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ABSTRACT 

Floxuridine (5-fluorodeoxyuridine, FdUrd), an FDA-approved drug and metabolite of 5-

fluorouracil, causes DNA damage that is repaired by base excision repair (BER).  

Accordingly, poly(ADP-ribose) polymerase (PARP) inhibitors, which disrupt BER, 

markedly sensitize ovarian cancer cells to FdUrd, suggesting that this combination may 

have activity in this disease. It remains unclear, however, which DNA repair and 

checkpoint signaling pathways affect killing by these agents individually and in 

combination.  Here we show that depleting ATR, BRCA1, BRCA2, or Rad51 sensitized 

to ABT-888 alone, FdUrd alone, and F+A, suggesting that homologous recombination 

(HR) repair protects cells exposed to these agents.  In contrast, disabling the mismatch, 

nucleotide excision, Fanconi Anemia, nonhomologous end joining, or translesion 

synthesis repair pathways did not sensitize to these agents alone (including ABT-888) 

or in combination. Further studies demonstrated that in BRCA1-depleted cells, F+A was 

more effective than other chemotherapy+ABT-888 combinations. Collectively, these 

studies 1) identify DNA repair and checkpoint pathways that are important in ovarian 

cancer cells treated with FdUrd, ABT-888, and F+A; 2) show that disabling HR at the 

level of ATR, BRCA1, BRCA2, or Rad51 – but not Chk1, ATM, PTEN, or FANCD2 – 

sensitizes to ABT-888; and 3) demonstrate that even though ABT-888 sensitizes 

ovarian tumor cells with functional HR to FdUrd, the effects of this drug combination are 

more profound in tumors with HR defects, even when compared to other 

chemotherapy+ABT-888 combinations, including cisplatin+ABT-888. 
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 INTRODUCTION 

FdUrd, a metabolite of 5-FU, is an FDA-approved therapy for hepatic metastases of 

colorectal and other tumors of the gastrointestinal tract (Power and Kemeny, 2009).  

Although FdUrd is a metabolite of 5-FU, multiple studies have demonstrated that these 

agents have disparate mechanisms of action in human tumor cells (Wyatt and Wilson, 

2009).  Following uptake, 5-FU is converted to metabolites that disrupt RNA and DNA 

metabolism (Longley et al., 2003), but recent studies have found that its ability to disrupt 

DNA metabolism has minimal effects on cytotoxicity in some cell lines, suggesting that 

toxicity is caused by disruption of RNA metabolism (Geng et al., 2011; Gmeiner et al., 

2010; Huehls et al., 2011; Pettersen et al., 2011).  In contrast, FdUrd primarily kill cells 

by disrupting DNA metabolism following its conversion to two active metabolites, 

FdUMP and FdUTP (Wyatt and Wilson, 2009).  FdUMP inhibits thymidylate synthase 

(TS), thereby disrupting dNTP ratios and causing massive accumulation of dUTP.  This 

dUTP, along with FdUTP, are directly incorporated by replicative DNA polymerases, 

leading to the accumulation of uracil and 5-fluorouracil in the genome. 

 

Collectively, disruption of dNTPs and accumulation of genomic uracil and 5-

fluorouracil activate the ATR and ATM checkpoint signaling pathways (Geng et al., 

2011; Huehls et al., 2011; Jardim et al., 2009; Liu et al., 2008; Parsels et al., 2004; 

Wilsker and Bunz, 2007).  Uracil and 5-fluorouracil substitutions are also targeted by 

DNA repair pathways (Wyatt and Wilson, 2009).  5-FU mispairs may be recognized by 

the mismatch repair pathway, an event thought to reduce survival of FdUrd-exposed 

cells (Jardim et al., 2009; Liu et al., 2008; Meyers et al., 2001).  Alternatively, both uracil 
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and 5-fluorouracil are targets of base excision repair (BER), which is initiated by uracil 

glycosylases that remove these lesions, leaving an abasic site.  The abasic site is 

processed by an apurinic/apyridinic endonuclease (APE1), creating a nick that attracts 

poly(ADP-ribose) polymerase (PARP) and XRCC1, a scaffold protein that recruits 

additional repair proteins.  Consistent with the idea that BER productively repairs these 

lesions, disabling the repair proteins APE1, XRCC1, or PARP increases cell killing by 

FdUrd (Geng et al., 2011; Huehls et al., 2011; McNeill et al., 2009).  Similarly, small 

molecule PARP inhibitors sensitize ovarian and colon cancer cell lines to FdUrd but not 

5-FU (Geng et al., 2011; Huehls et al., 2011).  

 

PARP inhibitors have garnered significant attention as antitumor agents, 

especially since the demonstration that the PARP inhibitor AZD2281 (olaparib) has 

single-agent activity in ovarian tumors with mutations in BRCA1 and BRCA2 (Kummar 

et al., 2012) .  Similarly, PARP inhibitors may be useful in tumors that lack mutations in 

BRCA1/2 but that have defects in HR repair, a feature known as “BRCAness” (Turner et 

al., 2004).  Although it remains unclear what causes BRCAness, it has been reported 

that reduced BRCA1/2 expression, defects in signaling pathways that influence HR 

repair (e.g, ATM, ATR, and Chk1), or defects in other proteins that regulate or 

participate in HR (e.g., Fanconi Anemia pathway members, Rad51, and PTEN) 

sensitize to PARP inhibitors, thus suggesting that these defects may contribute to 

BRCAness (McCabe et al., 2006).  
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In addition to using PARP inhibitors as monotherapies, there is interest in 

combining these agents with conventional chemotherapies.  Indeed, we recently 

reported that PARP inhibitors synergize remarkably with FdUrd, with toxicities that 

exceed those seen with other chemotherapy agents used to treat ovarian cancer.  

Accordingly, such results suggest that combining FdUrd with PARP inhibitors may be 

worthy of clinical studies, especially in ovarian cancer where both FdUrd and PARP 

inhibitors have activity as single agents (Muggia et al., 1996)(Kummar et al., 2012) .   

 

Prior to launching such trials it is important to understand how the individual 

drugs and the drug combination affect tumor cells. This is especially important since 

combining a DNA damaging agent, such as FdUrd, with an agent (ABT-888) that 

inhibits the repair of those lesions may create DNA damage that differs from the 

damage caused by FdUrd alone.  Correspondingly, different DNA repair and/or 

checkpoint pathways may assume importance in cells exposed to F+A.  We therefore 

undertook a systematic analysis of the major DNA repair and checkpoint signaling 

pathways to determine which of these pathways affect the survival of ovarian cancer 

cells treated with FdUrd, ABT-888, and the F+A combination.  Our studies reveal novel 

insights into the DNA repair pathways that affect FdUrd, ABT-888, and F+A tumor cell 

killing. 
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MATERIALS AND METHODS 

Cell lines and culture—OVCAR-8, a gift from Dominic Scudierio (National Cancer 

Institute), and SKOV-3 (ATCC) were cultured at 37˚C in 5% CO2 with 8 or 10% fetal 

bovine serum (Atlanta Biologicals) in RPMI-1640 (Mediatech).  For clonogenic assays, 

media were supplemented with 100 U/mL penicillin and 100 µg/mL streptomycin 

(Mediatech).  Cell lines were re-initiated every 3 months from cryo-preserved stocks 

prepared upon receipt from the indicated sources.  

 

Materials—Reagents were from the following suppliers:  FdUrd (Bedford Laboratories), 

ABT-888 (Selleck Chemicals and ChemieTek), cisplatin (Teva Pharmaceuticals), 

gemcitabine (Eli Lilly), doxorubicin, melphalan, topotecan (Sigma-Aldrich), SuperSignal 

Pico West (Thermo Scientific).  All other materials were from Sigma-Aldrich.   

 

Antibodies to the following antigens were as follows: phospho-Ser317-Chk1 

(R&D Systems); phospho-Thr68-Chk2, ATR, AKT, phospho-Ser473-AKT, BRCA1, 

BRCA2, KU80, PTEN, horseradish peroxidase-linked rabbit IgG, and horseradish 

peroxidase-linked mouse IgG (Cell Signaling); Chk1 (Santa Cruz Biotechnology); Chk2, 

MSH2, Rad51, ATM (Epitomics); phospho-Ser139-H2AX (Millipore); XRCC1 (Bethyl 

Laboratories); FANCD2 (GeneTex); Rad18 (Novus); XPA (Neomarkers); fluorescein-

conjugated goat anti-mouse IgG (Invitrogen); and HSP90, D. Toft (Mayo Clinic, 

Rochester, MN). 
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Cell transfections and small interfering (si)RNAs—Cells were transfected as described 

(Huehls et al., 2011) and were cultured 48 h before use.  Sequences of siRNAs used 

are ATM-1, 5’-AAGCACCAGTCCAGTATTGGC-3’ (Wang and Qin, 2003); ATR-2, 5’-

CCTCCGTGATGTTGCTTGA-3’ (Casper et al., 2004); Chk1-1, 5’- 

AAGCGTGCCGTAGACTGTCCA-3’ (Zhao et al., 2002); BRCA1-1, 5’-

GUGGGUGUUGGACAGUGUA-3’ (Bartz et al., 2006); BRCA2-1, 5’-

GACUCUAGGUCAAGAUUUA-3’ (Bartz et al., 2006); FANCD2-1, 5’- 

GGUCAGAGCUGUAUUAUUC-3’ (Wagner and Karnitz, 2009); Ku80-1, 5’-

GCGAGUAACCAGCUCAUAA-3’ (Nimura et al., 2007); MSH2-1, 5’-

CTGAAGTAATAGCAAAGAA-3’ (Geng et al., 2011); PTEN-1, 5’-

AAGAGGAUGGAUUCGACUUAGAC-3’ (Hamada et al., 2005); Rad18-1, 5’- 

GCTCTCTGATCGTGATTTA-3’ (Geng et al., 2011); Rad51, ON-TARGETplus 

SMARTpool - Human RAD51 (Dharmacon); XPA-1, 5’-GTCAAGAAGCATTAGAAGA-3’ 

(Biard et al., 2005); XRCC1-2, 5’-CUCGACUCACUGUGCAGAAUU-3’ (Luo et al., 

2004); and luciferase, 5’-CTTACGCUGAGUACUUCGA-3’ (Elbashir et al., 2001). 

 

Clonogenic assays, cell lysis, immunoblotting, phospho-H2AX staining, and cell 

irradiation—Clonogenic assays, cell lysis, and immunoblotting were performed as 

described (Wagner and Karnitz, 2009). For clonogenic assays, percentage survival at 

each drug concentration was normalized to the vehicle-treated control for the given 

siRNA.  For phospho-H2AX analysis, cells were stained as described but with 2 µg/ml 

anti-phospho-H2AX antibody (Lansiaux et al., 2007). Cells were exposed to ionizing and 

ultraviolet radiation using a RS-2000 Biological Irradiator, Rad Source (Suwanee, GA) 
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and a UVC-515 Ultraviolet Multilinker, Ultra-Lum (Carson, CA), respectively, 4-6 h after 

cell plating. 
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RESULTS 

PARP inhibition enhances FdUrd-induced Chk1 and Chk2 activation.  We have shown 

previously that floxuridine activates the ATR and ATM checkpoint signaling pathways, 

and that ATR—but not ATM—promotes survival of ovarian and colon cancer cells 

treated with floxuridine (Geng et al., 2011; Huehls et al., 2011).  However, these studies 

did not assess whether these checkpoint pathways are important in cells treated with 

the drug combination, which could induce DNA damage that differs from that induced by 

FdUrd alone.  Moreover, they did not address the role of Chk1, an ATR substrate that is 

activated by other nucleoside analogs and antimetabolites and that protects tumor cells 

from the toxic effects of these agents.  Correspondingly, there is intense interest in 

combining small molecule Chk1 inhibitors, which are currently in clinical trials, with 

various chemotherapy agents.  To examine the roles of these pathways in ovarian 

cancer cells exposed to FdUrd+ABT-888 (F+A), we assessed whether they were 

activated by ABT-888 alone, FdUrd alone or the combination, F+A.  For these studies, 

we used mismatch repair- proficient OVCAR-8 and mismatch-repair deficient SKOV-3 

cells (Roschke et al., 2002), which are derived from serous epithelial ovarian cancers.  

These cell lines have wild-type BRCA1, BRCA2, and PTEN (Garnett et al., 2012; 

Ikediobi et al., 2006) and very limited sensitivity to PARP inhibitors, indicating that they 

have functional HR repair (Huehls et al., 2011).  

 

Based on our previous finding that continuous ABT-888 treatment following a 24-

h exposure to F+A markedly increased toxicity (Huehls et al., 2011), two exposure 

paradigms were used for these studies. In the first, cells were exposed to FdUrd alone, 
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ABT-888 alone, or F+A for 24 h and then analyzed for phosphorylation of Chk1 and 

Chk2, which are markers for ATR and ATM activation, respectively.  In the second, cells 

were exposed to the same agents for 24 h, washed, and ABT-888 was re-added to the 

samples that originally contained ABT-888.  The cells were then analyzed after culturing 

for an additional 24 h (indicated as 24 + 24h). As shown in Fig. 1A, ABT-888 alone did 

not provoke Chk1 or Chk2 phosphorylation under either exposure paradigm.  When 

ABT-888 was added with FdUrd, the PARP inhibitor increased FdUrd-induced Chk1 and 

Chk2 phosphorylation (cf., lanes 3 and 4) at the 24-h time point.  Following removal of 

FdUrd (with the continued presence of ABT-888 [24+24h]), Chk1 phosphorylation was 

markedly reduced compared to that seen after the 24-h exposure, and ABT-888 did not 

increase Chk1 phosphorylation.  In contrast, FdUrd-induced Chk2 phosphorylation 

persisted in the 24+24h samples, again with increased levels in the cells co-treated with 

ABT-888.  Taken together, these results show that ABT-888 increases Chk1 and Chk2 

activation, suggesting that PARP inhibition blocks the repair of lesions inflicted by 

FdUrd.  

 

ABT-888 blocks the repair of FdUrd-induced DNA damage.  To assess DNA damage 

caused by these agents, we examined histone H2AX phosphorylation, which serves as 

a surrogate marker for DNA damage such as double-stranded DNA breaks, replication 

stress, and other types of DNA damage.  ABT-888 alone did not induce H2AX 

phosphorylation (Fig. 1B). In contrast, FdUrd triggered robust H2AX phosphorylation at 

24 h that was enhanced when ABT-888 was added with FdUrd.  Analysis of the 24+24h 

samples showed that following the removal of FdUrd, the level of H2AX phosphorylation 
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was decreased in the cells treated with FdUrd alone, suggesting that the DNA damage 

was being repaired.  Interestingly, however, in the FdUrd-treated cells that were 

cultured in the continued presence of ABT-888, phospho-H2AX levels remained high, 

indicating that ABT-888 slowed the repair of lesions induced by FdUrd and/or produced 

new lesions that are repaired more slowly.  Taken together, these results suggest that 

PARP inhibition increases FdUrd-induced activation of the Chk1 and Chk2 signaling 

and causes persistence of FdUrd-induced DNA damage.   

 

ATR—but not Chk1 or ATM—plays a critical role in ovarian cancer cells treated with 

FdUrd, ABT-888 or F+A. Given that the ATR and ATM pathways are hyperactivated 

when PARP is inhibited, we asked whether depleting ATM, ATR, or Chk1 affected 

proliferation after exposure to FdUrd, ABT-888, or F+A.  Consistent with previous 

reports (Geng et al., 2011; Huehls et al., 2011), ATR depletion sensitized OVCAR-8 

cells to ABT-888 (Fig. 2A, right).  ATR-depleted cells were also markedly sensitized to 

FdUrd alone, and these cells were even more sensitive to the F+A combination (Fig. 2A, 

left), indicating that ATR protects these cells from damage inflicted by each agent 

individually and in combination.  Analyses of cells depleted of ATM revealed a very 

different result. Although ATM-depleted OVCAR-8 cells were more sensitive to ionizing 

radiation (Fig. 2B, right, inset), they were not more sensitive to FdUrd alone or F+A (Fig. 

2B, left).  Similarly, these ATM-depleted OVCAR-8 (Fig. 2B) and SKOV-3 cells (which 

were also sensitized to ionizing radiation [Supplemental Figures 1A and 1G]), were not 

more sensitive to ABT-888 alone  (Supplemental Figure 1F).  Taken together, these 

results demonstrate that the ATR checkpoint pathway—but not the ATM pathway—
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protects ovarian cancer cells from the anti-proliferative effects of FdUrd alone, ABT-888 

alone, and F+A.  

 

The finding that ATR is important prompted us to examine Chk1, an ATR 

substrate that protects cancer cells from replication stress, especially the stress induced 

by other nucleoside analogs (i.e., gemcitabine and cytarabine) and antimetabolites 

(Zhou and Bartek, 2004).  Transfection of OVCAR-8 cells with Chk1 siRNA effectively 

depleted Chk1 (Fig. 2A) and robustly sensitized to the nucleoside analog gemcitabine 

(Supplemental Figure 2), a result in accord with previous studies (Karnitz et al., 2005; 

Matthews et al., 2007).  Despite this profound Chk1 depletion, OVCAR-8 cells were not 

sensitized to FdUrd alone, F+A (Fig. 2A, left), or ABT-888 (Fig. 2A, right).  Similarly, 

Chk1-depleted SKOV-3 cells (Supplemental Figure 1B) were not sensitized to FdUrd 

(Supplemental Figure 1F), but were sensitized to gemcitabine (Supplemental Figure 

1H).  These results demonstrate that even though Chk1 is activated by FdUrd, a 

nucleoside analog and antimetabolite, and hyper-activated by F+A, this kinase plays a 

limited, if any, role in facilitating the survival of cells exposed to these agents, including 

ABT-888.   

 

BER promotes the survival of cells treated with FdUrd alone but not ABT-888.  We next 

asked which DNA repair pathways were important in cells treated with FdUrd alone and 

F+A by first focusing on BER, a pathway that repairs FdUrd-induced lesions (Huehls et 

al., 2011)(Pettersen et al., 2011) and that requires functional PARP (Horton and Wilson, 

2007).  Consistent with previous results (Huehls et al., 2011), depletion of XRCC1, a 
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central scaffolding component of the BER pathway, sensitized OVCAR-8 cells to FdUrd 

alone (Fig. 3A, left).  Notably, however, 1) XRCC1 depletion did not sensitize to FdUrd 

as effectively as did ABT-888; 2) XRCC1 depletion did not sensitize to ABT-888 (Fig. 

3A, right); and 3) addition of ABT-888 to XRCC1-depleted cells further sensitized to 

FdUrd. These results demonstrate that PARP inhibition sensitizes cells even when the 

key BER protein, XRCC1, is depleted.  This suggests that XRCC1 depletion may not 

completely disable BER, in which case PARP inhibition must further suppresses BER. 

Alternatively, drug-inhibited PARP may exert dominant negative effects, as has been 

seen when combined with other agents (Patel et al., 2012), or PARP may participate in 

other cellular functions that promote the survival of cells exposed to FdUrd.  

 

Disabling mismatch, translesion synthesis, Fanconi Anemia, nucleotide excision, or 

nonhomologous end-joining repair pathways does not affect sensitivity to FdUrd, ABT-

888, or F+A. In addition to BER, we assessed the roles of 5 additional DNA repair 

pathways: 1) mismatch repair, which requires MSH2 (Kunkel and Erie, 2005); 2) 

translesion synthesis, which requires Rad18-mediated ubiquitylation of PCNA to 

facilitate post replication repair (Ciccia and Elledge, 2010); 3) Fanconi Anemia 

interstrand crosslink repair, which requires FANCD2 (Ciccia and Elledge, 2010); 4) 

nucleotide excision repair, which corrects bulky DNA lesions and requires XPA, which is 

required for both global genome and transcription-coupled nucleotide excision repair (de 

Boer and Hoeijmakers, 2000);  and 5) nonhomologous end-joining, which requires 

KU80 (Ciccia and Elledge, 2010).   
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To examine these pathways, we depleted OVCAR-8 cells of a key repair 

pathway component (MSH2, KU80, FANCD2, RAD18, or XPA) and treated the cells 

with FdUrd, ABT-888 or F+A. Notably, cell sensitivity to FdUrd alone or F+A was not 

affected by depletion of MSH2 (Fig. 3B), KU80 (Fig. 4A), XPA (Fig. 4B), FANCD2 (Fig. 

4C), or RAD18 (Fig. 4D), even though depletion of each protein was sufficient to affect 

the sensitivity of these cells to control DNA damaging agents (N-methyl-N'-nitro-N-

nitrosoguanidine for MSH2 [Fig. 3B, right, inset], ionizing radiation for KU80 

[Supplemental Figure 3A], ultraviolet light for XPA [Supplemental Figure 3B], cisplatin 

for RAD18 and FANCD2 [Supplemental Figures 3C-D]).  Similarly, sensitivity off these 

depleted OVCAR-8 cells to ABT-888 was not affected by depleting MSH2, KU80, 

FANCD2, or RAD18 (Fig. 3B, right, and Supplemental Figure 4A-C), whereas depletion 

of BRCA1 markedly sensitized to this agent (Supplemental Figure 4D).  The observation 

that FANCD2 depletion did not sensitize to ABT-888 was unexpected, since mouse 

fibroblasts lacking FANCD2 are sensitive to PARP inhibitors (McCabe et al., 2006).  We 

therefore determined the impact of depleting FANCD2 in SKOV-3 cells (Supp. Fig. 1D), 

which also were not sensitized to ABT-888 (Supplemental Figure 1F).  Taken together, 

these results indicate that the DNA damage inflicted by F+A is not likely acted upon 

productively by these DNA repair pathways.  Furthermore, they demonstrate that 

depleting FANCD2 does not affect sensitivity to ABT-888 in OVCAR-8 and SKOV-3 

cells.   

 

Depletion of HR repair proteins BRCA1, BRCA2, and Rad51 sensitizes to FdUrd, ABT-

888, and F+A.  Our results so far indicate that inhibiting PARP in cells treated with 
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FdUrd causes increased DNA damage (Fig. 1B) that is not repaired by translesion 

synthesis, nucleotide excision, Fanconi Anemia, or nonhomologous end-joining repair 

pathways.  Moreover, our results also demonstrate that ATR — but not the ATR 

substrate Chk1 — plays a critical role in cells treated with F+A (Fig. 2A).  The 

observation that Chk1 depletion did not affect sensitivity of the cells to FdUrd, ABT-888, 

or F+A suggests that ATR’s function in cells treated with these agents may be 

channeled through other substrates.  Although hundreds of ATR substrates have been 

identified, we turned our attention to HR repair proteins because 1) several HR proteins 

are ATR substrates, including BRCA1 and BRCA2 (Ciccia and Elledge, 2010; Gatei et 

al., 2001; Tibbetts et al., 1999); 2) BRCA1, BRCA2, and RAD51 play important roles at 

stalled replication forks and at DSBs, two genotoxic events that occur when cells are 

treated with FdUrd; and 3) defects in HR sensitize to ABT-888 alone (Martin et al., 

2008). 

 

For these studies, we depleted Rad51, which is required for HR (Ciccia and 

Elledge, 2010), and BRCA1 or BRCA2, two genes frequently mutated in ovarian cancer 

(Cancer Genome Atlas Network, 2011) and that play pivotal roles in HR (Ciccia and 

Elledge, 2010).  OVCAR-8 cells depleted of Rad51, BRCA1, or BRCA2 (Fig. 5A-C, 

insets) were sensitive to ABT-888 alone (Fig. 5A-C, right panels), as expected for cells 

with defective HR.  Surprisingly, depletion of these three HR proteins also markedly 

sensitized cells to FdUrd alone (Fig. 5A-C, left panels), indicating that FdUrd causes 

damage that is repaired by the HR pathway.  Most importantly, OVCAR-8 cells depleted 

of Rad51, BRCA1, or BRCA2 (Fig. 5A-C, left panels), as well as SKOV-3 cells depleted 
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of BRCA1 (Supplemental Figure 1C) were exquisitely sensitive to F+A (Supplemental 

Figure 1J).  Taken together these results suggest that this combination of chemotherapy 

agents may be especially toxic in ovarian cancers with defects in HR.  

 

PTEN depletion does not affect sensitivity to FdUrd, ABT-888, or F+A.   Cells with 

disabled PTEN have been reported to be sensitive to PARP inhibition and to have 

reduced Rad51 and HR repair (Dedes et al., 2010; McEllin et al., 2010; Mendes-Pereira 

et al., 2009; Shen et al., 2007).  Given that PTEN may regulate Rad51 and is frequently 

mutated in ovarian cancer (Cancer Genome Atlas Network, 2011), we depleted PTEN 

from OVCAR-8 and SKOV-3 cells, which have wild-type PTEN (Ikediobi et al., 2006).  

Immunoblotting demonstrated that PTEN levels were reduced in OVCAR-8 (Fig. 5D, 

inset) and SKOV-3 cells (Supplemental Figure 1E).  Accordingly, activating AKT 

phosphorylation on Ser473 was increased, indicating that PTEN depletion caused 

accumulation of its substrate (phosphatidylinositol-3,4,5 trisphosphate), the second 

messenger that activates AKT.  Despite this profound PTEN depletion, Rad51 levels 

were unaltered in OVCAR-8 (Fig. 5D) or SKOV-3 cells (Supplemental Figure 1E).  

Consistent with the lack of an effect on RAD51 levels, PTEN-depleted OVCAR-8 cells 

were not sensitized to FdUrd or F+A (Fig. 5D, left).  OVCAR-8 (Fig. 5D, right) and 

SKOV-3 (Supplemental Figure 1F) cells depleted of PTEN were also not sensitized to 

ABT-888. 

 

F+A is more cytotoxic than other chemotherapy+ABT-888 combinations in BRCA1-

depleted ovarian cancer cells.  The results in Fig. 5 (and Supplemental Figures 1 and 4) 
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show that cells with disabled Rad51, BRCA1, or BRCA2 are very sensitive to F+A.  

However, this sensitivity may be no more than would be seen when ABT-888 is 

combined with other chemotherapy agents.  To address this, we compared the 

antiproliferative activities of multiple chemotherapy agents used to treat ovarian cancer 

alone and combined with ABT-888 in BRCA1-depleted OVCAR-8 cells (Fig. 6).  These 

results demonstrated several points.  First, BRCA1 depletion sensitized to ABT-888, 

demonstrating that the BRCA1 depletions were sufficient to affect sensitivity to a PARP 

inhibitor.  Second, BRCA1 depletion sensitized to all genotoxic agents except 

gemcitabine.  Third, in cells with functional HR (luciferase siRNA-transfected cells), 

PARP inhibition did not sensitize to cisplatin or doxorubicin.  Fourth, PARP inhibition did 

not further sensitize BRCA1-depleted cells to doxorubicin, cisplatin, or melphalan.  Fifth, 

and in sharp contrast to what was observed with cisplatin, ABT-888 further sensitized 

BRCA1-depleted cells FdUrd and topotecan, with the sensitization to FdUrd being the 

most profound.  Additional experiments demonstrated that BRCA1 depletion in SKOV-3 

also sensitized to FdUrd and ABT-888, and that these depleted cells were exceptionally 

sensitive to the F+A combination (Supplemental Figure 1J).  
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DISCUSSION 

We initiated these studies to determine if defects in DNA repair or checkpoint signaling 

pathways influence the toxicity of F+A.  We reasoned that if this drug combination 

moves into clinical trials, it will be useful to determine what DNA repair and/or 

checkpoint pathways affect tumor cell survival, because such information may help 

identify patients most likely to respond to the drug combination. Given that FdUrd and 

PARP inhibitors have activity in ovarian cancer, our studies focused on this tumor type.   

 

FdUrd disrupts dNTP ratios and causes mis-accumulation of uracil and 5-

fluorouracil in the genome.  These mis-incorporated bases are recognized by the BER 

pathway.  However, it is not known whether these lesions are substrates for other repair 

pathways that could productively repair them.  Nor is it known whether attempted repair 

and/or replication of these lesions creates DNA damage that is more toxic, a possibility 

considering that FdUrd induces double-strand DNA breaks (Meyers et al., 2001; Tang et 

al., 1996; Yoshioka et al., 1987).  Finally, it is unclear whether PARP inhibition, which 

disrupts DNA repair, alters the lesions that are ultimately induced by FdUrd.  Thus, 

rather than directly assessing the types of damage produced by each agent alone and 

in combination, an approach that requires the development of many assays, we instead 

focused on identifying which DNA repair pathways affect cell killing.  To that end, we 

systematically inactivated the major signaling and repair pathways and examined the 

effects on cells exposed to FdUrd, ABT-888, and F+A. 
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Our initial studies focused on the mismatch repair pathway, because defective 

mismatch repair has been reported to increase resistance to FdUrd-induced death, 

probably by preventing the attempted (but ultimately futile) mismatch repair of 

fluorouracil-guanine mispairs (Liu et al., 2008; Meyers et al., 2001).  In contrast to these 

previous reports, we showed that effectively depleting MSH2 did not affect sensitivity to 

FdUrd or F+A, but did reduce sensitivity to N-methyl-N'-nitro-N-nitrosoguanidine, an 

agent that produces lesions that are substrates for mismatch repair.  Of note, similar 

results, showing that defects in mismatch repair in colon cancer cells do not (or only 

minimally) affect sensitivity to FdUrd have been recently reported (Pettersen et al., 

2011).  Taken together, these results suggest that defective mismatch repair is not 

universally linked to altered FdUrd sensitivity.  

 

We also found that disabling mismatch, nucleotide excision, Fanconi Anemia, 

nonhomologous end-joining, or translesion synthesis repair pathways did not sensitize 

cells to FdUrd or F+A, indicating that these pathways do not productively repair lesions 

induced directly or indirectly by FdUrd or even by F+A. Our results also demonstrate 

that these repair pathways do not make lesions induced by FdUrd alone or F+A more 

toxic.  Given that FdUrd activates ATM and causes DSBs (Geng et al., 2011; Huehls et 

al., 2011; Jardim et al., 2009; Liu et al., 2008; Meyers et al., 2001; Parsels et al., 2004; 

Tang et al., 1996; Wilsker and Bunz, 2007; Yoshioka et al., 1987), and given that F+A 

induces more H2AX phosphorylation than FdUrd alone (see Fig. 1B), we were surprised 

that depletion of ATM or KU80, two proteins that participate in signaling from and repair 

of DSBs, did not affect the survival of cells treated with these agents.  In contrast, 
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disabling ATR, which responds to replication stress, sensitized cells to FdUrd alone and 

F+A, suggesting that these treatments are creating damage that causes replication 

stress rather than double-stranded DNA breaks.   

 

Interestingly, despite ATR’s critical role, depletion of Chk1, a key ATR substrate, 

did not affect sensitivity to FdUrd or F+A (but did sensitize to gemcitabine).   These 

findings indicate that the replication stress caused by FdUrd must differ substantially 

from the stress created by other nucleoside analogs and suggests that other ATR 

substrates play critical roles in cells treated with this agent.  Indeed, several proteins 

that participate in HR are phosphorylated and regulated by ATR.  Accordingly, we found 

that depletion of BRCA1, BRCA2 or Rad51 markedly sensitized to FdUrd.  While these 

HR proteins could participate in the repair of FdUrd-induced DSBs, they may also 

participate in HR-dependent resolution of stalled replication forks and/or stabilize the 

forks, an emerging role for these proteins (Feng and Zhang, 2012; Schlacher et al., 

2011).  

 

Although the major goal of these studies was to identify the checkpoint and DNA 

repair pathways important in cells treated with FdUrd and F+A, the present findings also 

shed light on the role of these pathways in ovarian cancer cells treated with ABT-888.  

Specifically, we found that depletion of ATR, BRCA1, BRCA2, and Rad51 sensitized to 

ABT-888.  In contrast, depletion of ATM, Chk1, FANCD2, RAD18, KU80, and XPA did 

not sensitize to ABT-888.  These finding indicate several important points related to 

ovarian cancer cells exposed to a PARP inhibitor.  They are consistent with previous 
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results showing that disruption of BRCA1, BRCA2, or RAD51 markedly sensitizes cells 

to PARP inhibitors.  They also agree with observations that disabling ATR, which 

regulates BRCA1, BRCA2, RAD51, and HR, sensitizes tumor cells to PARP inhibitors.  

 

Notably, however, the present findings differ in several important ways from other 

studies that have examined which DNA repair and checkpoint pathways affect 

sensitivity to PARP inhibitors.  First, depleting PTEN, which was shown previously to 

regulate Rad51 levels (Shen et al., 2007), did not sensitize these ovarian cell lines to 

PARP inhibitors or decrease Rad51 levels.  Although this result differs from studies in 

which disabling PTEN sensitized to PARP inhibitors (Dedes et al., 2010; McEllin et al., 

2010; Mendes-Pereira et al., 2009), our studies agree with recent reports showing that 

genetic disruption of PTEN or depletion of PTEN did not affect Rad51 levels, HR, or 

sensitivity to PARP inhibitors (Fraser et al., 2012; Gupta et al., 2009).  Second, we 

found that depleting ATM did not sensitize to ABT-888, a result that contrasts with 

others, where disruption of this kinase sensitized to PARP inhibitors (Golla et al., 2011; 

McCabe et al., 2006; Weston et al., 2010; Williamson et al., 2012; Williamson et al., 

2010). Third, our studies showed that depletion of FANCD2, a central participant in the 

Fanconi Anemia repair pathway, did not sensitize to ABT-888.  This finding differs from 

published findings, which showed that Fancd2-/- (as well as Fanca-/- and Fancc-/-) mouse 

fibroblasts were sensitive to PARP inhibitors (McCabe et al., 2006).  Fourth, we found 

that profound Chk1 depletion did not affect ABT-888 sensitivity. This result contrasts 

with studies showing that Chk1 depletion or inhibition sensitizes tumor cells to PARP 

inhibition in other experimental systems (McCabe et al., 2006)(Tang et al., 
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2012)(Mitchell et al.), thus suggesting that the requirement for Chk1 in PARP-inhibited 

cells may vary significantly among different tumor cell types.  Finally, the observation 

that Chk1 depletion did not influence FdUrd toxicity was unexpected given that Chk1 

has been implicated in the regulation of Rad51 and HR (Sorensen et al., 2005), which 

we showed markedly protect cells from FdUrd.  The apparent lack of need for Chk1 

suggests that ATR may regulate BRCA1/BRCA2/RAD51 independently of Chk1.  

 

There are several possible explanations for why our results differ from previous 

studies.  On the one hand, these siRNA-mediated depletions may not be sufficiently 

effective to uncover potential roles in ABT-888-exposed cells.  This seems unlikely 

given that the depletions profoundly reduced protein expression and sensitize to 

appropriate DNA-damaging agents (or, in the case of PTEN, increased activating 

phosphorylation of AKT).  On the other hand, serous epithelial ovarian cancer cells may 

differ with respect to the experimental models employed in the previous studies.  This 

consideration is particularly relevant because 1) the genes encoding ATM, Fanconi 

Anemia pathway members, and PTEN are mutated in some ovarian cancers (Network, 

2011), and 2) defects in these pathways have been linked to BRCAness, which predicts 

sensitivity to PARP inhibitors.  If disabling these pathways does not sensitize to PARP 

inhibitors in all settings, our results suggest that caution is warranted when evaluating 

the effectiveness of PARP inhibitors against ovarian tumors with mutations in these 

genes.  
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In summary, our studies have furthered our understanding of the DNA repair 

pathways that affect the survival of ovarian cancer cells treated with FdUrd and F+A, 

specifically demonstrating that disabling HR increases ovarian cancer cell killing by 

FdUrd alone and ABT-888 alone.  More impressively, our studies demonstrate that even 

though ABT-888 sensitizes cells with functional HR to FdUrd, a combination of F+A may 

be most effective in tumors with defects in HR, and that this combination may be more 

effective than other chemotherapy+ABT-888 combinations.  
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FIGURE LEGENDS 
 

Figure 1.  PARP inhibition increases FdUrd-induced Chk1 and Chk2 activation and 

causes persistent DNA Damage.  (A-B) OVCAR-8 cells were treated with 2 µM FdUrd 

and 3 µM ABT-888.  After 24 h of incubation, one set of cells (labeled 24 h, lanes 2-4) 

was collected.  The second set of cells (labeled 24 + 24 h, lanes 5-7) was washed after 

24 h to remove FdUrd, and 3 µMABT-888 was re-added to samples that initially 

contained ABT-888.  These cells were then cultured an additional 24 h. (A) Cell lysates 

were immunoblotted for the indicated antigens.  (B) Cells were stained to detect 

phospho-Ser139-H2AX (P-H2AX) and analyzed by flow cytometry.  

 

Figure 2.  ATR depletion—but not ATM or Chk1 depletion—sensitizes OVCAR-8 cells to 

FdUrd alone, ABT-888 alone, and the F+A combination.  (A-B) OVCAR-8 cells were 

transfected with control luciferase (Luc), Chk1, ATR or ATM siRNAs.  48 h later, cells 

were processed for clonogenic assays and immunoblotting to assess siRNA efficacy.  

For clonogenic assays, cells were treated with indicated concentrations of FdUrd and 3 

µM ABT-888 for 24, and washed.  3 µM ABT-888 was re-added to the cultures that 

initially contained ABT-888, and the plates were cultured 7-8 day until colonies formed.  

For cells exposed only to ABT-888 (right panels), the exposure was continuous.  *, 

indicates non-specific bands. 

  

Figure 3.  The BER pathway, but not the mismatch repair pathway, protects cells from 

FdUrd and F+A.  (A, B) OVCAR-8 cells were transfected with control luciferase (Luc), 

XRCC1 (A), or MSH2 (B) siRNAs and were plated as single cells, allowed to adhere, 
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exposed to the indicated concentrations of FdUrd with or without 3 µM or ABT-888 for 

24 h, and washed. 3 µM ABT-888 was re-added to the cultures that initially contained 

ABT-888, and the plates were cultured until colonies formed. For cells exposed only to 

ABT-888 (right panels), the exposure was continuous. 

 

Figure 4.  Nonhomologous end-joining, Fanconi Anemia, translesion synthesis, and 

nucleotide excision repair pathways do not protect cells from FdUrd, ABT-888, or F+A. 

OVCAR-8 cells were transfected with control luciferase (Luc), KU80 (A), XPA (B), 

FANCD2 (C), or RAD18 (D) siRNAs.  48 h after transfections cells were exposed to the 

indicated concentrations of FdUrd with or without 3 µM ABT-888 for 24 h, and washed. 

3 µM ABT-888 was re-added to the cultures that initially contained ABT-888, and the 

plates were cultured until colonies formed.  *, non-specific band. Rad18 migrates as 2 

bands, with the slowest-migrating from due to mono-ubiquitylation.   

 

Figure 5.  Disruption of HR repair sensitizes ovarian cancer cells to FdUrd, ABT-888, 

and F+A.  (A-D) OVCAR-8 cells were transfected with control luciferase (Luc), Rad51 

(A), BRCA1 (B), BRCA2 (C), or PTEN (D) siRNAs.  48 h after transfections cells were 

exposed to the indicated concentrations of FdUrd with or without 3 µM or ABT-888 for 

24 h, and washed. 3 µM ABT-888 was re-added to the cultures that initially contained 

ABT-888, and the plates were cultured until colonies formed. For cells exposed only to 

ABT-888 (right panels), the exposure was continuous. *, indicates non-specific band.  
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Figure 6.  The combination F+A is highly cytotoxic in BRCA1-deficient ovarian cancer 

cells compared to other ABT-888+chemotherapy combinations. (A-F) OVCAR-8 cells 

transfected with control luciferase (Luc) or BRCA1 siRNA were exposed to the indicated 

concentrations of gemcitabine (A), doxorubicin (B), cisplatin (C), melphalan (D), FdUrd 

(E), or topotecan (F) and 3 µM ABT-888 for 24 h, and washed. 3 µM ABT-888 was re-

added to the cultures that initially contained ABT-888, and the plates were cultured until 

colonies formed. 

 

 

 

 

This article has not been copyedited and formatted. The final version may differ from this version.
Molecular Pharmacology Fast Forward. Published on July 25, 2012 as DOI: 10.1124/mol.112.080614

 at A
SPE

T
 Journals on A

pril 17, 2024
m

olpharm
.aspetjournals.org

D
ow

nloaded from
 

http://molpharm.aspetjournals.org/


This article has not been copyedited and formatted. The final version may differ from this version.
Molecular Pharmacology Fast Forward. Published on July 25, 2012 as DOI: 10.1124/mol.112.080614

 at A
SPE

T
 Journals on A

pril 17, 2024
m

olpharm
.aspetjournals.org

D
ow

nloaded from
 

http://molpharm.aspetjournals.org/


This article has not been copyedited and formatted. The final version may differ from this version.
Molecular Pharmacology Fast Forward. Published on July 25, 2012 as DOI: 10.1124/mol.112.080614

 at A
SPE

T
 Journals on A

pril 17, 2024
m

olpharm
.aspetjournals.org

D
ow

nloaded from
 

http://molpharm.aspetjournals.org/


This article has not been copyedited and formatted. The final version may differ from this version.
Molecular Pharmacology Fast Forward. Published on July 25, 2012 as DOI: 10.1124/mol.112.080614

 at A
SPE

T
 Journals on A

pril 17, 2024
m

olpharm
.aspetjournals.org

D
ow

nloaded from
 

http://molpharm.aspetjournals.org/


This article has not been copyedited and formatted. The final version may differ from this version.
Molecular Pharmacology Fast Forward. Published on July 25, 2012 as DOI: 10.1124/mol.112.080614

 at A
SPE

T
 Journals on A

pril 17, 2024
m

olpharm
.aspetjournals.org

D
ow

nloaded from
 

http://molpharm.aspetjournals.org/


This article has not been copyedited and formatted. The final version may differ from this version.
Molecular Pharmacology Fast Forward. Published on July 25, 2012 as DOI: 10.1124/mol.112.080614

 at A
SPE

T
 Journals on A

pril 17, 2024
m

olpharm
.aspetjournals.org

D
ow

nloaded from
 

http://molpharm.aspetjournals.org/


This article has not been copyedited and formatted. The final version may differ from this version.
Molecular Pharmacology Fast Forward. Published on July 25, 2012 as DOI: 10.1124/mol.112.080614

 at A
SPE

T
 Journals on A

pril 17, 2024
m

olpharm
.aspetjournals.org

D
ow

nloaded from
 

http://molpharm.aspetjournals.org/

