significance was tested using either Dunnett’s or Dunn’s multiple comparison tests 

depending on data variances. 

S1S2 Domain Expression and Characterization 

Overlap-extension PCR was used to generate a GluR6 S1S2 domain construct in the pET21 

bacterial expression vector (Novagen, Nottingham, UK). The construct was based on the domain 

boundaries described by Mayer (2005), and included GluR6 residues Ser429 to Lys544 and 

Pro667 to Glu806, joined by a GlyThr linker sequence, and ending with a six-histidine tag. This 

construct was recombinantly expressed (induction with 1 mM IPTG; 4 h, 23°C) in BL21(DE3) 

cells (Bioline, London, UK). Constructs were purified to homogeneity following chemical lysis 

(Cellytic-B; Sigma-Aldrich, Poole, UK) in three chromatography steps, using a base buffer 

containing 150 mM NaCl, 25 mM HEPES, 5% (v/v) glycerol and 1-5 mM glutamate. The steps 

were; His-select nickel-affinity (Sigma; pH 7.5, elution with 400 mM imidazole), HiTrapQ 
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anion-exchange (GE Healthcare, Piscataway, NJ; pH 8.0, sample in flow-through) and Superdex-

75 gel filtration (GE Healthcare; pH 7.5). The final yield ranged between 0.2-0.5 mg/L culture. 

Purified S1S2 constructs were concentrated by ultra-filtration as required. Blue-Native 

polyacrylamide gel electrophoresis (BN-PAGE) was carried out using Novex 4-16% 

NativePAGE gels and associated buffers (Invitrogen, Paisley, UK) according to the 

manufacturer’s instructions. Protein bands were visualized either directly with Coomassie Blue 

R-250 or silver staining, or following electro-blotting onto Immobilon-P (Millipore, Watford, 

UK) and detection with an anti-His tag monoclonal antibody (1:1,000 dilution; Sigma). 

For size exclusion chromatography and ultracentrifugation, samples were initially concentrated to 

an A280 of ~0.4-0.6 and then dialyzed into 25mM HEPES, pH 7.5, 150 mM NaCl, 5% (w/v) 

glycerol, 1 mM sodium glutamate, and 0.02% (w/v) NaN3. Size-exclusion chromatography was 

performed on a Superdex-75 10/30 column. The WT and D776K proteins each eluted as single 

peaks, and corresponding ln(MW) and Stokes radius estimates were obtained by linear regression 

analysis of globular standards. 

Ultracentrifugation experiments were performed at 20°C in a Beckman ProteomeLab XL-A 

centrifuge equipped with an AN-60 rotor and absorbance optics. Sedimentation velocity 

experiments were performed at a rotor speed of 35k rpm. Absorbance scans were taken at 280 nm 

at ~1.25 minute intervals, with a 0.003 cm radial scan step. Sedimentation equilibrium data were 

recorded for 10 hours each at speeds of 7k, 10k, 14k, 20k, and 28k rpm. Scans were taken at 1 h 

intervals with a 0.001 cm step size along the radial axis and 5 replicates/data point. Attainment of 

sedimentation equilibrium was verified using the program WinMATCH  (D.A. Yphantis and 

J.W. Lary; www.biotech.uconn.edu/auf) Six-sector cells were loaded with 1x-, 2x-, and 4x-

dilutions of ~10 µM stock solutions. Curves collected at all five speeds for the two highest-
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concentration channels were globally fit. Protein partial specific volume (

! 

v) and buffer density 

and viscosity (ρ, η) were calculated using the program SEDNTERP (J. Philo, D. Hayes, and T. 

Laue) (Laue et al., 1992). Sedimentation coefficient distributions were calculated using the 

program SEDFIT87 (Dam and Schuck, 2004). Sedimentation equilibrium data were analyzed 

using the program SEDANAL (Stafford and Sherwood, 2004), using both single-species and 

oligomerization models. 

Biotinylation, deglycosylation & radioligand binding 

Cell surface expression was determined following biotinylation as described previously (Zhang et 

al., 2006) and quantified using Kodak 1D software. Deglycosylation experiments using Endo H 

and PNGase F (New England Biolabs, Hitchin, UK) were performed essentially as described by 

Priel et al. (2006). Briefly, membranes were prepared from cells 55-60 h following transient 

transfection with full-length GluR6 constructs, and membrane aliquots containing 20 µg of total 

protein incubated with 1 µl of the enzymes for 2 h at 37°C in the supplied buffers. Immunoblots 

for both surface labeling and deglycosylation experiments were carried out using polyclonal 

GluR6/7 antisera (1:1000 dilution; Upstate, Chandlers Ford, UK). 

For radioligand binding assays, membrane preparations and [3H]kainate saturation and 

displacement assays were performed as described previously (Zhang et al., 2006), using 

membrane preparations from HEK cells stably expressing GluR6 D776K (following G418 

selection). Data were fitted by non-linear regression using built-in functions in Prism. 
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RESULTS 

We had previously used a combination of site-directed mutagenesis and whole-cell patch clamp 

in HEK-293 cells to identify GluR6 S1S2 domain mutations that slowed desensitization kinetics 

(Zhang et al., 2006). The residues in that study were clustered around Tyr521, the homolog of the 

non-desensitizing GluR2 L483Y mutant. Inter-subunit interactions in this region play an 

important role in determining dimer stability and therefore desensitization rates. A second point 

of contact in S1S2 dimers is evident in crystal structures (Fig. 1A) (Armstrong and Gouaux, 

2000; Nanao et al., 2005). This comprises either a pair (in AMPA receptor subunits) or quartet 

(in kainate receptor subunits) of charged residues capable of forming inter-subunit salt-bridges at 

the apex of the dimer. In GluR6, contacts are formed between Glu524 and Lys531, the equivalent 

of which is also found in AMPA receptor subunits, and between Arg775 and Asp776 (Fig. 1B), 

an interaction found only in kainate receptor subunits (Nanao et al., 2005). This region is also 

where a single chloride and two sodium ions bind in kainate receptor subunits (Fig. 1C) (Plested 

and Mayer, 2007; Plested et al., 2008), complicating any interpretation of how the various 

charged amino acids interact. Indeed, the GluR5 homolog of Arg775 (Arg790) shows 

conformational flexibility in the presence of different cations, such that an inter-subunit contact is 

not always formed (Plested et al., 2008). 

Switching charges at the S1S2 apex has varied effects on desensitization kinetics 

To better understand the role of these residues in receptor function we determined the effect of 

single and double charge-exchanges at these four sites. These experiments revealed a spectrum of 

effects consistent with perturbations of the S1S2 dimer interaction, ranging from loss of response 

to almost complete block of desensitization (Fig. 2, Table 1). We first assessed the effect of 

double mutations at the two charge-pairs: Glu524-Lys531 and Arg775-Asp776, in which the 
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respective charged amino acids were exchanged. Mutants were transiently transfected into HEK 

cells, and responses to applications of Glu (3 mM) and KA (1 mM) determined by whole-cell 

voltage clamp recordings. As their overall effect was charge-neutral, these mutants should reveal 

the extent to which geometry at these sites, as opposed simply to charge, is important in receptor 

function. The E524K-K531E mutant was still functional, but with responses to Glu and KA that 

desensitized 3- to 4-fold faster than those of GluR6 WT (Fig. 2A, Table 1). For the R775D-

D776R mutant, in contrast, no responses were observed with either agonist (Table 1). This 

indicates that the environment in the vicinity of Arg775 and Asp776 is more sensitive to changes 

in charge distribution than that around Glu524 and Lys531. 

We next mutated these four residues singly to reverse the charge of their sidechains. Given their 

location and the effect of the double mutants, these single mutants would be expected to 

destabilize the dimer and therefore attenuate responses. For the E524K and R775D mutations this 

was indeed the case, with responses either entirely absent (E524K) or extremely small (R775D) 

(Fig. 2A, Table 1). This was in agreement with the reported effects of other changes to these sites 

in AMPA and kainate receptor subunits (Fleck et al., 2003; Horning and Mayer, 2004; Plested 

and Mayer, 2007; Wong et al., 2007). With the K531E mutation, in contrast, desensitization in 

response to both Glu and KA was actually slowed (Fig. 2A, Table 1). While unexpected, this was 

again consistent with published data, at least for kainate receptors. In GluR6 the K531G mutation 

has been found to slow desensitization, particularly in response to KA (Fleck et al., 2003). 

Similar mutations to the homologous site in GluR2 (i.e. K493A & M) accelerated desensitization, 

as would be predicted (Horning and Mayer, 2004). Our K531E mutation does not resolve the 

question of why changes to this site have unexpected effects on kainate receptor responses, but it 

does appear to rule out simple steric effects (Horning and Mayer, 2004).  
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Replacing Asp776 with a lysine blocks receptor desensitization 

The last of the four charge-reversal mutations we tested, Asp776 to lysine (D776K), would again 

be expected to severely attenuate or even eliminate receptor responses. This was the effect of 

other reported mutations at this site in GluR6. Mutation of Asp776 to asparagine, glutamate or 

glycine accelerated desensitization, while mutation to threonine abolished responses (Fleck et al., 

2003; Plested and Mayer, 2007). The D776K mutant had a very different phenotype. While most 

cells showed no agonist-activated responses, in a minority (30/116) currents were observed. 

These responses were essentially non-desensitizing to agonist applications up to 4 s, desensitizing 

by around 10% with both Glu and KA (Fig. 2B & Table 1). Current amplitudes varied greatly for 

responses to both Glu (range 11 pA to 5.5 nA, mean 830 pA, median 262 pA) and KA (range 

9 pA to 4.7 nA, mean 810 pA, median 270 pA). Consistent with the absence of desensitization, 

repeated 100 ms applications in a paired-pulse protocol showed no sign of desensitization or 

appreciable run-down (n=6; data not shown). While only 25% of transiently-transfected cells 

gave currants for D776K, later tests on HEK cells stably-transfected with D776K showed smaller 

but more reliable responses to Glu (22/52 responded; range 13-620 pA, mean 156 pA, median 

61 pA). Unless otherwise indicated, the characterization of D776K described below was carried 

out using transiently-transfected cells. 

Comparing agonist efficacy between GluR6 WT and D776K, the overall rank order of efficacy 

for Glu, KA and domoate (another partial agonist) was maintained (Glu > KA > domoate). The 

relative efficacy of KA was slightly higher in D776K (Table 1), but there was no difference in the 

relative efficacy of domoate (100 µM) between GluR6 WT (0.33±0.03, n=6) and D776K 

(0.35±0.03, n=14). Comparing D776K currents in response to Glu and KA, their rise times were 

similar at ~4 ms & ~3 ms respectively (compared to <1 ms for WT and other constructs), as were 
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their desensitization kinetics (for the ~10% of the D776K response that desensitized, the kinetics 

were poorly fitted by exponential decays, but time-constants were around 1-2 seconds). 

Where the responses to the two agonists differed was in their decay rates from peak responses 

(Fig. 2C). The decay rates from brief (1 ms) agonist applications were determined for GluR6 WT 

and D776K. Deactivation rates from peak responses to Glu were unaffected by the mutation, 

whereas deactivation rates from peak responses to KA were slowed over 10-fold in D776K 

compared to GluR6 WT (Fig. 2C & Table 2). A similar agonist-selective effect on decay was not 

apparent with decay rates from steady state responses (τDec-SS). For both agonists τDec-SS was 

higher than τDec-1ms, but this was true for GluR6 WT as well as D776K (Table 2). In the non-

desensitizing GluR1 mutant L497Y the deactivation rate from peak responses is slowed, whereas 

the modulator cyclothiazide blocks desensitization without affecting deactivation rates (Mitchell 

and Fleck, 2007). Therefore, at least in terms of deactivation rates, KA-induced D776K responses 

behave similarly to those of GluR1 L497Y (slower deactivation), whereas Glu-induced D776K 

responses are more akin to cyclothiazide-treated GluR1 (normal deactivation). In very general 

terms this implies differences in the stability of receptor states when Glu and KA are bound (see 

Discussion). 

Increased dimer stability in GluR6 D776K 

It is clear from studies in GluR2 that AMPA-receptor desensitization is inversely correlated with 

the stability of the dimer formed between S1S2 domains. While the S1S2 domain of GluR2 WT 

shows only a very weak tendency to dimerize (Kd ≈ 6 mM), the GluR2 L483Y mutant dimerizes 

with a dissociation constant of 30 nM (Sun et al., 2002). We therefore investigated the tendency 

of the D776K S1S2 domain to dimerize in comparison with GluR6 WT. S1S2 domains were 
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recombinantly expressed and purified as described in the Material and Methods, and their 

aggregation state assessed by gel filtration, blue-native gel electrophoresis (BN-PAGE) and 

analytical ultracentrifugation. 

Gel filtration experiments indicated a higher apparent molecular weight, with a clear difference in 

retention time for D776K compared to GluR6 WT (Fig. 3A). When the retention times were 

calibrated against globular standards, the relative molar mass (Mr) of the WT protein was 

estimated as 31 kDa, compared to 50 kDa for the D776K mutant. The calculated value for both 

proteins is 32 kDa. To test the possibility that the altered mutant retention time was caused by a 

change in hydrodynamic radius (e.g. elongation), sedimentation coefficients were determined for 

both wild-type and mutant proteins in velocity sedimentation experiments, and the gel-filtration 

data were re-calibrated in terms of Stokes radius. The shape-independent Mr values obtained 

from the Svedberg equation were 30 kDa for WT and 56 kDa for the D776K mutant, confirming 

the increase in average molar mass of the mutant vs. WT S1S2 domains. The Mr values estimated 

for the D776K mutant are intermediate between the calculated values for monomeric and dimeric 

species, consistent with the possibility of an equilibrium among oligomeric species, with an 

exchange rate faster than the time-scale (hours) of the gel-filtration and sedimentation 

experiments. This possibility was confirmed by BN-PAGE. While the GluR6 WT was largely 

(81±7%, n=3) monomeric at the concentrations used (~30 µM protein stock), a significant 

proportion (47±6%, n=3) of the D776K mutant ran as a dimer (Fig. 3A). There were also higher-

order associations evident for D776K (representing 5±2%, n=3); there is however no structural or 

biochemical evidence that S1S2 domains associate as trimers or tetramers, so it is unlikely that 

these larger species have a physiological significance. 

To further test this model and to quantify the affinity of potential oligomerization interactions, we 

performed equilibrium analytical ultracentrifugation (AUC) experiments (Fig. 3B). The 
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absorbance curves obtained for the GluR6 WT S1S2 could be globally well fit as a single-

species, with a molecular weight fixed at the calculated value of 32,214. A representative curve 

obtained at 14,000 rpm is shown with the associated fit and residuals in Figure 3B (left-hand 

curves). If a monomer:dimer equilibrium was fitted instead, error analysis showed that the 

dimerization affinity could not be distinguished from Keq = 0 at the 95% confidence level. 

In contrast to the WT protein, a very poor fit was obtained when the equivalent set of D776K 

S1S2 absorbance curves were fitted with a fixed molecular-weight, single-species model 

(Fig. 3B; right-hand curves, dashed line & open-circle residuals). However, if a monomer:dimer 

equilibrium was fitted, a significant improvement was obtained in the quality of fit (Fig. 3B; 

right-hand curves, solid line & filled-square residuals). The Kd of dimerization refined to a value 

of 0.9 µM (95% CI: 0.4-1.4 µM). The most parsimonious explanation for the hydrodynamic data 

is that the WT GluR6 S1S2 domain dimerizes only weakly, consistent with previously reported 

estimates of > 8 mM for the WT Kd (Chaudhry et al., 2009), and that the D776K mutation 

stabilizes the dimerization interaction by more than three orders of magnitude. 

Desensitization block and dimer stability have also been shown to affect receptor maturation and 

trafficking (Penn et al., 2008; Priel et al., 2006). The relatively high non-response rate for HEK 

cells transiently-transfected with D776K implies that expression and/or trafficking are affected by 

this mutation. This was confirmed by biotin-labeling and immunoblotting (Fig. 3C), which 

showed very low total and surface expression of D776K compared to GluR6 WT and other 

constructs, including mutants with very small responses (e.g. E524K, Fig. 3C and R775D, data 

not shown). Quantification of these immunoblots showed that total levels of both E524K and 

D776K were about a quarter of GluR6 WT levels (24±7% and 23±6% respectively). As a fraction 

of total levels, surface expression of E524K was not significantly different from GluR6 WT. The 

fraction of total D776K expressed at the surface, however, was less than half that of GluR6 WT 
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(0.44±0.19; n=5, P < 0.05), suggesting a specific trafficking defect associated with the D776K 

mutation. We also determined ligand affinity (by radioligand binding assay) as a proxy for 

correct folding. Specific binding of [3H]kainate in transiently-transfected HEK cells was too low 

to allow determination of kainate and glutamate binding affinities. HEK cells stably expressing 

D776K were therefore used to determine affinity constants. The affinity of kainate for D776K 

was not significantly different from that for GluR6 WT (Kd=12.9±1.7 nM, n=4 and 9.0±1.9 nM, 

n=3 respectively; P=0.18). The apparent affinity of Glu was also unchanged in D776K 

(Ki=390±68 nM, n=3) compared to GluR6 WT (Ki=280±7 nM, n=3; P=0.21). 

In a final assay, we used the maturation state of receptor glycosylation as an indicator of 

intracellular localization (Greger et al., 2003; Priel et al., 2006). Membranes isolated from cells 

transfected with GluR6 WT and D776K were digested using Endo H and PNGase F (Fig. 3D). 

Endo H only cleaves immature glycosylation added in the endoplasmic reticulum (ER), while 

PNGase F also removes sugar moieties following maturation in the Golgi. While most GluR6 

WT glycosylation was resistant to Endo H treatment (78.4±4.1%, n=4), this percentage was much 

lower for D776K (6.6±1.5%, n=4). No mature glycosylation was detectable with D776K. It is 

possible that constitutive activation of D776K leads to cytotoxicity, selecting against cells 

expressing high receptor levels. In order to counter this we added the non-selective iGluR 

antagonist CNQX (10 µM) to the culture medium, and characterized the resulting responses and 

glycosylation patterns of D776K. The proportion of non-responding cells treated with CNQX 

(19/27) was not significantly lower than for non-treated cells (67/89; P=0.62, Chi squared test). 

There were also no significant differences in the response sizes, relative agonist efficacies or 

response kinetics for the two groups. The addition of CNQX to the culture media also had no 

effect on the glycosylation pattern observed for D776K. In particular, the percentage of receptor 

resistant to Endo H treatment was unchanged (7.6±1.4%, n=4). 
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The effect of external cations is abolished by D776K mutation 

Residue Asp776 sits between the anion and cation binding sites located within the dimer interface 

(Fig. 1C). We therefore investigated whether the D776K mutant affected the sensitivity of the 

receptor to ions. Current responses of GluR6 WT to glutamate are attenuated and desensitization 

rates are increased if sodium or chloride ions in the external solution are replaced by other 

monovalent ions (Bowie, 2002; Paternain et al., 2003). We determined the response amplitude of 

D776K expressed in Xenopus oocytes in various external solutions; replacing sodium ions with 

either rubidium or cesium ions, and chloride ions with either nitrate or fluoride ions. When the 

external anion was replaced with either NO3
- or F-, D776K responses were significantly 

attenuated (to 1-2% of control values; Fig. 4). In contrast, exchanging the external cation for 

either Rb+ or Cs+ resulted in responses that were over 30% larger than those in the NaCl control 

(Fig. 4). 

Direct comparison with GluR6 WT responses was not possible in oocytes, but we tested 

responses following treatment with concanavalin A (ConA) to increase the size of steady-state 

responses (Fig. 4). As expected, exchange of either cations or anions attenuated GluR6 WT 

responses in ConA-treated oocytes (responses relative to NaCl control were: Rb+, 17±2%; Cs+, 

17±7%; NO3
-, 3.4±0.2%; F-, 1.0±0.7%; n=3-5). The cation effects were similar to those observed 

in HEK cells (Rb+, 29%; Cs+, 6%) (Plested et al., 2008). The anion effects were larger than those 

reported in HEK cells (NO3
-, 75%; F-, 14%) (Plested and Mayer, 2007), which may be a 

consequence of ConA treatment. As noted above, D776K responses were significantly larger than 

control in both rubidium and cesium (Fig. 4), but the permeability of both ions in GluR6 has been 

reported to be ~25% higher than that of sodium (Jatzke et al., 2002). We confirmed that this was 

the most likely explanation for the larger currents by determining slope-conductance responses at 
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positive potentials. Outward currents were not significantly higher in the presence of external 

cesium or rubidium ions compared with the sodium ion control (data not shown). 

 

 

DISCUSSION 

We investigated the effects on agonist responses of reversing the charges at four sites in the apex 

of the GluR6 S1S2 agonist binding domain. There are several key inter-subunit contacts in this 

region, including salt bridges and binding sites for an anion and two cations (Fig. 1). The ion 

binding sites and one of the two charge-pairs are unique to kainate-selective receptors. Given the 

proposed importance of dimer interface stability to activation and desensitization, changes that 

perturb either the charge distribution or the net-charge balance in this region would be expected 

to significantly accelerate desensitization. Among the single mutants at these four sites, E524K 

and R775D both attenuated responses as expected (Fig. 2A, Table 1). The other two charge-

reversal mutations, K531E and D776K, both had unexpected phenotypes, with desensitization 

respectively slowed and blocked (Fig. 2A & B). In the case of K531E the effect was relatively 

small, with an increase in τDes of less than 2-fold for responses to Glu and ~9-fold for responses 

to KA (Table 1). It was not, however, entirely unexpected, as mutation of Lys531 to glycine also 

slows desensitization of GluR6 (Fleck et al., 2003). For neither of these mutants does the location 

of Lys531 in the dimer interface, or the interactions it makes, provide an easy explanation for 

these phenotypes. This is especially true for K531E, which results in a change in net charge of 

minus 4 at the dimer apex relative to GluR6 WT. Clearly, an explanation for these phenotypes 

will require further investigation of the conformations adopted by the S1S2 domain dimer during 

both receptor activation and desensitization. 
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The second single mutant with an unexpected phenotype, D776K, resulted in apparently non-

desensitizing responses. This was in marked contrast to the effects of other published mutations 

at this site, with conservative changes to asparagine and glutamate accelerating desensitization as 

would be expected (Plested and Mayer, 2007). Elevated steady-state iGluR responses can result 

either from changes in the relative stability or kinetic accessibility of the desensitized state (e.g. 

GluR2 L483Y; Sun et al., 2002), or from changes to the relative contributions of different open 

states (e.g. Concanavalin A; Bowie et al., 2003). While we cannot directly distinguish between 

these possibilities, we believe the non-desensitizing phenotype of D776K can be explained 

primarily in terms of S1S2 dimer stability, and therefore desensitization block. First, our 

biophysical data confirm that, at least in the isolated S1S2 domain, the dimer is clearly stabilized 

by the D776K mutation. While native gel electrophoresis showed that the GluR6 WT S1S2 

domain does associate to a limited extent as a dimer, AUC data indicated that the affinity is very 

low, consistent with previous reports (Chaudhry et al., 2009; Weston et al., 2006). In contrast, the 

apparent affinity of the S1S2 dimer interaction was increased >1000-fold by the D776K mutation 

(Fig. 3B). 

A recent study identified a number of GluR6 S1S2 mutations that stabilized the dimer interface, 

but that reduced the extent of desensitization by less than 20% (Chaudhry et al., 2009). It was 

therefore proposed that the desensitized state is intrinsically more stable in GluR6 than in GluR2. 

However, the mutants described in that study all exhibited dimerization constants above 20 µM, 

weaker than the 7 µM value observed for a GluR2 mutant that reduced desensitization by only 

10% (Sun et al., 2002). For GluR2, substantial block of desensitization is observed only for 

mutants with stronger dimerization affinities of ~1-5 µM (26-52% desensitization) and 30 nM for 

L483Y (8% desensitization). The S1S2 dimer affinity we observed with D776K (0.9 µM), while 

~30-fold lower than that of GluR2 L483Y, falls within the range of affinities observed for 
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strongly non-desensitizing GluR2 mutants. While our data cannot formally exclude a contribution 

from destabilization of the desensitized state, the effect of the GluR6 D776K mutation suggests 

that desensitization in AMPA and kainate receptors is similarly sensitive to the strength of the 

dimer interface. 

These experiments demonstrated that the D776K mutant stabilized the dimer, but they still leave 

the question of how this occurs. The most likely explanation comes from the location of the 

sodium binding sites in the dimer interface. It is possible to model a lysine in place of Asp776 

without clashes. The Cβ atom of the two Asp776 residues is 6-6.2Å from the nearest sodium ion, 

and the amine group of each of the lysines can be positioned close to the center of the opposing 

sodium binding site using a common rotamer (data not shown). In contrast to the chloride binding 

site, where residues from both subunits interact with the ion, the two sodium binding pockets are 

largely contained within single subunits, with only limited interactions across the dimer interface 

(Plested et al., 2008). Therefore, were the lysine side chains in D776K to extend to and 

effectively occupy the opposing cation binding sites as surrogate cations, this would represent 

additional inter-subunit interactions. These two new contacts could then serve to lock the 

conformation of the dimer, preventing desensitization. One consequence would be that the 

lysines would be expected to displace the sodium ions but not necessarily affect the chloride ion, 

fully consistent with the observed anion and cation effects of D776K (Fig. 4). The D776K mutant 

was still sensitive to changes in external anions, unlike the non-desensitizing cystine cross-link 

mutant (Y521C-L783C), which was insensitive to changes in both external cations and anions 

(Plested and Mayer, 2007; Plested et al., 2008). 

We observed two other effects of D776K; on expression levels and on deactivation kinetics. The 

surface expression and maturation of D776K in HEK cells appeared attenuated. We cannot rule 

out cytotoxic effects from constitutive leak currents in D776K-expressing cells but, with that 
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important caveat, the observed low surface expression of D776K is consistent with other reports. 

The trafficking efficiency of AMPA receptor subunits has been found to correlate closely with 

their desensitization properties (Greger et al., 2003; Penn et al., 2008), while it has been proposed 

that the ability to desensitize is a key checkpoint in kainate receptor trafficking (Priel et al., 

2006). The other interesting effect of D776K was on deactivation kinetics. For the non-

desensitizing AMPA receptors there is a concomitant slowing of the rate of deactivation (Sun et 

al., 2002). The GluR2 L483Y phenotype was initially proposed to result from both stabilization 

of the open state and destabilization of the desensitized state (see Fig. 5 in Sun et al., 2002). The 

former was confirmed by determining the rate of channel closure for GluR1 L497Y (Pei et al., 

2007), while kinetic modeling of the same mutant suggested that both entry into the desensitized 

state and the rate of ligand dissociation were decreased relative to GluR1 WT (Mitchell and 

Fleck, 2007). Although this modeling study did not incorporate slower channel closure, it seems 

probable that a combination of these three factors blocks desensitization and slows deactivation 

in the AMPA receptor leucine to tyrosine mutants. It is therefore interesting that peak responses 

to Glu (but not to KA) deactivate as rapidly as GluR6 WT responses (Fig. 2C), in contrast to the 

slow deactivation of other GluR6 mutants with attenuated desensitization rates (Chaudhry et al., 

2009; Zhang et al., 2006). We have previously found that deactivation rates in GluR6 appear 

dominated by ligand dissociation (Zhang et al., 2008), which implies that Glu, but not KA, 

dissociates from D776K as quickly as it does from GluR6 WT. This emphasizes the fact that 

slower deactivation is not always associated with desensitization block, as with cyclothiazide 

action at AMPA receptors (Mitchell and Fleck, 2007), but also highlights an interesting ligand-

specific difference in the phenotype of D776K. 

Chaudhry et al. (2009) rightly underscored the difficulty of improving dimer packing by rational 

design; as with the original GluR3 L507Y mutant, our discovery of D776K was entirely 
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serendipitous. If anything, the D776K mutation would have been expected to be destabilizing. 

Over the past ten years non-desensitizing AMPA-receptor mutants have provided a wealth of 

insights into the conformational requirements of both the desensitization and trafficking of 

AMPA receptors. As the first example of a kainate receptor subunit that is non-desensitizing in 

the absence of covalent cross-linkages, GluR6-D776K is closer in character to these AMPA-

receptor mutants. It is to be hoped that, low expression notwithstanding, D776K may have the 

potential to fulfill an equivalent role for kainate receptors in the future. 

 

 

ACKNOWLEDGEMENTS 

We thank Kate Davis for technical assistance with mutagenesis and cell culture, and Sarah 

Lummis, Kerry Price and Andrew Thompson (University of Cambridge, UK) for providing 

facilities for and assistance with the oocyte recordings. We are also grateful to Steve Heinemann 

(Salk Institute, La Jolla, CA) for the gift of the rat GluR6(Q) cDNA and David Wyllie 

(University of Edinburgh, UK) for help with the fast perfusion system. 

This article has not been copyedited and formatted. The final version may differ from this version.
Molecular Pharmacology Fast Forward. Published on June 26, 2009 as DOI: 10.1124/mol.109.056598

 at A
SPE

T
 Journals on A

pril 18, 2024
m

olpharm
.aspetjournals.org

D
ow

nloaded from
 

http://molpharm.aspetjournals.org/


MOL #56598 

23 

REFERENCES 

Armstrong N and Gouaux E (2000) Mechanisms for activation and antagonism of an AMPA-

sensitive glutamate receptor: Crystal structures of the GluR2 ligand binding core. Neuron 

28:165-181. 

Bowie D (2002) External anions and cations distinguish between AMPA and kainate receptor 

gating mechanisms. J Physiol 539:725-733. 

Bowie D, Garcia EP, Marshall J, Traynelis SF and Lange GD (2003) Allosteric regulation and 

spatial distribution of kainate receptors bound to ancillary proteins. J Physiol 547:373-385. 

Chaudhry C, Weston MC, Schuck P, Rosenmund C and Mayer ML (2009) Stability of ligand-

binding domain dimer assembly controls kainate receptor desensitization. EMBO J 28:1518-

1530. 

Clements JD, Feltz A, Sahara Y and Westbrook GL (1998) Activation kinetics of AMPA 

receptor channels reveal the number of functional agonist binding sites. J Neurosci 18:119-

127. 

Dam J and Schuck P (2004) Calculating sedimentation coefficient distributions by direct 

modeling of sedimentation velocity concentration profiles. Methods Enzymol 384:185-212. 

Dingledine R, Borges K, Bowie D and Traynelis SF (1999) The glutamate receptor ion channels. 

Pharmacol Rev 51:7-61. 

Fleck MW, Cornell E and Mah SJ (2003) Amino-acid residues involved in glutamate receptor 6 

kainate receptor gating and desensitization. J Neurosci 23:1219-1227. 

Gouaux E (2004) Structure and function of AMPA receptors. J Physiol 554:249-253. 

Greger IH, Khatri L, Kong X and Ziff EB (2003) AMPA receptor tetramerization is mediated by 

Q/R editing. Neuron 40:763-774. 

This article has not been copyedited and formatted. The final version may differ from this version.
Molecular Pharmacology Fast Forward. Published on June 26, 2009 as DOI: 10.1124/mol.109.056598

 at A
SPE

T
 Journals on A

pril 18, 2024
m

olpharm
.aspetjournals.org

D
ow

nloaded from
 

http://molpharm.aspetjournals.org/


MOL #56598 

24 

Heckmann M, Bufler J, Franke C and Dudel J (1996) Kinetics of homomeric GluR6 glutamate 

receptor channels. Biophys J 71:1743-1750. 

Horning MS and Mayer ML (2004) Regulation of AMPA receptor gating by ligand binding core 

dimers. Neuron 41:379-388. 

Jatzke C, Watanabe J and Wollmuth LP (2002) Voltage and concentration dependence of Ca(2+) 

permeability in recombinant glutamate receptor subtypes. J Physiol 538:25-39. 

Laue TM, Shah BD, Ridgeway TM and Pelletier SL (1992) Computer-aided interpretation of 

analytical sedimentation data for proteins, in Analytical Ultracentrifugation in Biochemistry 

and Polymer Sciences (Harding SE, Rowe AJ and Horton JC eds) pp 90-125, Royal Society 

for Chemistry, Cambridge, UK. 

Mayer ML (2005) Crystal structures of the GluR5 and GluR6 ligand binding cores: molecular 

mechanisms underlying kainate receptor selectivity. Neuron 45:539-552. 

Mayer ML (2006) Glutamate receptors at atomic resolution. Nature 440:456-462. 

Mitchell NA and Fleck MW (2007) Targeting AMPA receptor gating processes with allosteric 

modulators and mutations. Biophys J 92:2392-2402. 

Nanao MH, Green T, Stern-Bach Y, Heinemann SF and Choe S (2005) Structure of the kainate 

receptor subunit GluR6 agonist-binding domain complexed with domoic acid. Proc Natl 

Acad Sci USA 102:1708-1713. 

Ozawa S, Kamiya H and Tsuzuki K (1998) Glutamate receptors in the mammalian central 

nervous system. Prog Neurobiol 54:581-618. 

Paternain AV, Cohen A, Stern-Bach Y and Lerma J (2003) A role for extracellular Na+ in the 

channel gating of native and recombinant kainate receptors. J Neurosci 23:8641-8648. 

Pei W, Ritz M, McCarthy M, Huang Z and Niu L (2007) Receptor occupancy and channel-

opening kinetics: a study of GLUR1 L497Y AMPA receptor. J Biol Chem 282:22731-22736. 

This article has not been copyedited and formatted. The final version may differ from this version.
Molecular Pharmacology Fast Forward. Published on June 26, 2009 as DOI: 10.1124/mol.109.056598

 at A
SPE

T
 Journals on A

pril 18, 2024
m

olpharm
.aspetjournals.org

D
ow

nloaded from
 

http://molpharm.aspetjournals.org/


MOL #56598 

25 

Penn AC, Williams SR and Greger IH (2008) Gating motions underlie AMPA receptor secretion 

from the endoplasmic reticulum. EMBO J 27:3056-3068. 

Plested AJ and Mayer ML (2007) Structure and mechanism of kainate receptor modulation by 

anions. Neuron 53:829-841. 

Plested AJ, Vijayan R, Biggin PC and Mayer ML (2008) Molecular basis of kainate receptor 

modulation by sodium. Neuron 58:720-735. 

Priel A, Selak S, Lerma J and Stern-Bach Y (2006) Block of kainate receptor desensitization 

uncovers a key trafficking checkpoint. Neuron 52:1037-1046. 

Robert A and Howe JR (2003) How AMPA receptor desensitization depends on receptor 

occupancy. J Neurosci 23:847-858. 

Rosenmund C, Stern-Bach Y and Stevens CF (1998) The tetrameric structure of a glutamate 

receptor channel. Science 280:1596-1599. 

Stafford WF and Sherwood PJ (2004) Analysis of heterologous interacting systems by 

sedimentation velocity: Curve fitting algorithms for estimation of sedimentation coefficients, 

equillibrium and kinetic constants. Biophys Chem 108:231-243. 

Stern-Bach Y, Russo S, Neuman M and Rosenmund C (1998) A point mutation in the glutamate 

binding site blocks desensitization of AMPA receptors. Neuron 21:907-918. 

Sun Y, Olson R, Horning M, Armstrong N, Mayer M and Gouaux E (2002) Mechanism of 

glutamate receptor desensitization. Nature 417:245-253. 

Thompson AJ and Lummis SC (2008) Antimalarial drugs inhibit human 5-HT(3) and GABA(A) 

but not GABA(C) receptors. Br J Pharmacol 153:1686-1696. 

Weston MC, Schuck P, Ghosal A, Rosenmund C and Mayer ML (2006) Conformational 

restriction blocks glutamate receptor desensitization. Nat Struct Mol Biol 13:1120-1127. 

This article has not been copyedited and formatted. The final version may differ from this version.
Molecular Pharmacology Fast Forward. Published on June 26, 2009 as DOI: 10.1124/mol.109.056598

 at A
SPE

T
 Journals on A

pril 18, 2024
m

olpharm
.aspetjournals.org

D
ow

nloaded from
 

http://molpharm.aspetjournals.org/


MOL #56598 

26 

Wong AY, Fay AM and Bowie D (2006) External ions are coactivators of kainate receptors. J 

Neurosci 26:5750-5755. 

Wong AY, MacLean DM and Bowie D (2007) Na+/Cl- Dipole Couples Agonist Binding to 

Kainate Receptor Activation. J Neurosci 27:6800-6809. 

Zhang Y, Nayeem N and Green T (2008) Mutations to the kainate receptor subunit GluR6 

binding pocket that selectively affect domoate binding. Mol Pharmacol 74:1163-1169. 

Zhang Y, Nayeem N, Nanao MH and Green T (2006) Interface interactions modulating 

desensitization of the kainate-selective ionotropic glutamate receptor subunit GluR6. J 

Neurosci 26:10033-10042. 

 

 

This article has not been copyedited and formatted. The final version may differ from this version.
Molecular Pharmacology Fast Forward. Published on June 26, 2009 as DOI: 10.1124/mol.109.056598

 at A
SPE

T
 Journals on A

pril 18, 2024
m

olpharm
.aspetjournals.org

D
ow

nloaded from
 

http://molpharm.aspetjournals.org/


MOL #56598 

27 

FOOTNOTES 

This work was supported by the UK Medical Research Council [Grant G0200084]. 

Reprint requests should be sent to Dr T. Green, Department of Pharmacology, School of 

Biomedical Sciences, University of Liverpool, Ashton Street, Liverpool L69 3GE, UK. e-mail: 

tpgreen@liv.ac.uk 

1N.N. and Y.Z. contributed equally to this work. 

2Current affiliation: Department of Physiology & Pharmacology, University of Bristol, 

University Walk, Bristol, BS8 1TD, UK. 

 

This article has not been copyedited and formatted. The final version may differ from this version.
Molecular Pharmacology Fast Forward. Published on June 26, 2009 as DOI: 10.1124/mol.109.056598

 at A
SPE

T
 Journals on A

pril 18, 2024
m

olpharm
.aspetjournals.org

D
ow

nloaded from
 

http://molpharm.aspetjournals.org/


MOL #56598 

28 

LEGENDS FOR FIGURES 

Figure 1. Ionic interactions at the apex of kainate S1S2 domain dimers. 

A, The GluR6 S1S2-domoate dimer interface (Nanao et al., 2005) viewed from the side. 

Protomers B and D (gold & blue respectively, cartoon representation) are shown with domoate 

(black) and the apical residues Glu524 (yellow), Lys531 (gray), Arg775 (green) and Asp776 

(magenta), all in space-fill representation. Nitrogens and oxygens are colored blue and red 

respectively. B, Closer view of apical cluster, from the top (left panel) and side (right panel; 

looking through protomer B) of the S1S2 dimer. Residues are colored as in A. For clarity, only 

selected parts of the protomer B main chain (partially transparent cartoon) are shown in the right 

panel. Polar contacts are indicated (dotted gray lines). C, Equivalent views of the GluR5 S1S2-

KA complex (Plested et al., 2008), viewed as in B (protomer A, pink; protomer B, light green). 

The GluR5 homologs of Glu524, Lys531, Arg775 and Asp776 (Glu539, Lys546, Arg790 & 

Asp791) are shown, as are the chloride (green) and sodium (blue) ions. 

 

Figure 2. Varied effects of charge exchanges to apical GluR6 residues. 

A, Representative current responses recorded from HEK cells transiently transfected with the 

E524K-K531E double mutant and the R775D and K531E single mutants. Applications (100 ms) 

of Glu (3 mM, black line above trace) and KA (1 mM, gray line above trace) are shown, along 

with normalized GluR6 WT traces (gray dotted; top & bottom mutants only), to allow 

comparison of desensitization rates. B, Representative responses to applications of Glu and KA 

recorded from cells expressing GluR6 D776K. Traces from 4 s agonist applications are shown to 

illustrate the almost complete lack of desensitization. C, Traces from brief (1 ms) agonist 

applications to illustrate peak decay rates from D776K (black traces), compared to GluR6 WT 

(normalized traces; gray, dotted). 
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Figure 3. D776K oligomerization, surface expression and trafficking. 

A, Oligomerization differences between GluR6 WT and D776K S1S2 domains. Recombinant 

S1S2 domains were separated by gel filtration and the protein visualized by Coomassie blue 

staining following SDS-PAGE (top panel). The D776K mutant resolved in earlier fractions, 

indicating a higher apparent molecular weight. Protein-containing fractions were pooled, 

concentrated, and separated by Blue-Native PAGE stain using silver stain (lower panel). 

Monomers (open arrow) and dimers (gray arrow) were apparent in both samples, while higher-

order multimers (black arrow) were also present in D776K S1S2. B, Quantification of the GluR6 

WT & D776K S1S2 domain monomer:dimer equilibrium by sedimentation equilibrium. 

Absorbance data collected at 14,000 rpm (open circles, top panel) are shown for one channel for 

the WT (left) and D776K mutant (right), together with global fits obtained using fixed molecular-

weight, single-species (dashed line) or a monomer:dimer equilibrium (solid line, mutant only) 

models. The residuals (observed-calculated) associated with each fit are shown in the bottom 

panels for the single-species (open circles) and monomer:dimer equilibrium (filled squares). The 

data indicate that there is a significant dimer component for D776K but not GluR6 WT, under the 

conditions tested. C, Immunoblots (with anti-GluR6/7) showing relative total (Tot) and surface 

(Sur) expression of GluR6 WT, E524K and D776K determined by surface biotinylation (see 

Materials & Methods). Surface labeling of D776K was extremely weak or absent (n=3). The 

positions of molecular weight markers are indicated. D, Immunoblot showing the results of 

enzymatic deglycosylation of GluR6 WT and D776K using Endo H and PNGase F, carried out as 

described in the Materials & Methods. Control samples were treated as for PNGase F but without 

enzyme. The sizes of immature (Endo H sensitive; black arrow), mature (Endo H insensitive; 
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gray arrow) and unglycosylated (open arrow) GluR6 are indicated (right), as are the positions of 

molecular weight markers (left). No mature glycosylation was evident in D776K samples (n=3). 

 

Figure 4. Anion and cation sensitivity of D776K. 

Scatter-plot showing responses to Glu (10mM) from Xenopus oocytes expressing the GluR6 

D776K mutant, recorded in buffers where either the cation or anion was exchanged. Responses 

were normalized to control responses (in NaCl), recorded before and after each test response. 

Scatter for control NaCl responses reflects the variability observed in individual oocytes. Data 

were collected from five oocytes. Dotted lines show the means for each group, with errors (SEM) 

in gray. Responses in all four test buffers differed significantly from the NaCl control (P < 

0.001). For comparison, normalized response levels from ConA-treated oocytes expressing 

GluR6 WT are indicated by arrows for each ion condition. 
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Table 1. Desensitization kinetics of GluR6 mutants. 

Mutant   Glu    KA   

  Ipeak (nA) τDes (ms) %des (n) IKA/Glu τDes (ms) %des (n) 

Wild type  6.8±0.9 5.0±0.2 99.7±0.1 (21) 0.62±0.05 3.9±0.2 99.4±0.1 (12) 

E524 K N.R. - - (10) N.R. - - (10) 

K531 E 5.6±0.7 9.1±0.6*** 99.8±0.1 (11) 1.03±0.03*** 34.5±3.9*** 
(1s) 

98.4±0.7 
(1s) 

(13) 

E524 
K531 

K 
E 

0.03±0.01 a1.3±0.2 100 (11) bN.D. c1.4±0.1 100 (11) 

R775 D 0.01±0.003 N.D. N.D. (11) dN.D. N.D. N.D. (11) 

D776 K 0.83±0.3 N.D. e9.5±1.6*** 
(4s) 

(30) 0.86±0.03** N.D. f10.3±1.2** 
(4s) 

(24) 

R775 
D776 

D 
R 

N.R. - - (7) N.R. - - (7) 

Ipeak, τDes, and %des and IKA/Glu are peak currents, desensitization time-constant, percentage 

desensitization and relative KA efficacy respectively (mean±S.E.M. for n determinations), 

recorded from transiently-transfected HEK cells. Kinetics were determined from 100 ms agonist 

applications except where indicated in brackets. N.R. is no response. N.D. is not determined. 

Boldface type indicates significant differences comparing τDes, %des and IKA/Glu, values with 

those of GluR6 WT (not tested for E524K-K531E or R775D mutants owing to small current 

sizes); ** P < 0.01; *** P < 0.001. an=4; bmean response to KA was 0.12±0.05 nA; cn=5; dmean 

response to KA 0.01±0.004 nA; en=21; fn=20. 
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Table 2. Deactivation kinetics of GluR6 mutants. 

Mutant  Glu  KA  

  τDec-1ms τDec-SS τDec-1ms τDec-SS 

Wild type  3.9±0.2 (17) 10.8±2.4 (6) 4.4±0.2 (17) 127±32 (5) 

“Quad”  37±2.2*** (4) 93±16*** (12) N.D. 1,050±170 (12) 

K531 E 2.5±0.3 (10) N.D. 14.2±1.0***(10) N.D. 

D776 K 3.9±0.3 (18) 5.7±0.4* (25) 47±2.3*** (18) 57±3.9 (21) 

τDec-1ms and τDec-SS are the deactivation rate from peak and deactivation rate from 

steady state, determined as described in the Materials & Methods. Values are shown 

mean±S.E.M. for (n) determinations. Boldface type indicates significant differences 

comparing τDec-1ms or τDec-SS values with those of GluR6 WT; * P < 0.05, *** P < 

0.001. N.D. is not determined. “Quad” is the GluR6 K525E/K696R/I780L/Q784K 

mutant characterized in Zhang et al. (2006). 
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