The BH3-mimetic ABT-737 targets the apoptotic machinery in acute lymphoblastic leukemia resulting in synergistic *in vitro* and *in vivo* interactions with established drugs.

Laura M High*, Barbara Szymanska*, Urszula Wilczynska-Kalak, Nicole Barber, Rosemary O’Brien, Seong Lin Khaw, Ingela B Vikstrom, Andrew W Roberts, and Richard B Lock#

Authors’ Affiliations: Children’s Cancer Institute Australia for Medical Research, University of New South Wales, Sydney, NSW, Australia (L.M.H., B.S., U.W.-K., N.B., R.O., R.B.L.); The Walter and Eliza Hall Institute, Parkville, VIC, Australia (S.L.K., I.B.V., A.W.R.)
Running Title Page

Running title: ABT-737 combination therapy against refractory ALL

#Corresponding author: Richard B. Lock, Leukaemia Biology Program, CCIA, PO Box 81 High St, Randwick NSW 2031, Australia, rlock@ccia.unsw.edu.au; Tel: +61 (2) 9382-1846. Fax: +61 (2) 9382-1850.

Number of text pages: 31
Number of tables: 1
Number of figures: 5
Number of references: 40

Number of words in the Abstract: 218
Number of words in the Introduction: 740
Number of words in the Discussion: 1368

Abbreviations

A1, Bcl-2-related protein A1a; ALL, acute lymphoblastic leukemia; Bad, Bcl-2-associated death promoter; Bak, Bcl-2 homologous antagonist/killer; Bax, Bcl-2-associated X protein; Bcl-2, B-cell lymphoma-leukemia gene 2; BCP, B-cell precursor; Bid, BH3 interacting domain death agonist; Bik, Bcl-2-interacting killer; Bim, Bcl-2 interacting mediator of cell death; Bmf, Bcl-2 modifying factor; CI, Combination Index; DEX, dexamethasone; EFS, event free survival; ETO, etoposide; FBS, fetal bovine serum; Hrk, harakiri; L-asp, L-asparaginase; LGD, leukemia growth delay; Mcl-1, myeloid cell leukemia sequence 1; MTD, maximum tolerated dose; NOD/SCID, non-obese diabetic/severe combined immunodeficient; Puma, p53 upregulated modulator of apoptosis; TPT, Topotecan; VCR, vincristine; z-VAD-fmk, Benzyloxy carbonyl-Val-Ala-Asp fluoromethyl ketone.
Abstract

Anti-apoptotic Bcl-2 proteins are over-expressed in a number of cancers, including leukemias, and are frequently associated with resistance to conventional chemotherapeutic drugs. ABT-737, a BH-3 mimetic, inhibits the pro-survival function of Bcl-2, Bcl-X_L, and Bcl-w. We show that ABT-737 was effective as a single agent against a panel of pediatric acute lymphoblastic leukemia (ALL) xenografts, previously established from patient biopsies in immunodeficient mice. While in vitro resistance of leukemia cell lines correlated with expression of the pro-survival protein Mcl-1, there was no relationship between Mcl-1 expression and in vivo xenograft response to ABT-737. However, expression of the pro-apoptotic protein, Bim, and the extent of its association with Bcl-2, significantly correlated with in vivo ABT-737 sensitivity. ABT-737 potentiated the anti-leukemic effects of L-asparaginase, topotecan, vincristine and etoposide against drug-resistant xenografts in vitro and in vivo. Finally, we show that the combination of L-asparaginase (by specifically down-regulating Mcl-1 protein levels), topotecan (by activating p53 via DNA damage), and ABT-737 (by inhibiting anti-apoptotic Bcl-2 family members) caused profound synergistic anti-leukemic efficacy both in vitro and in vivo. Rational targeting of specific components of the apoptotic pathway may be a useful approach to improve the treatment of refractory or relapsed pediatric ALL. Overall, this study supports the inclusion of the clinical derivative of ABT-737, ABT-263, into clinical trials against relapsed/refractory pediatric ALL.
Introduction

The introduction of combination chemotherapy regimens for childhood ALL, along with advances in supportive care, have dramatically improved survival in this disease to a rate now approaching 80% in developed countries (Pui and Evans, 2006). Despite this success, the overall survival of the 15-20% of patients who relapse is poor, with most patients succumbing to their disease (Bailey et al., 2008). Relapse is frequently associated with acquired resistance to central components of induction therapy protocols, including glucocorticoids and L-asparaginase (L-asp) (Bailey et al., 2008).

The majority of conventional cytotoxic agents indirectly induce apoptosis through DNA damage and cell cycle arrest. However, malignant cells frequently acquire defects, including oncogene activation and deregulation of apoptotic signaling pathways, thereby allowing them to evade apoptosis (Hanahan and Weinberg, 2000). For these reasons, and the high levels of toxicity frequently observed with traditional treatment, recent approaches to cancer therapy have focused on targeting key components of pathways shown to be fundamental to tumor survival and disease progression (Dai and Grant, 2007). This approach is aimed to circumvent acquired drug resistance pathways and re-sensitize the malignant cell to apoptosis.

The Bcl-2 family of proteins are central regulators of apoptosis, and cell survival is determined by the interaction and balance between pro-apoptotic and anti-apoptotic family members (Adams and Cory, 1998). The Bcl-2 family consists of at least 20 proteins, each of which share at least one of the four conserved Bcl-2 homology (BH) domains, and is divided into three subclasses. Multidomain pro-apoptotic proteins Bax and Bak are essential for apoptosis and they oligomerize at the mitochondria to disrupt the outer mitochondrial membrane and facilitate the release of pro-apoptotic proteins including cytochrome c (Adams and Cory, 1998). Anti-apoptotic family members (Bcl-2, Bcl-XL, Bcl-w, Mcl-1, and A1) maintain outer mitochondrial membrane integrity by suppressing the function of Bax and Bak (Zhou et al., 1997). Another subclass of the Bcl-2 family (including Bim, Bid, Bad, Hrk, Bik, Bmf, Puma, and Noxa) are referred to as “BH3-
only” proteins and only share the BH3 domain with other family members (Huang and Strasser, 2000). There are two proposed mechanisms by which BH3-only proteins function. The “indirect” model proposes that the BH3 family of proteins unleash Bax and Bak from being suppressed by pro-survival Bcl-2 family proteins (Willis et al., 2007). Alternatively, the “direct” action model suggests that Bid and Bim can also interact with pro-apoptotic Bax and Bak, inducing their oligomerization, and subsequent apoptosis (Letai et al., 2002).

An imbalance of pro- and anti-apoptotic Bcl-2 family proteins is a common feature of malignancy, including ALL, and can render tumor cells refractory to chemotherapy (Campana et al., 1993). The ability of pro-survival members of the Bcl-2 family to facilitate evasion of cell death signals has made them attractive targets for cancer drug discovery (Zhang et al., 2007). A number of small-molecule inhibitors of pro-survival Bcl-2 family members are at various stages of pre-clinical and clinical development (Becattini et al., 2004; Oltersdorf et al., 2005). ABT-737, and its closely related orally available homolog ABT-263, have shown potent single agent in vitro and in vivo activity against cancer cell lines and primary cells, including ALL (Del Gaizo Moore et al., 2008; Lock et al., 2008; Oltersdorf et al., 2005). Moreover, both compounds significantly potentiate the efficacy of established and novel chemotherapeutic drugs, indicating a high priority for clinical trials using novel drug combinations (Kang et al., 2007; Kuroda et al., 2008). ABT-737 exhibits low affinity binding to the anti-apoptotic Mcl-1 and A1 proteins, and resistance to ABT-737 in cancer cells lines has been attributed to high levels of Mcl-1 and A1 expression (Deng et al., 2007; Lin et al., 2007). Nevertheless, the determinants of in vivo sensitivity to ABT-737/263 remain poorly understood.

In this study we examined the in vitro ABT-737 sensitivity of a panel of leukemia cell lines, and the in vivo and ex vivo sensitivity of a panel of B-cell precursor ALL (BCP-ALL) xenografts established in non-obese diabetic/severe combined immunodeficient (NOD/SCID) mice directly from patient explants (Liem et al., 2004), in relation to Bcl-2 family protein expression. While Mcl-1 expression significantly correlated with ABT-737 sensitivity in leukemia cell lines, Bim protein
levels appeared the most important determinant of *in vivo* ABT-737 sensitivity in BCP-ALL xenografts. Moreover, ABT-737 showed broad *ex vivo* and *in vivo* synergy with established chemotherapeutic drugs used to treat pediatric ALL, indicating that rational targeting of components of the apoptotic machinery may be an effective approach to salvage relapsed patients.
Materials and Methods

In vitro cell culture. Jurkat, REH and HeLa cell lines were obtained from American Type Culture Collection, and Hal-01 and Raji cell lines were kindly provided by Dr A Thomas Look (Dana-Farber Cancer Institute, Boston, MA), and Professor Richard Christopherson (School of Molecular and Microbial Biosciences, University of Sydney), respectively. CEM, Nalm-6, Molt-4, K562 and HL-60 cells used in the study were laboratory stock cell lines. Cell lines were maintained in static suspension culture in RPMI-1640 media supplemented with 10% fetal bovine serum (FBS), penicillin (100 U/mL), streptomycin (100 µg/mL), and L-glutamine (2 mM).

Procedures by which we previously established continuous xenografts from childhood ALL biopsies in immune deficient NOD/SCID (NOD/LtSz-scid/scid) mice are described in detail elsewhere (Liem et al., 2004). Xenograft characteristics are presented in Table 1. For all ex vivo experiments, xenograft cells were retrieved from cryostorage and resuspended in QBSF-60 medium (Quality Biological, Gaithersburg, MD) supplemented with Flt-3 ligand (20 ng/mL; kindly provided by Amgen, Thousand Oaks, CA), penicillin (100 U/mL), streptomycin (100 µg/mL), and L-glutamine (2 mM). Viability was determined by exclusion of 0.2% trypan blue. For cytotoxicity experiments, cells were equilibrated in medium in a humidified atmosphere overnight at 37°C, 5% CO₂ prior to drug treatment. An equivalent volume of an appropriate vehicle control was added to control cells. Cells were harvested by centrifugation at 490 x g for 10 min and washed twice with PBS.

In some experiments xenograft cells were co-cultured on a confluent layer of murine MS-5 stromal cells overnight then treated with 10⁻¹² to 10⁻⁶ M ABT-737 for up to 48 h. Prior to harvesting 20,000 10 µm latex beads (Beckman Coulter, Harbor Boulevard, CA) were added to each well. Each sample was stained with allophycocyanin (APC)-conjugated anti-human CD45 antibody (BD Biosciences, San Jose, CA), washed and resuspended in flow buffer containing 5 µg/mL propidium iodide (PI; Sigma Aldrich, Castle Hill, NSW, Australia). Using CellQuest™ software, viable human
leukocytes were enumerated using a FACSCalibur flow cytometer (BD Immunocytometry Systems) and quantified with reference to the bead control, as described previously (Liem et al., 2004).

In vitro cytotoxicity assays using primary murine lymphoid cells. Femurs and tibias were harvested from multiple wild-type, Bim^{-/-}, and Puma^{-/-} C57BL/6 mice. Generation of the knockout mice has been described previously (Michalak et al., 2009). Marrow was flushed from the bones with MT-PBS/2% FBS. Tissue from syngeneic mice was pooled, pelleted, subjected to red cell lysis, then washed and resuspended in MT-PBS/2% FBS, and filtered through a nylon mesh. Small aliquots of one sample were removed and stained with either anti-B220-5,6-carboxyfluorescein (clone RA3-6B2) or anti-IgM-phycoerythrin (clone 331.12) to serve as controls for fluorescence compensation during flow cytometry. Both antibodies were grown and conjugated in-house. The remaining cells were stained with a mixture containing the same antibodies. Following incubation on ice for 15 min, the cells were washed with MT-PBS/2% FBS, pelleted and resuspended at 30 x 10⁶ cells/ml in MT-PBS/2% FBS containing PI (5 µg/mL). Using a FACSARia cell sorter (BD Biosciences), pro- and pre-B cells (B220⁺IgM⁻) were collected into sterile tubes containing B cell media (RPMI with FBS 5% and 2-beta-mercaptoethanol 0.1%) supplemented with FBS 50%. The cells were then pelleted, resuspended in B cell media at 1 x 10⁶ cells/mL, and incubated in a 96-well plate with concentrations of ABT-737 ranging from 10⁻⁹ to 10⁻⁶ M, in a humidified atmosphere with 10% CO₂ at 37°C for 24 hours. Cell viability was quantified using PI staining as described above.

MTT colorimetric assay. Procedures by which leukemia cell lines and xenograft cells were assessed for ABT-737 sensitivity by MTT assay have been described in detail previously (Bachmann et al., 2007). Cell survival was expressed as a percentage of solvent-treated controls. For combination cytotoxicity experiments, cells were exposed to fixed-ratios of drugs around the IC50 value (0.25, 0.5, 1, 2 and 4 times the IC50 value). Following a 48 h drug exposure, the fraction of cells affected by each drug and the combination was calculated. The nature of interactions between drugs was
assessed by calculating a Combination Index (CI) using the method described by Chou et al with CalcuSyn software (Biosoft, Ferguson, MO) (Chou et al., 1994). With this method, a CI <0.1 indicates very strong synergism, 0.1-0.3 strong synergism, 0.3-0.7 synergism, 0.7-0.85 moderate synergism, 0.85-0.9 slight synergism, 0.9-1.1 nearly additive, 1.1-1.2 slight antagonism, 1.2-1.45 moderate antagonism, 1.45-3.3 antagonism, 3.3-10 strong antagonism, >10 very strong antagonism.

The following drugs were used: dexamethasone (DEX), vincristine (VCR), etoposide (ETO), Nutlin-3 (Sigma-Aldrich), L-asn (Leunase®, Aventis, Lane Cove, NSW, Australia), topotecan (TPT; Hycamtin, GlaxoSmithKline Australia, Pty. Ltd., Boronia, VIC, Australia), Fenretinide (4-HPR; Avanti Polar Lipids, AL), and ABT-737 (kindly provided by Abbott Laboratories, Abbott Park, IL).

Apoptosis assays. Mitochondrial transmembrane potential (MTP, \(\psi \Delta \)) was measured using the MitoProbe™ JC-1 assay kit for flow cytometry (Molecular Probes, Eugene, OR). Briefly, xenograft cells were co-cultured on a confluent layer of MS-5 stromal cells overnight, as described above, prior to treatment with 100 nM ABT-737 for up to 48 h. Cells were harvested and stained with JC-1 and anti-human CD45 antibody or PI. The percentage of cells with loss of MTP or viability was measured using a FACSCalibur flow cytometer.

Caspase activity was measured using the para-nitroanilidide (pNA) Caspase-3 Colorimetric Assay (R&D Systems, Minneapolis, MN). Xenograft cells were treated with 100 nM ABT-737 for up to 48 h. In some experiments cells were treated for 16 h with 75 \(\mu \)M of the pan-caspase inhibitor z-VAD-fmk (R&D Systems) prior ABT-737 exposure. Cells were harvested and their viability assessed using 0.2% trypan blue exclusion. Cells were lysed according to the manufacturer’s instructions and protein concentration was quantified using the bicinchoninic acid assay (Pierce, Rockford, IL). The enzymatic reaction for caspase activity was performed according to the manufacturer’s instructions, which was expressed relative to vehicle-treated controls with reference to a pNA standard curve.
Plasma membrane externalization of phosphatidylserine (PS) was visualized by Annexin-V-fluorescein isothiocyanate (FITC, BD Biosciences Pharmingen, San Diego, CA) binding using standard flow cytometric methodology. Cells were gated as early apoptotic (Annexin-V⁺/PI⁻) or late apoptotic/necrotic (Annexin-V⁺/PI⁺).

Protein analysis methods. Methods for the preparation of whole-cell extracts, determination of protein concentrations, and analysis of cellular proteins by immunoblotting have been described in detail elsewhere (Bachmann et al., 2007). Polyclonal or monoclonal antibodies specific for the following proteins were used: Bcl-2, Bcl-XL, Bak, Bax (BD Biosciences Pharmingen); Bcl-w (clone 16H12; Millipore, Billerica, MA); Mcl-1 (clone RC13) and p53 (clone DO-1) (Santa Cruz Biotechnology, Santa Cruz, CA); Puma, Bim, Actin (Sigma-Aldrich); Noxa (clone 114C307.1; Imgenex, San Diego, CA) and A1 (clone 51B2). Secondary antibodies used were horseradish peroxidase (HRP) conjugates of either anti–mouse, rabbit or rat IgG (GE Healthcare, Buckinghamshire, England).

For immunoprecipitation, lysates (200 µg protein per reaction) were incubated with 3 µg anti-hamster Bcl-2 antibody (BD Bioscience) at 4°C with rotation for a minimum of 5 h, followed by the addition of 50 µL of 50% (vol/vol) Protein A Sepharose 4 Fast Flow beads (Amersham Pharmacia) and kept at 4°C with rotation overnight. The beads were washed 4-5 times with 1 mL of lysis buffer and pelleted (12,000 x g, 5 min). Bound proteins were eluted by heating at 70°C for 10 min in SDS loading buffer. Eluates were fractionated by SDS/PAGE (Invitrogen Life Technologies, Carlsbad, CA), transferred to nitrocellulose membranes (Millipore), and immunoblotted as described above.

Results were visualized by autoradiography, and signals were quantified by phosphoimage using a VersaDoc 5000 Imaging System. Data were analyzed using QuantityOne software (Version 4.0; BioRad, Hercules, CA). A positive control cell lysate included in each gel was used to...
normalize between blots. Pearson correlations were used to compare protein levels with *in vitro* sensitivity of the cell lines, and *in vivo* sensitivity of xenografts, to ABT-737.

In vivo efficacy of ABT-737 against pediatric ALL xenografts. Procedures by which we established xenografts from pediatric ALL biopsy specimens in NOD/SCID mice and assessed their *in vivo* drug sensitivity have been described in detail elsewhere (Liem et al., 2004). Briefly, groups of 8 NOD/SCID mice were inoculated with 3-5 million human leukemia cells previously harvested from the spleens of engrafted mice. Engraftment and response to drug treatment was assessed by flow cytometric quantification of the proportion of human CD45-positive (huCD45⁺) cells versus total murine CD45⁺ and huCD45⁺ cells in the murine peripheral blood (%huCD45⁺ cells). When the %huCD45⁺ cells reached 1%, mice were randomized to receive drug or vehicle control treatments. All drug administration was intraperitoneal (i.p.), and consisted of TPT, L-asp or ABT-737 Monday to Friday for 4 weeks; ETO (Pharmacia, Bentley, WA, Australia) Monday to Friday every 2 weeks, VCR every 7 days for 4 weeks. The % huCD45⁺ cells were monitored throughout and following the course of treatment. Mouse event-free survival (EFS) was calculated as the number of days from randomization (-6 days from treatment initiation) until the % huCD45⁺ cells reached 25%. Mouse EFS was graphically represented by Kaplan-Meier analysis (Kaplan, 1958) and survival curves were compared by logrank test. For comparisons between xenografts and drug treatments, the median EFS for control mice was subtracted from the median EFS for drug-treated mice to generate a leukemia growth delay (LGD). Mice were also monitored closely for signs of drug-related toxicity (weight loss, lethargy, ruffled fur, etc.) and euthanized at the first indication of morbidity. Mice were excluded from the group if they developed spontaneous murine thymic lymphomas. All experimental studies had prior approval from the Animal Care and Ethics Committee of the University of New South Wales.
Results

ALL cell lines and xenografts exhibit variable sensitivity to ABT-737 in vitro and in vivo. We first compared the *in vitro* cytotoxic effects of ABT-737 against a panel of 8 leukemia cell lines and *ex vivo* cultures from 9 ALL xenografts. The cell line panel exhibited heterogeneous sensitivity to ABT-737, with IC50 values ranging from 192 nM (the pre-B cell line Hal-01) to >10 µM (Nalm-6, K562, and HL-60; Figure 1A and Table 1). To validate the results obtained using the MTT cytotoxicity assay, the viability of two cell lines (Nalm-6 and Jurkat) exposed to increasing concentrations of ABT-737 was assessed using the trypan blue exclusion assay. The results were comparable to those reported in Table 1, with IC50 values of >10 µM and 3.6 µM for Nalm-6 and Jurkat cell lines, respectively (data not shown). There was no apparent lineage-specific relationship with ABT-737 sensitivity, with a range of IC50 values observed over the cell lines tested. In contrast to the cell lines, all 9 ALL xenografts were acutely sensitive to ABT-737 *ex vivo* (Figure 1A), with IC50 values ranging from 1 to 45 nM (Table 1). The median IC50 of the xenograft panel (3.7 nM) was 810-fold less than that of the panel of cell lines (3.0 µM; Table 1).

ABT-737 has demonstrated single agent *in vivo* activity against various human solid tumor xenograft models and murine malignancies (Oltersdorf et al., 2005; Trudel et al., 2007). We therefore next assessed the *in vivo* efficacy of ABT-737 against a panel of 8 human BCP-ALL xenografts, which were derived from patients who exhibited diverse clinical outcomes, and manifest as a systemic disease in NOD/SCID mice. At a dose of 25 mg/kg (approximately 25% of the maximum-tolerated dose; MTD) ABT-737 significantly delayed the progression of 5/8 xenografts (ALL-3, -7, -10, -11 and -17) by 7-27 days compared with control animals (Figure 1B-C and Table 1). At a higher dose (60 mg/kg) ABT-737 delayed the progression of all xenografts by 12-31 days (Table 1). The median and ranges of EFS values of treated and control mice for all xenografts are shown in Supplementary Table 1. The response to ABT-737 was dose-dependent (Figure 1D), albeit marginally for ALL-3, -7 and -17.
Since we have shown above that ALL xenograft cells are sensitive to ABT-737 both \textit{ex vivo} and \textit{in vivo}, we tested whether \textit{ex vivo} culture conditions that mimic the bone marrow microenvironment (low oxygen or stromal co-culture) affected sensitivity to ABT-737. These conditions have previously been shown to alter sensitivity of leukemia cells to chemotherapeutic drugs (Yang et al., 2006). While low oxygen decreased the sensitivity of Molt-4 cells to 4-HPR, it had no effect on the sensitivity of ALL-3 or ALL-18 to ABT-737 (Figure 2A). Furthermore, the sensitivity of ALL-3 to DEX was substantially decreased by stromal co-culture, although stromal co-culture had no effect on the sensitivity of ALL-3 and ALL-18 to ABT-737 (Figure 2B). These results may explain in part why the exquisite \textit{ex vivo} sensitivity of these cells is also reflected \textit{in vivo}.

Consistent with their acute sensitivity to ABT-737, \textit{ex vivo} cultured ALL xenograft cells underwent rapid loss of MTP and viability (Figure 2C), and activation of effector caspases-3/7 upon exposure to ABT-737 (Figure 2D, left). Pre-exposure of ALL-3 cells to z-VAD-fmk prevented caspase activation, substantially inhibited ABT-737-induced PS externalization and delayed the loss of cell viability (Figure 2D, right), confirming the importance of the intrinsic apoptotic pathway in ABT-737-induced death of ALL cells.

\textbf{Bim is an important determinant of ABT-737 sensitivity.} Previous studies have shown that high Bcl-2 or low Mcl-1 expression levels correlate with increased \textit{in vitro} sensitivity of cancer cell lines to ABT-737 (Lin et al., 2007; Tahir et al., 2007; van Delft et al., 2006). Consistent with these findings Mcl-1 (but not Bcl-2) protein expression levels significantly (*$P=0.017$, $R^2=0.639$) correlated with the \textit{in vitro} ABT-737 sensitivity of the panel of 8 leukemia cell lines (Figure 3A, left). Paradoxically, high levels of Noxa (*$P=0.048$, $R^2=0.505$) and Bim (*$P=0.013$, $R^2=0.673$) protein expression also correlated with \textit{in vitro} resistance of these cell lines. For original immunoblots see Supplementary Figure 1A. Of critical clinical importance is to identify biomarkers that predict \textit{in vivo} sensitivity of cancer cells to novel chemotherapeutic drugs. In this regard a panel
of 8 xenografts established from direct explants of ALL biopsy material represents a useful experimental model. In contrast to the panel of cell lines, no relationship was apparent between the expression levels of anti-apoptotic Bcl-2 protein family members, including Mcl-1, and the \textit{in vivo} sensitivity of ALL xenografts to ABT-737 (Figure 3A, right). Interestingly, only high Bim expression significantly correlated with \textit{in vivo} sensitivity to ABT-737 (**$P=0.007$ $R^2=0.619$ at 25 mg/kg, $P=0.1385$ $R^2=0.253$ at 60 mg/kg, *$P=0.025$ $R^2=0.489$ versus the sum of LGDs at 25 and 60 mg/kg doses). For original immunoblots see Supplementary Figure 1B. In addition, the amount of Bim protein that was associated (*$P=0.02$, $R^2=0.62$) or not associated (*$P=0.048$, $R^2=0.51$) with Bcl-2 significantly correlated with \textit{in vivo} ABT-737 sensitivity at 25 mg/kg (Figure 3B). To further explore the role of Bim in ABT-737 sensitivity of normal lymphocytes, \textit{ex vivo} cultured pro- and pre-B lymphocytes from Bim$^{+/−}$ mice were found to be relatively resistant to ABT-737 compared with those from wild-type Puma$^{−/−}$ mice (Figure 3C) and xenografts.

In an effort to understand the diversity in ABT-737 responses between leukemia cell lines and xenograft cells, we directly compared protein expression levels of Bcl-2 family members, which were all normalized to a common control cell lysate that was included in each gel. While leukemia cell lines expressed significantly higher levels of Bcl-w and Bcl-X$_L$, and higher levels of Mcl-1 that approached significance, xenograft cells expressed higher levels of Bcl-2 (Figure 3D, top row). Moreover, the three cell lines that were most sensitive to ABT-737 (REH, CEM, Hal-01) expressed levels of Mcl-1 that were comparable to those in xenograft cells (Figure 3D). In terms of pro-apoptotic proteins, the cell lines expressed significantly higher levels of Puma, Bim and Bak, but lower levels of Bax, than xenograft cells (Figure 3D, bottom row). With the exception of Bcl-2, relative expression levels of Bcl-2 family members were less variable across the panel of 9 xenografts compared with the 8 leukemia cell lines.

Overall, these results indicate a role for Bim in the \textit{in vitro} and \textit{in vivo} sensitivity of normal and malignant pre-B lymphocytes to ABT-737. They also highlight fundamental differences in expression of Bcl-2 family proteins between autonomously dividing cell lines and ALL xenografts.
established from direct explants, which may partly explain the divergence in their sensitivity to ABT-737.

Synergistic interactions between ABT-737 and chemotherapeutic drugs against pediatric ALL.

ABT-737 augments the activity of established drugs against cancer cell lines (Chen et al., 2007; Tahir et al., 2007), including the *in vivo* efficacy of a 3-drug regimen (VCR, DEX, and L-asp) against pediatric ALL xenografts (Kang et al., 2007). We reasoned that it would be possible to use this xenograft model to rationally design effective combination regimens between ABT-737 and drugs known to be active in the treatment of pediatric ALL, which could be rapidly translated to the clinic. To develop this paradigm we selected an aggressive xenograft derived from a child at early relapse (ALL-19), which was previously shown to exhibit relative resistance to VCR and DEX *in vivo* (Liem et al., 2004). Using fixed-ratio combination *ex vivo* cytotoxicity assays ABT-737 exerted strong synergy (average CI ≤ 0.3) with L-asp (Figure 4A, left panel, and Supplementary Table 2), and synergy (average CI ≤ 0.7) with TPT, VCR and ETO (Figure 4B-D, left panels, and Supplementary Table 2). Importantly, the *ex vivo* synergy between ABT-737 and these 4 established drugs was reflected *in vivo* (Figure 4, middle and right panels, and Supplementary Table 3). Although ABT-737 at a dose of 25 mg/kg produced little or no delay in the progression of ALL-19, the combination with L-asp resulted in a delay that was >18 days greater than the sum of effects of the individual drugs. Similarly, ABT-737 enhanced the anti-leukemic efficacy of TPT, VCR, and ETO by >26 days, >16 days and >4 days, respectively. Thus, ABT-737 broadly augments the efficacy of established chemotherapeutic drugs against pediatric ALL *in vivo*.

The most stringent definition of therapeutic synergy is “a therapeutic effect achieved with a tolerated regimen of a combination treatment that exceeds the optimal effect achieved at any tolerated dose of monotherapy associated with the same drugs used in the combination” (Rose and Wild, 2004). When ABT-737 was combined with L-asp or TPT, at the respective MTDs of each of the 2-drug combinations, the effects were significantly greater than single-agent L-asp
(**P=0.0023) or TPT (**P=0.0001) alone at their respective MTDs (Figure 5A, Supplementary Table 4). In the case of the TPT/ABT-737 combination the effects were significantly greater than ABT-737 alone at its MTD (**P=0.0001), while the L-asp/ABT-737 combination was equivalent to single-agent ABT-737 at its MTD (Figure 5A and Supplementary Table 4). These findings provide additional evidence for the rational combination of a Bcl-2 inhibitor with L-asp or TPT in the treatment of pediatric ALL.

To test the generality of our findings, fixed-ratio combination cytotoxicity assays were carried out on an additional 5 xenografts, and all showed synergy or strong synergy between ABT-737 and L-asp or TPT (Supplementary Figures 2 and 3 and Supplementary Table 5).

Rationale for combining ABT-737, TPT and L-asp in the treatment of ALL. Since we have shown above that ABT-737 exerts synergistic ex vivo and in vivo anti-leukemic effects when combined with either TPT or L-asp, we further explored the rationale to develop this 3-drug combination. First, we examined the effects of these drugs on the levels of key apoptosis regulatory proteins in ex vivo cultured xenograft cells. Consistent with its properties as a DNA damaging agent, a concentration of TPT that is achievable in the plasma of cancer patients (Zamboni et al., 1998), caused a transient increase in p53 expression in ALL-19 cells within 2 hours of exposure, but had no significant effects on the levels of the anti-apoptotic proteins Mcl-1, Bcl-2, Bcl-w or Bcl-X_L or pro-apoptotic Noxa, Puma or Bim (Figure 5B, left, and data not shown). In contrast, exposure of ALL-19 cells to L-asp caused a rapid and specific down-regulation of Mcl-1 compared with other Bcl-2 family proteins, and only a delayed induction of p53 (Figure 5B, right). This effect was confirmed in two additional xenografts (ALL-2 and ALL-17) following a 4h exposure to either L-asp or TPT (Supplementary Figure 4). These results suggest that TPT (via p53 activation), L-asp (Mcl-1 down-regulation), and ABT-737 (inhibition of Bcl-2/Bcl-X_L/Bcl-w) target non-overlapping components of the intrinsic apoptosis pathway, which may result in synergistic cytotoxicity against ALL cells ex vivo and in vivo.
On this assumption we tested the triple drug combination against ALL-19. The combination of TPT, L-asp and ABT-737 was strongly synergistic ex vivo (average CI=0.19; Figure 5D, left, Supplementary Table 2), while the combination of TPT with L-asp was moderately antagonistic (average CI=1.3, Supplementary Table 2). Importantly, the 3-drug combination delayed the in vivo progression of ALL-19 by >50 days more than expected if the effects of the three drugs were merely additive (Figure 5C, Supplementary Table 6). In this experiment, ABT-737 and L-asp alone were ineffective in delaying the progression of ALL-19, TPT caused a significant delay (34.9 days; ***P=0.0002 versus controls), while the triple combination resulted in a delay of 85.5 days. In the triple combination group only 3 out of 7 mice reached a leukemia-related event; deaths of the remaining mice were presumed to be age related. Importantly, the in vivo synergistic effect of the triple combination was much greater than either the double combination of ABT-737/L-asp or ABT-737/TPT.

To verify the generality of the in vivo synergy between TPT, L-asp and ABT-737 an additional 2 chemo-resistant xenografts were tested. In each case the 3-drug combination resulted in LGDs that were greater than the sum of the LGDs for each single agent (Supplementary Figure 5 and Supplementary Table 7).

To further understand the mechanism by which TPT and ABT-737 cause synergistic cytotoxicity against ALL cells we used the MDM2 antagonist, Nutlin-3, to activate the p53 pathway in the absence of DNA damage. The synergistic effects of ABT-737/Nutlin-3 were almost identical to those of ABT-737/TPT (Figure 5D, right); supporting the notion that p53 activation, rather than DNA damage per se, is the underlying mechanism.
Discussion

The principal findings of this study are that: (1) Bim protein expression levels appear to be an important determinant of \textit{in vivo} and \textit{ex vivo} sensitivity of normal and malignant immature B lymphocytes to ABT-737; and (2) rationally combining ABT-737 with established chemotherapeutic drugs results in highly synergistic \textit{in vivo} anti-leukemic effects.

The exquisite \textit{ex vivo} sensitivity of the pediatric ALL xenografts used in this study appears more closely aligned with that of primary ALL cells than continuously cultured cell lines (Del Gaizo Moore et al., 2008), supporting the relevance of using direct explants of biopsy material to establish xenografts in immune-deficient mice for pre-clinical drug testing. Moreover, the \textit{ex vivo} and \textit{in vivo} sensitivity of the pediatric ALL xenografts to ABT-737 appears to be due to several factors.

First, the panel of xenografts express higher Bcl-2 protein levels than the panel of autonomously growing cell lines used (Figure 3D). Recent studies suggest that Bcl-2 dependence, rather than basal Bcl-2 expression levels, have a greater impact on the cellular response to inhibitors such as ABT-737 (Del Gaizo Moore et al., 2008; Deng et al., 2007). In the xenograft cells, in which most of the Bim protein is sequestered by Bcl-2 (Figure 3B), treatment with ABT-737 will cause displacement of Bim, resulting in Bax/Bak activation and apoptosis. This model is consistent with both the direct and indirect pathways of Bax/Bak activation (Letai et al., 2002; Willis et al., 2007).

Second, our data also suggest that Bcl-2 dependence in the leukemia cell lines is less important in determining cell survival than in the xenograft and primary ALL cells. Therefore, it could be predicted that expression levels of pro-survival proteins not targeted by ABT-737 will be important determinants of sensitivity in cell lines. This is indeed the case, where Mcl-1 expression levels significantly correlated with ABT-737 sensitivity in the leukemia cell lines. Furthermore, the levels of Mcl-1 expression in the entire xenograft panel were comparable to those in the 3 cells lines that were most sensitive to ABT-737 (Figure 3D). Thus, while high Mcl-1 expression does not
correlate with \textit{in vivo} ABT-737 resistance, the overall low level of expression in the ALL xenografts appears to contribute to their relative sensitivity.

Third, overall expression levels of Bcl-2 family members were less variable across the panel of xenografts compared with the cell lines. This suggests that the intrinsic apoptotic pathway is highly deregulated in the cell lines, and that defects within the pathway are likely to occur at multiple levels. Moreover, leukemia cell lines are more prone to sustain inactivating mutations in Bax and p53, that are not reflective of the primary disease, which also may impact on effective apoptosis-triggering mechanisms (Drexler et al., 2000; Molenaar et al., 1998). For example, 3 of the cell lines (K562, Nalm-6, Molt-4) appeared to express no Bax protein.

Fourth, we show that Bim (and importantly the amount of Bim associated with Bcl-2) significantly correlated with the \textit{in vivo} sensitivity of the panel of xenografts to ABT-737. This correlation is in agreement with the \textit{in vitro} ABT-737 sensitivity of a panel of human diffuse large B cell lymphomas (Deng et al., 2007), but in contrast with the \textit{in vitro} sensitivity of the cell lines used in this study. The importance of Bim expression levels in relation to ABT-737 response was further strengthened by experiments demonstrating that Bim$^{-/-}$ lymphocytes were more resistant to ABT-737 than their wild-type and Puma$^{+/+}$ counterparts. Therefore, the principal mechanism of \textit{in vivo} ABT-737 resistance in the xenograft panel appears to be reduced expression of a BH3-only protein, Bim, rather than defects in effector proteins (Bax/Bak) or increased expression of anti-apoptotic proteins (e.g. Mcl-1) (Deng et al., 2007). However, while our results suggest an important role for Bim in the sensitivity of ALL xenograft cells to ABT-737, further studies using Bim knockdown are required to demonstrate a direct contribution.

In agreement with a previous study (Del Gaizo Moore et al., 2008), we have also shown that ABT-737 induces cell death via the mitochondrial pathway in ALL cells. In addition, it has previously been shown using cell lines that pre-treatment with a pan-caspase inhibitor can wholly inhibit ABT-737-induced cell death (Del Gaizo Moore et al., 2008). In contrast, we show that in xenograft cells pan-caspase inhibition delays, but does not prevent, cell death. This provides
evidence that ABT-737 is likely to induce ALL cell death even if caspase activation was blocked. Our results are consistent with a recent study which demonstrated that, in addition to inducing apoptosis via the intrinsic apoptotic pathway, ABT-737 can induce cell death by promoting outer mitochondrial membrane rupture, a caspase independent process, in primary chronic lymphocytic leukemia cells (Vogler et al., 2009).

While this study has shown that, even at a low dose, ABT-737 is relatively effective in vivo as a single agent against a heterogeneous panel of ALL xenografts, the clinical applicability of Bcl-2 inhibitors is most likely to involve combinations with established drugs (Kang et al., 2007; Kuroda et al., 2008; Oltersdorf et al., 2005; Trudel et al., 2007). In this study we show that ABT-737 synergizes ex vivo and in vivo with a broad range of chemotherapeutic drugs (L-asp, TPT, VCR and ETO) against an aggressive and chemoresistant xenograft. Using this methodology we investigated the possibility of rationally designing novel drug combinations against refractory childhood ALL, and to strengthen the supporting evidence for the inclusion of this class of compound in patient therapy.

We provide evidence to suggest that L-asp and TPT act through different mechanisms to synergize with ABT-737. L-asp exposure resulted in rapid and specific down-regulation of Mcl-1 expression, and produced a synergistic anti-leukemic effect when combined with ABT-737 ex vivo and in vivo. While alternative methods have been used to down-regulate Mcl-1 and sensitize tumor cells to ABT-737 (van Delft et al., 2006), the specific effect of a drug routinely used in the treatment of pediatric ALL patients, in this case L-asp, on Mcl-1 has not previously been demonstrated despite its known effects on inhibiting protein synthesis. It is likely that the effect of L-asp on Mcl-1 is more pronounced compared to other Bcl-2 family members due to the relatively short half-life of Mcl-1 (Iglesias-Serret et al., 2003).

In contrast to the effects of L-asp on Mcl-1, TPT caused rapid up-regulation of p53 expression with no significant effects on Bcl-2 family protein expression. The pro-apoptotic Noxa and Puma were not up-regulated, which is surprising since they are transcriptionally up-regulated...
by p53 in response to DNA damage in other model systems (Villunger et al., 2003). Moreover, both Noxa and Puma were induced by cyclophosphamide in causing in vivo synergy with ABT-737 against aggressive Myc-driven lymphomas (Mason et al., 2008). Our results suggest that p53 mediates apoptosis by directly targeting mitochondria in ALL xenograft cells (Mihara et al., 2003). The synergistic effects of Nutlin-3 with ABT-737 were almost identical with those of TPT, suggesting that p53 activation per se, rather than DNA damage, was the underlying mechanism of synergy between TPT and ABT-737. However, additional studies using either p53-mutant or knockout cells are required to demonstrate a causal relationship in this regard. Importantly, the synergistic effects between L-asp, TPT and ABT-737 were replicated in 5 additional xenografts, confirming the generality of the interactions.

Based on the above evidence we designed a 3-drug regimen that, by targeting different components of the intrinsic apoptotic pathway, we reasoned should result in a strong synergistic effect (Supplementary Figure 6). The triple combination was indeed highly synergistic both ex vivo and in vivo, and the in vivo results were confirmed in an additional 2 independent xenograft lines. The ability of ABT-737 to reverse L-asp resistance in vivo is likely to be of clinical relevance, since poor clinical outcome in pediatric ALL has been associated with L-asp resistance (Fine et al., 2005). Moreover, recent evidence suggests that TPT has some clinical activity against relapsed pediatric ALL (Hijiya et al., 2008). Therefore, the combination of L-asp/TPT and a Bcl-2 inhibitor (e.g. ABT-263) represents a promising combination for the treatment of relapsed/refractory ALL patients. In the least, our results provide strong pre-clinical evidence for the inclusion of a Bcl-2 inhibitor in novel combinations with established drugs in clinical trials against relapsed/refractory childhood ALL.
Acknowledgements

The authors wish to acknowledge the following: Prof. Glenn Marshall and staff of the Centre for Children’s Cancer and Blood Disorders Sydney Children’s Hospital for provision of primary samples from which the continuous xenografts were originally established; Ms Clare Boland for technical assistance; Abbott Laboratories for providing ABT-737; Prof K. John Mori (Niigata University, Japan) for MS-5 cells; Drs David CS Huang and Jamie Fletcher for helpful discussions; and Drs P Bouillet and A Strasser for Bim and Puma knockout mice. Children’s Cancer Institute Australia for Medical Research is affiliated with the University of New South Wales and Sydney Children’s Hospital.
References

Molenaar JJ, Grandchamp B, Vilmer E, Duval M, Cave H, Chambon-Pautas C and Gerard B (1998) Microsatellite instability and frameshift mutations in BAX and transforming growth factor-

Footnotes

*Both authors contributed equally to this work.

Grant support: This study was supported by the University of Southern California-Childrens Hospital Los Angeles (USC-CHLA) Institute for Pediatric Clinical Research (IPCR), Children’s Cancer Institute Australia for Medical Research, the Leukaemia Foundation of Australia, the Anthony Rothe Memorial Trust [0594], The Australian National Health and Medical Research Council Program Grant [461221], Leukemia and Lymphoma Society Specialized Centre for Research Grant [7015-02] and the Haematology Society of Australia and New Zealand (HOTT Fellowship to S.L.K.).

Conflict of interest disclosure: The authors declare no competing financial interests.
Legends for Figures

Fig. 1. *In vitro* and *in vivo* sensitivity of leukemia cell lines and ALL xenografts to ABT-737. A, The sensitivity of leukemia cell lines in continuous culture (*left*), or ALL xenograft cells retrieved from cryostorage (*right*), to ABT-737 was assessed by MTT assay following a 48 hr drug exposure. Data represents the mean ± SEM of three separate experiments. B, The responses of 4 representative xenografts treated with ABT-737 (25 mg/kg, Mon-Fri x 4 weeks; black) or vehicle control (grey) are illustrated as a percentage of human CD45+ cells in the peripheral blood (PB) of individual mice over time or; C, the proportion remaining event-free. Shaded areas correspond to the duration of treatment. D, The leukemia growth delay (LGD) of 8 xenografts in response to ABT-737 at two doses, 25 and 60 mg/kg; see Table 1 and Supplementary Table 1 for all values.

Fig. 2. *In vitro* effects of ABT-737 in ALL xenograft cells. A, The effect of low oxygen (5%) conditions on Molt-4 cells treated with 4-HPR (*left*) and ALL-3 or ALL-18 treated with ABT-737 (*middle* and *right* respectively). B, Effect of MS5 support layer on ALL-3 treated with DEX (*left*) and ALL-3 or ALL-18 treated with ABT-737 (*middle* and *right* respectively). Experiments in A and B were assessed by MTT cytotoxicity assay. C, The loss of MTP, measured by JC-1 staining (*left*), and cell viability, measured by PI staining (*right*), was determined following exposure to 100 nM ABT-737 in ALL-3 and -18. D, *left*, Caspase activity, measured by DEVD-pNA cleavage in ALL-3 treated with ABT-737 over 24 h with or without pre-exposure to z-VAD-fmk. D, *right*, PS externalization and cell viability measured by Annexin V and PI staining in ALL-3 cells treated with ABT-737 over 24 h with or without pre-exposure to z-VAD-fmk. Data represent the mean ± SEM of a minimum of two independent experiments.
Fig. 3. Relationship between levels of Bcl-2 family protein expression and sensitivity of leukemia cell lines, ALL xenografts and murine pro/pre-B lymphocytes to ABT-737. A, Basal protein expression of Bcl-2 family members was analyzed by immunoblotting in a panel of 8 leukemia cell lines arranged in order of increasing *in vitro* sensitivity to ABT-737 (left), and 8 xenografts arranged in order of increasing *in vivo* sensitivity to ABT-737 at 25 mg/kg (right). B, Immunoprecipitation (ip) of Bcl-2, showing bound Bim in ip fraction and unbound in supernatant (sn), of 8 xenografts arranged in order of increasing *in vivo* sensitivity to ABT-737 at 25 mg/kg. C, *In vitro* sensitivity of pro- and pre-B lymphocytes isolated from Bim^{−/−}, Puma^{−/−}, and WT mice treated with increased concentrations of ABT-737. D, The basal levels of anti- (*top*) and pro-apoptotic (*bottom*) proteins in ALL xenografts compared with leukemia cell lines. Each data point represents a single xenograft and is the mean of three separate experiments. Data presented in A-B are representative of a minimum of two separate experiments, while data points in C represent the mean ± SEM of three separate experiments.

Fig. 4. ABT-737 exerts synergistic *in vitro* and *in vivo* anti-leukemic efficacy with a broad range of chemotherapeutic drugs known to be active against pediatric ALL. *In vitro* cytotoxicity assays (left panels) of fixed-ratio combinations of ABT-737 with L-asp (A), TPT (B), VCR (C), and ETO (D). The % huCD45⁺ cells in the PB of individual mice (middle panels) and Kaplan-Meier plots of mouse EFS (right panels) for ABT-737 (25 mg/kg) combined with L-asp (1000 IU/kg, A), TPT (1 mg/kg, B), VCR (0.15 mg/kg, C) and ETO (6 mg/kg, D). Shaded areas correspond to the duration of treatment. Data in the left panels represent the mean ± SEM of a minimum of three independent experiments.

Fig. 5. Targeting the apoptotic machinery of pediatric ALL using the BH3-mimetic ABT-737. A, The responses of individual mice engrafted with ALL-19 to treatments at their respective MTDs are illustrated as a % huCD45⁺ cells in the PB of individual mice over time (left), or EFS (right). The
MTD for each treatment was: L-asp (2000 IU/kg), TPT (1.5 mg/kg), ABT-737 (100 mg/kg), or combinations of L-asp (1500 IU/kg) + ABT-737 (25 mg/kg) and TPT (1 mg/kg) + ABT-737 (25 mg/kg). Shaded areas correspond to the duration of treatment. B, Protein expression assessed by immunoblotting following the ex vivo exposure of ALL-19 cells to 150 nM TPT (left), or 7 U/mL L-asp (right). C, In vivo triple combination treatment with L-asp, TPT and ABT-737 of mice engrafted with ALL-19 compared with single agent treatments represented as % huCD45^+ cells in PB (left), or EFS (right). D, Comparison of the synergistic cytotoxicity exerted by TPT in combination with L-asp and ABT-737 (left), and Nutlin-3 (right) when combined with ABT-737 against ex vivo cultured ALL-19 cells assessed by fixed ratio cytotoxicity assays. Data in B and D are representative of a minimum of two separate experiments.
<table>
<thead>
<tr>
<th>Designation</th>
<th>Model Type</th>
<th>Leukemia Subtype</th>
<th>Cytogenetics of Original Patient Biopsy</th>
<th>Ex Vivo/In Vitro IC50</th>
<th>In Vivo (25 mg/kg)</th>
<th>In Vivo (60 mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL-2</td>
<td>Xenograft</td>
<td>c-ALL</td>
<td>46, XX, NAD</td>
<td>9.8 nM</td>
<td>2.7</td>
<td>0.4045</td>
</tr>
<tr>
<td>ALL-3</td>
<td>Xenograft</td>
<td>Pre-B</td>
<td>46, XX, del(11q23), 9q34(abl x2), 22q11(bcr x2)(abl con bcr x1)/9q34(abl x2), 22q11(bcr x2) 46, XY, t(17;19)(q21;q13)</td>
<td>3.4 nM</td>
<td>27.4</td>
<td><0.0001</td>
</tr>
<tr>
<td>ALL-4</td>
<td>Xenograft</td>
<td>Ph⁺-ALL</td>
<td></td>
<td>16 nM</td>
<td>0.2</td>
<td>0.8216</td>
</tr>
<tr>
<td>ALL-7</td>
<td>Xenograft</td>
<td>Biphen</td>
<td></td>
<td>1.3 nM</td>
<td>20.6</td>
<td><0.0001</td>
</tr>
<tr>
<td>ALL-10</td>
<td>Xenograft</td>
<td>c-ALL</td>
<td>47, XY, +mar(12)/ 46, XY (13)</td>
<td>1.0 nM</td>
<td>12.9</td>
<td><0.0001</td>
</tr>
<tr>
<td>ALL-11</td>
<td>Xenograft</td>
<td>c-ALL</td>
<td>46, XX, del(12p13), del(13q12) (8)/ 46, XX</td>
<td>45 nM</td>
<td>6.7</td>
<td>0.0257</td>
</tr>
<tr>
<td>ALL-17</td>
<td>Xenograft</td>
<td>c-ALL</td>
<td>nd</td>
<td>3.7 nM</td>
<td>13.9</td>
<td>0.0002</td>
</tr>
<tr>
<td>ALL-18</td>
<td>Xenograft</td>
<td>c-ALL</td>
<td>nd</td>
<td>3.0 nM</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>ALL-19</td>
<td>Xenograft</td>
<td>c-ALL</td>
<td>46, XX, del(12p13), del(13q12) (8)/ 46, XX</td>
<td>5.5 nM</td>
<td>0.2</td>
<td>0.9175</td>
</tr>
<tr>
<td>HL-60</td>
<td>Cell Line</td>
<td>AML</td>
<td>nd</td>
<td>>10 μM</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>K562</td>
<td>Cell Line</td>
<td>CML</td>
<td>nd</td>
<td>>10 μM</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>Nalm6</td>
<td>Cell Line</td>
<td>Pre-B</td>
<td>nd</td>
<td>>10 μM</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>Jurkat</td>
<td>Cell Line</td>
<td>T-ALL</td>
<td>nd</td>
<td>5 μM</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>Molt4</td>
<td>Cell Line</td>
<td>T-ALL</td>
<td>nd</td>
<td>918 nM</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>REH</td>
<td>Cell Line</td>
<td>Pre-B</td>
<td>nd</td>
<td>677 nM</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>CEM</td>
<td>Cell Line</td>
<td>T-ALL</td>
<td>nd</td>
<td>303 nM</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>Hal-01</td>
<td>Cell Line</td>
<td>Pro-B</td>
<td>nd</td>
<td>192 nM</td>
<td>nd</td>
<td>nd</td>
</tr>
</tbody>
</table>

Table 1. *In vitro* responses of leukemia cell lines, and *ex vivo* and *in vivo* responses of pediatric ALL xenografts to ABT-737

AML, acute myelogenous leukemia; Biphen, biphenotypic ALL; CML, chronic myelogenous leukemia; c-ALL, common (CD10⁺) pre-B ALL; NAD, no abnormality detected; nd, not done; Ph⁺-ALL, Philadelphia chromosome-positive ALL; Pre-B, B-cell precursor ALL.