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Abstract. 

The epigenomic era has revealed a well-connected network of molecular processes that 

shape the chromatin landscape. These processes comprise abnormal methylomes, 

transcriptosomes, genome-wide histone post-transcriptional modifications patterns, 

histone variants, and non-coding RNAs. The mapping of these processes in large scale by 

ChIP-Seq and other methodologies in both cancer and normal cells reveals novel 

therapeutic opportunities for anti-cancer intervention. The goal of this minireview is to 

summarize pharmacological strategies to modify the epigenetic landscape of cancer cells. 

These approaches include the use of novel small molecule inhibitors of epigenetic 

processes specifically deregulated in cancer cells and the design of engineered proteins 

able to stably reprogram the epigenetic code in cancer cells in a way that is similar to 

normal cells.  
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Introduction. 

The concept of “Epigenetics” was pioneered by Conrad H. Waddington in 1942 as “the 

branch of biology which studies the causal interactions between genes and their products, 

which bring the phenotype into being” (Goldberg et al., 2007; Waddington, 2012). “Epi” 

comes from the Greek word “over”, and thereby “Epigenetics” is the study of the 

molecular, cellular, and environmental aspects of heredity, which are not explained by 

simple changes in the underlying DNA sequence. Epigenetic processes influence the 

chromatin structure, not the gene sequence “per se” but the tridimensional folding and 

package of the DNA and associated proteins, referred as chromatin (Kouzarides, 2007; 

Strahl and Allis, 2000). Heterochromatin, comprising pericentromeric regions, satellite 

DNA, and retroviral long terminal repeats (LTRs) are condensed and silenced areas of the 

genome (Zakrzewski et al., 2011). In contrast, euchromatin comprises the loci being 

actively transcribed (Gilbert et al., 2004). There are two important characteristics of the 

epigenetic state of cells. First, unlike somatic mutations and other genetic alterations, 

which irreversibly alter the genes, epigenetic processes are reversible, and thus, provide 

environmental plasticity and cell adaptation to new microenvironments. Second, the 

chromatin structure is inherited, and in absence of perturbations, the chromatin state has 

an intrinsic memory and it is transmitted over cell generations (Lange and Schneider, 

2010; Margueron and Reinberg, 2010).  

 

In the last decade it has become clear that epigenetic disruptions play a critical role in 

tumor initiation and progression (Berdasco and Esteller, 2010). Recent research in cancer 

has focused on the prognosis value of epigenetic signatures in cancer, with the advent of 
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genome-wide large scale profiling of tumor specimens. The emerging view of cancer 

epigenetics is that epimutations might affect early events of cancer, which could prime 

subsequent events in the progression of the disease (Carmona and Esteller, 2011; 

Rodriguez-Paredes and Esteller, 2011; Sandoval and Esteller, 2012). Epigenetic 

aberrations in cancer include both abnormal silencing (for example, silencing of 

tumor/metastasis suppressors) and re-activation of silenced regions (which leads to 

oncogenic activation). In many cases, epigenetic aberrations can collaborate with genetic 

changes, as for example in the case of silencing of a second allele of a tumor suppressor 

gene, such as BRCA (Lim et al., 2009; Liu et al., 2008a) and p16 (Arima et al.). 

Numerous examples involve mutations in chromatin modifiers themselves, which have a 

profound impact in neoplastic progression. In addition to epigenetic modifiers and 

chromatin remodelers, multiple molecular constituents impact chromatin structure, such 

as transcription factors (TFs), signal transduction proteins, histone variants, and non-

coding RNA, outlining the complexity and molecular cross-talk that sculpts the 

epigenome (Baylin and Jones, 2011). 

 

In light of the recognition of the importance of epigenetic disruptions in cancer cells, 

strategies to block or revert these changes are of growing interest in cancer therapeutics. 

This review will focus on novel pharmacological approaches to reprogram and remodel 

the epigenome of cancer cells into a pattern that is similar to normal somatic cells. 

Ideally, this reprogramming would entail hereditary changes in chromatin resulting in 

long-lasting phenotypic alterations of tumor cells, namely phenotypic memory. In the 

first part of this minireview we will summarize the language of chemical modifications in 
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chromatin, and the main chromatin modifiers (“writers”) whose expression/and or 

activity is disrupted in cancer cells relative to normal tissue. Next, we will discuss novel 

state-of-the art approaches to revert or “re-write” those aberrant epigenetic processes in 

cancer cells using both small molecule inhibitors and targeted engineered proteins. 

 

The “language” of chromatin modifications. 

The genome-wide epigenetic status (“epigenetic landscape”) of cells is dictated by 

comprehensive sets of chemical modifications that occur both, at the DNA and in the 

histone tails. Methylation of the DNA (DNAme) occurs in position 5 in Cytosine residues 

(Figure 1). In mammals, the vast majority (98%) of DNAme occurs in CpG dinucleotides 

in somatic cells. In embryonic ES cells, however, about one-quarter of all DNAme occurs 

in non-CpG context (Lister et al., 2009). In contrast to DNAme, histones are subjected to 

several chemical modifications in their N-terminal tails (Strahl and Allis, 2000), which 

are rather unstructured and largely exposed in the context of the 3-D structure of the 

nucleosomes (Luger et al., 1997) (Dutnall and Ramakrishnan, 1997) (Figure 2). There is 

large chemical diversity and a great number of histone modifications, including 

methylation, acetylation, phosphorylation, ubiquitination, sumoylation, ADP-

ribosylation, deamination, and protein isomerization. Some histone modifications, such 

as H3K9me, H3K27me, and H4K20me, are typically associated with repressive 

chromatin. In contrast, other modifications, such as H3K4me, H3K9Ac, H3K36me, and 

H3K79 are connected with actively expressed genes (Henikoff and Shilatifard, 2011; 

Kouzarides, 2007; Turner, 2012). 
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Why is it the chemical language of histones so degenerate? In principle, chemical 

modifications can modulate chromatin structure by primarily altering the physical 

properties of the DNA and or/associated proteins. For example, among all the histone 

modifications, phosphorylation adds negative charges to the histones, whereas acetylation 

merely reduces the number of positive charges in chromatin. Since the DNA helix is 

negatively charged, chemical modifications could act to unravel the DNA from the 

histones, promoting chromatin relaxation. Secondly, chemical modifications act as 

binding platforms or epitopes for specific endogenous proteins (“binders” or “readers”). 

For example, DNAme marks are recognized by methyl-binding proteins, such MDB-1, 

histone methylation is recognized by chromo-like domains, acetylation by 

bromodomains, and phosphorylation by 14-3-3 proteins. “Readers” are selective proteins 

able to recognize specific histones and even different states of methylation, for example 

Heterochromatin Protein 1 (HP1) recognizes H3K9me3, Polycomb (PC2) proteins 

recognize the H3K27me3 (Kouzarides, 2007).  In the cell, endogenous readers form 

specific complexes with chromatin modifiers possessing catalytic activity (“modifiers” or 

“writers”).  The complexity of epigenetic regulation is further exemplified by the 

discovery of multiple enzymes able to erase specific epigenetic marks. These include 

histone deacetylases, lysine demethylases (Arrowsmith et al., 2012; Klose et al., 2006) 

and the more recently discovered DNA-demethylases, which are involved in excision-

repair DNA pathways (Bhutani et al., 2010; Bhutani et al., 2011; Rai et al., 2008) erasing 

DNA methylation patterns during development, differentiation, and reprogramming.  
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It has long been proposed that the chemical modifications in chromatin act in a 

combinatorial manner to define an “epigenetic code”, which coordinately shapes 

chromatin structure (Strahl and Allis, 2000). However, the large number of histone 

modifications and the possible combinations of all these primary modifications (many of 

them in the same histone tail) clearly add several layers of complexity and outline the 

plasticity of the epigenome. Among all the epigenetic modifications, DNAme and 

H3K9me are regarded as stable and inherited repressive marks (Han and Brunet, 2012; 

Margueron and Reinberg, 2010). Notably, DNAme is a key modification which has 

traditionally been thought to “irreversibly canalize” or “force cells” to engage into 

specific cell fates (Hochedlinger and Plath, 2009). In the following sections, the 

relationships and cross-talks between epigenetic modifications, particularly DNAme and 

histone modifications, will be outlined. Lastly, we will briefly describe some of the key 

mechanisms associated with DNA demethylation in mammalian cells. 

 

 

Interconnections between DNA methylation and Histone methylation. 

The interactions between “readers” and “writers” provide regulatory opportunities for the 

physical transmission of epigenetic marks along the chromosome (spreading) for the 

transmission of epigenetic marks from a mother cell to a daughter cell (inheritance of 

epigenetic information), and define cross-talks of multiple epigenetic constituents (Cheng 

and Blumenthal, 2010; Hashimoto et al., 2010). The interactions between readers and 

writers can be direct or indirect. Direct interactions include physical associations between 

epigenetic modulators. For example, the lysine methyltransferase G9a, which deposits 
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H3K9me2 and H3K9me1 in euchromatin (Wu et al., 2010), interacts with DNA 

methyltransferases through ankyrin domains (Feldman et al., 2006). In self-renewal gene 

promoters, such as Oct4, this recruitment promotes an irreversible epigenetic switch, 

which forces stem cells to differentiate (Feldman et al., 2006; Tachibana et al., 2008). 

During DNA replication, the protein UHRF1 recognizes hemi-methylated DNA and 

forms a complex with several proteins, including DNA methyltransferase 1 (DNMT1) 

(which maintains DNAme patterns during replication) and lysine methyltransferase G9a. 

These physical interactions link DNAme with H3K9me in the replication fork, making 

sure that both DNAme and H3K9me are spatio-temporally coupled processes faithfully 

transmitted during replication (Bostick et al., 2007; Hashimoto et al., 2010; Kim et al., 

2009; Sharif et al., 2007). Another cross-talk between DNAme and H3K9me during 

DNA replication is mediated by methyl-CpG-binding-proteins, such as the methyl-

CpGbinding protein 1 (MBD1). In heterochromatin, methylated DNA is bound by 

MBD1, which recruits the H3K9 methyltransferase SETDB1 (Schultz et al., 2002), an 

enzyme that deposits H3K9me3 (Cheng and Blumenthal, 2010; Hashimoto et al., 2010; 

Ichimura et al., 2005; Uchimura et al., 2006). The latter mark is recognized by HP1 

(Bannister et al., 2001; Lachner et al., 2001), which in turn recruits histone lysine 

methyltransferases, such as SUV39H1/2 (Krouwels et al., 2005). In addition, HP1 

directly binds to the PhD-like domain of DNA methyltransferase 3A (DNMT3A) in vitro, 

which suggests that H3K9me could in turn influence DNAme (Fuks et al., 2003). The 

above suggest that DNAme and H3K9me are mutually reinforcing silencing marks, 

which might serve to synchronize these two processes during DNA replication, ensuring 
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the inheritance of the epigenetic information (Figure 3). The cross-talk between DNAme 

and H3K9me has also been described in plants (Johnson et al., 2007). 

 

A link between DNAme and histone deacetylation has been long demonstrated through 

the discovery of the Methyl-CpG-binding protein 2 (MeCP2) (Scarsdale et al., 2011). 

MeCP2 carries a transcriptional repressor domain, which recruits the co-repressor histone 

deacetylase (Singal et al., 2002). Reciprocally, histone acetylation is a mark associated 

with promoter activation and gene transcription. H3/H4 lysine acetylation is recognized 

by bromodomain-containing proteins, often physically linked to PHD fingers and 

catalytic domains of histone acetyltransferases (HATs), such as pCAF (Clements et al., 

1999; Nagy and Tora, 2007) and p300 (Liu et al., 2008b; Wang et al., 2008a). 

Bromodomains in the subunits of chromatin remodeling enzymes, such as SWI/SNF 

family, interact with acetylated histones (Gao et al., 2008; Kizilyaprak et al., 2010; 

Kundu et al., 2007; Reinke and Horz, 2003), which anchor remodeling activities in the 

nucleosomes and serve to promote nucleosome eviction (Suganuma and Workman, 

2011). In summary, direct physical interactions between readers and writers, and readers 

and erasers, could contribute to a quick spread of a given mark/s along the genome, 

leading to effective chromosomal condensation and gene silencing, or chromatin 

relaxation and gene activation.  

 

The interaction or cross talk between epigenetic processes could be also indirect. A 

residue of a given histone can be substrate of multiple modifications. For example, the 

incorporation of H3K9me by histone lysine methyltransferases could indirectly block the 
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acetylation of the same histone residues by histone acetyltransferases. Another indirect 

example of epigenetic cross talks is the incorporation of DNAme, which might negatively 

affect H3K4me. Methylated DNA is particularly refractory to binding of some DNA-

binding proteins, including the zinc finger protein Cfp1, which preferentially binds un-

methylated DNA. Cfp1 interacts and recruits H3K4 methyltransferase SETD1 and 

thereby, induction of DNAme might indirectly trigger a decrease on H3K9me (Xu et al., 

2011), potentially explaining the dramatic reverse correlation between these two marks 

(Thomson et al., 2010). Reciprocally, high levels of Cfp1 in the genome could protect 

these regions from DNA methylation and gene silencing.   

  

The relationship between DNAme and the silencing mark H3K27me3 is currently less 

well understood. Multiple groups had proposed that in cancer cells H3K27me3 could 

mark genes subsequently silenced by DNAme, although many developmentally regulated 

genes are marked H3K27me3 in the absence of DNAme (Ohm et al., 2007; Schlesinger et 

al., 2007; Widschwendter et al., 2007). The existence of a mutually reinforcing 

mechanism linking DNAme and H3K27me3 is a topic of intensive research (Hon et al., 

2012). 

 

Context-dependence of the epigenetic modifications. 

The advent of genome-wide approaches for the mapping of chromatin modifications, 

such as ChIP-Seq, has established the relationships and context-dependence of epigenetic 

modifications, both in embryonic, induced pluripotent, and somatic cells (Chari et al., 

2010; Zhou et al., 2011). For example in promoter regions, DNAme strongly correlates 
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with some histone modifications, specifically with high levels of H3K9me and low levels 

of H3K4me. In fact, DNAme is a better predictor of H3K9me and H3K4me than the 

underlying genome context (Meissner et al., 2008; Mikkelsen et al., 2007). Unlike 

promoter regions, DNAme inside the gene bodies is not correlated with silencing. 

Widespread low-density of methylation has been proposed to serve as a mechanism to 

avoid inappropriate transcription initiation from cryptic promoters (Bird, 1993; Tran et 

al., 2005).  

 

Genome-wide maps of histone modifications in stem and lineage-committed progenitor 

cells have revealed that H3K4me3 marks the genes that are actively expressed. The 

“bivalent state” (H3K4me3 and H3K27me3) labels developmental genes poorly 

expressed that are poised for either expression or repression (Bernstein et al., 2006). In 

addition, the H3K27me3 mark is retained in genes that are stably repressed. H3K9me3 

and H4K20me3 are characteristic of satellite, telomeric, and long-terminal repeats. 

Finally, H3K36me3 marks coding and non-coding transcripts (Meissner et al., 2008; 

Mikkelsen et al., 2007).   

 

 Mechanisms of DNA demethylation 

The discovery of active and passive mechanisms to erase DNAme has opened the door to 

a new paradigm: DNAme and demethylation may not be “one-way” streets as initially 

thought, but highly dynamic and regulated processes (Bhutani et al., 2011). The current 

view of DNA demethylation involves the integration of multiple interconnected 

pathways. DNA demethylation can be the result of passive mechanisms, for example, by 
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dilution during replication or inactivation of DNMTs. In addition to passive 

demethylation, several enzymatic activities have been recently associated with active 

demethylation and DNA repair. Much excitement has surfaced since the discovery of 5-

Hydroxymethylcytosine (5hmC) in the mammalian genome in neuronal and ES cells 

(Kriaucionis and Heintz, 2009; Tahiliani et al., 2009) and its role as an intermediate and 

key player in DNA demethylation during DNA repair. The ten-eleven translocation 

(TET) protein family members catalyze the active modification of 5meC to give 5hmC. 

TET proteins are 2-oxoglutarate and Fe(II)-dependent dioxygenases which catalyze the 

conversion of 5mC in 5hC. TET1 was first identified in acute myeloid leukemia as a 

fusion protein with the MLL factor and was designated as Leukemia associated protein 

(LCX)(Ono et al., 2002). TET1 contains a CXXC zinc finger DNA-binding domain that 

binds preferentially CpG-rich sequences near the transcription start site of the targeted 

genes (Williams et al., 2011) (Wu et al., 2011). TET1 and TET2 are expressed in mouse 

ES cells and are necessary for cell lineage specification (Ficz et al., 2011; Koh et al., 

2011). TET3 mediates the conversion of 5mC to 5hC in the paternal pronucleus after 

fertilization (Gu et al., 2011; Iqbal et al., 2011).  

 

Recently, the Activation-induced cytidine deaminase (AID) has been recognized to 

participate in DNA demethylation.  AID has a pivotal role in generating antibody 

diversity in lymphocytes. Unlike TET proteins, AID lacks of a DNA binding activity. 

IAD catalyzes deamination of cytosine residues to uracil. This step is followed by an 

excision repair or mismatch repair pathway, which is error prone. In addition this 

function to generate the antibody repertoire, the AID enzyme has been implicated in 
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demethylation in zebrafish (Rai et al., 2008) and in mammals. Hence, mice lacking AID 

exhibit global DNA hypermethylation in the primordial germ cells (Popp et al., 2010). 

Active DNA demethylation is believed to be enzymatically coupled with the replacement 

of the modified cytosine via DNA repair. DNA Glycosylases, such as those belonging to 

the Base Excision Repair (BER) pathway have been involved in the removal of modified 

cytosine in plants (Gehring et al., 2009). In mammals, these enzymes could act in concert 

with TET and AID enzymes to promote demethylation. In this model, 5-methylcytosine 

and 5-hydroxymethylcytosine are first deaminated by AID to thymine and 5-

hydroxymethyluracil, respectively, followed by glycoylase-mediated thymine and 5-

hydroxymethyluracil excision repair (Cortellino et al., 2011). 

 

Epigenetic alterations in cancer. 

Tumor cells show multidimensional aberrations affecting many levels of regulation, 

including genetic changes, but also profound modifications in the epigenetic landscape. 

The “cancer methylome” is therefore distinct from normal, non-transformed tissue. 

Characteristic hallmarks of cancer include a global genome-wide hypo-methylation, and 

also hyper-methylation of CpG islands (which is typically associated with gene 

repression) (Berdasco and Esteller, 2010; Portela and Esteller, 2010; Rodriguez-Paredes 

and Esteller, 2011; Sandoval and Esteller, 2012). However, a substantial fraction of DNA 

methylation occurs in the cancer methylome away from the transcription start site (~2kb 

or more), comprising microRNAs and mirtrons (Dudziec et al., 2011) - these 

dinucleotides are named CpG shores (Irizarry et al., 2009; Sandoval et al., 2011).  
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Global DNA hypomethylation and local hypermethylation has recently been confirmed 

by whole-genome shotgun sequencing of bisulfite-treated DNA (methyl-seq) of a low-

passage breast cancer cell HCC1954 relative to normal epithelial cells (HUMEC cell 

line). This study revealed that the majority of hypomethylated regions in cancer cells 

correlated with partially methylated domains in normal cells. Surprisingly, in the tumor 

cells, these regions exhibited mono-allelic DNA methylation, one allele displaying 

DNAme and the other allele possessing the repressive histone marks H3K9me3 or 

H3K27me3. Thus, hypomethylated regions in cancer cells were correlated with silenced 

gene expression and repressed chromatin (Hon et al., 2012).  In an independent study, 

differentially methylated regions have been mapped in colon cancer relative to normal 

tissue. These regions were associated with high gene expression variability. Whole-

genome bisulfite sequencing has also confirmed hypomethylation in discrete blocks in 

about half of the cancer genome. These data suggest a model of neoplastic progression 

involving loss of epigenetic stability and tumor heterogeneity (Hansen et al., 2011). In 

another recent study in colon cancers versus matched normal tissue, focal CpG island 

hypermethylation was also detected within long-range (>100bp) hypomethylation 

regions. In this case, the widespread changes of DNA methylation in cancer was 

correlated with repressive chromatin and by the three-dimensional organization of the 

chromatin inside the nucleus (Berman et al., 2012) 

 

In mammalian cells, DNA methylation outside promoter regions frequently occurs in 

long-terminal repeats (LTRs) of viral origin and other repetitive regions, named satellite 

regions. The methylation of these sequences in healthy cells could serve to protect the 
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genomes by preventing the expression of exogenous promoters. Hypo-methylation of 

preferentially repetitive sequence classes including SINEs, LINEs (e.g LINE-1 elements), 

satellite, subtelomeric, and Alu repeats, has been associated with tumor progression in 

several cancer models, such as colon (Rodriguez et al., 2008; Sunami et al., 2011), 

squamous cell carcinomas of the lung (Pfeifer and Rauch, 2009), head, neck (Szpakowski 

et al., 2009) and mammary tumors (Costa et al., 2006). Hypo-methylation of repetitive 

regions could prime genomic instability and also reactivate potential oncogenes during 

transformation, tumor progression, and metastasis. Importantly, the use of global 

demethylating agents for the treatment of cancers (e.g 5-Aza-2’dC) in in vitro models has 

indicated that these inhibitors could prime tumor progression by re-expression of silenced 

oncogenes, such as Sox2 in chondrosarcoma cells (Hamm et al., 2009) and c-Met in 

colon carcinoma cell lines (Weber et al., 2010).  

 

The genome-wide mapping of DNAme changes in tumor versus normal cells could help 

investigators to gain valuable prognosis information in cancer patients and help to not 

only identify single gene hits important for tumor progression, but also to define 

prognosis signatures. In 2000, Esteller et al. demonstrated that hyper-methylation of CpG 

islands in the promoter of the gene MGMT is a predictor of good response of glioma 

cancer patients to alkylating agents (Esteller et al., 2000). Since then, genomic 

approaches have identified groups of biomarkers associated with poor prognosis and 

responsiveness to therapeutic drugs, such as in pancreatic (Gupta et al., 2012) and colon 

cancers (Esteller et al., 2001). In glioblastoma multiforme (GBM), a genome wide study 

by Martinez et al. demonstrated that genes hyper-methylated in GBM were highly 
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enriched for targets of the PRC2 (Polycomb repressive complex 2) in embryonic stem 

cells, and thus, these tumors exhibited a methylome with stem-cell like features (Martinez 

and Esteller, 2010),(Martinez et al., 2009). 

   

During the process of immortalization, tumorigenesis, and tumor progression pre-

cancerous cells might acquire a “hyper-methylator phenotype”, affecting several tumor 

suppressor gene promoters (Sato et al., 2010). Methylation of p16 is a key gateway 

control for cells to overcome senescence barriers, and together with overexpression of 

telomerase these events might be crucial for the onset of the tumorigenic process (Beltran 

et al., 2011a; Gallardo et al., 2004). Another example in breast and ovarian cancers is the 

methylation of the BRCA1 tumor suppressor (Jacinto and Esteller, 2007; Stefansson et 

al., 2011), a gene associated with DNA repair, thereby promoting further genomic 

instability (Jacinto and Esteller, 2007). Mutations of BRCA genes have been associated 

with expansion of stem/progenitor cells and basal-like cancer (Liu et al., 2008a; Rakha et 

al., 2008). For these genes, methylation and genetic alterations can contribute to 

inactivate both copies of the tumor suppressor. Some tumor suppressors, namely class II 

tumor suppressor genes, are solely inactivated by epigenetic mechanisms. One classical 

example is the tumor suppressor mammary serine protease inhibitor (maspin), in which 

the degree of promoter methylation clearly correlates with disease stage and metastatic 

behavior in multiple cancer models, such as breast, lung and prostate cancer (Futscher et 

al., 2004; Futscher et al., 2002; Zou et al., 1994). In the maspin promoter, DNAme 

clearly correlates with H3K9me2 (Wozniak et al., 2007), which could be explained by the 
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tight epigenetic cross-talk established between DNA methyltransferases and the H3K9 

methyltransferase G9a.  

 

The era of cancer epigenomics has recently identified the extent of the histone 

modifications in the cancer genome relative to normal tissue, leading to aberrant gene 

activation or repression (Rodriguez-Paredes and Esteller, 2011; Sandoval and Esteller, 

2012). In non-small lung cancer, high dimethyl-H3K4 and low acetyl-H3K9 has been 

associated with favorable prognosis (Song et al., 2012). As discussed earlier, aberrant 

H3K4me and H3K27me have also been detected in prostate cancer cells (Ke et al., 2009) 

and human colorectal cancer (Enroth et al., 2011). 

 

What is the mechanistic basis of aberrant epigenetic regulation in cancer cells? In many 

cases, mutations or disruption in gene expression of the chromatin modifiers themselves 

have been identified. For example, the polycomb group of methyltransferases, such as 

EZH2, are often overexpressed in basal-like breast cancers, particularly in African-

American women (Chase and Cross, 2011; Pang et al., 2012). The histone 

methyltransferase G9a (Chen et al., 2010) and other lysine methyltransferases have also 

been associated with tumorigenesis and targeted by screening and structure-based design 

for the identification of specific inhibitors (Unoki, 2011). Deregulation of TF gene 

expression might cause profound effects in the epigenetic landscape of cells. During 

reprogramming of somatic cells towards pluripotency, the exogenous delivery of Oct4, 

Sox2, Klf4 and c-Myc TFs is sufficient to change the epigenetic architecture of the 

genome in a way that is similar to embryonic ES cells (Takahashi et al., 2007; Takahashi 
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and Yamanaka, 2006). Moreover, intensive research revealed that iPS cells are not 

identical to ES cells, retaining epigenetic features (epigenetic memory) from the cell of 

origin  (Kim et al., 2010; Lister et al., 2011; Polo et al., 2010; Takahashi et al., 2007; 

Takahashi and Yamanaka, 2006; Ziller et al., 2011). The “pluripotency” TFs activate a 

cellular network involving many other self-renewal TFs and chromatin remodelers. An 

imbalance in normal gene expression due to changes in expression or activity of specific 

TFs could lead to dysregulation of the epigenome of cells, resulting in cancer pre-

disposition. In the mammary gland, our laboratory has demonstrated that overexpression 

of the TF Oct4 leads to aberrant EMT and to the generation of clones possessing tumor 

initiation capabilities (Beltran et al., 2011a).  

 

In addition to coding regions, many non-coding RNAs have been associated with tumor 

progression (Veeck and Esteller, 2010). An explosion of studies has demonstrated global 

changes in expression of micro-RNA signatures between normal and tumor cells in 

multiple tumor types, including a recent study in lung cancer (Guan et al., 2012). 

Interestingly, some microRNAs are epigenetically silenced and act as tumor suppressors, 

whereas many others act as oncogenes (Cho, 2012). The significance of the complex non-

coding-RNA circuitry in cancer development is not well understood; microRNAs could 

fine-tune the threshold levels of critical targets involved in development and perhaps in 

cancer, illustrating the complexity of the regulatory network controlling cancer 

progression. 
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Strategies to revert the epigenetic landscape of cancer cells using small molecules 

and engineered proteins. 

The epigenetic deregulation of tumor cells comprising the aberrant silencing of tumor 

suppressors and the hypo-methylation of potential oncogenes creates the basis of novel 

therapeutic strategies to revert their chromatin state. The endogenous silencing of tumor 

suppressors can be reverted with epigenetic inhibitors, such as DNA methyltransferase, 

histone methyltransferase, and histone deacetylase inhibitors. An active area of research 

aims at developing chemical approaches to inhibit specific “writers” or “erasers”, some 

of which will be reviewed in the following sections below. Moreover, it is believed that 

these agents’ lack of locus selectivity may result in potential off targets and might cause 

adverse effects in cancer patients. Another approach is the design of artificial proteins or 

Artificial Transcription Factors (ATFs) able to recognize specific sequences in the 

genome, directing a chromatin modification or combinations of chromatin modifications, 

in specific loci.  

 

Selective inhibitors of bromodomains and methyl-lysine readers. 

The acetylation and methylation of lysine residues plays a central role in chromatin 

function, substantially through creation of binding sites for the readers of these marks 

(Taverna et al., 2007; Wang et al., 2008b). While acetylation of lysine eliminates the 

residue’s positive charge (akin to the significant change in chemical properties and 

charge upon phosphorylation of serine, threonine and tyrosine), methylation is a more 

subtle post-translational modification, simply shifting the chemical properties of lysine 

towards a more diffuse, polarizable positive charge as methylation proceeds from 
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monomethyl (Kme1) to trimethyl (Kme3) (Hughes et al., 2007; Zacharias and Dougherty, 

2002). Recently, small molecule probes of bromodomains, the readers of acetylated 

lysine, have been reported and their utilization has revealed bromodomain regulation of 

critical gene transcription events such as the regulation of the c-myc oncogene (Dawson 

et al., 2011; Delmore et al., 2011; Filippakopoulos et al., 2010). While the current 

repertoire of acetyl lysine readers in the human genome is limited primarily to the 

structurally homologous 57 bromodomains, and possibly a subset of plant homeodomains 

(PHDs) (Zeng et al., 2010), there are more than 200 methyl-lysine (Kme) reader domains 

described within several protein families:  PHD; the so-called ‘royal family’ made up of 

Tudor, Agenet, chromo, PWWP and MBT domains; and the WD40 repeat proteins 

consisting of WDR5, and EED (Adams-Cioaba and Min, 2009; Margueron et al., 2009). 

This large Kme reader family seems destined to expand further as research in epigenetics 

continues (Kuo et al., 2012; Nakamura et al., 2012). A unifying feature of all of these 

domains is the presence of an “aromatic cage” that comprises the Kme binding pocket (Li 

et al., 2007b; Santiago et al., 2011). Computational analysis suggests that this target-class 

has significant druggability (Santiago et al., 2011), and progress towards chemical probes 

for Kme readers is summarized here (Frye et al., 2010b; Herold et al., 2011a). 

 

In contrast to many protein target classes, such as GPCRs, nuclear receptors and protein 

kinases, where ligand discovery sometimes proceeded determination of high resolution 

protein structures by decades, Kme binding sites were relatively well explored 

structurally prior to any reports of potent, small molecule ligands (Adams-Cioaba and 

Min, 2009; Ruthenburg et al., 2007). As a consequence, approaches toward ligands have 
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been based primarily upon computational and structural techniques (Campagna-Slater 

and Schapira, 2010; Campagna-Slater et al., 2010; Kireev et al., 2010). In the first report 

of experimentally confirmed Kme binding domain small molecule ligands (for malignant 

brain tumor [MBT] domains), Kireev and co-authors utilized both a 2D and 3D virtual 

screening approach to select ligands from a computationally curated and procurable set of 

5.8 million small molecules.  Of 51 compounds tested in a histone-peptide competitive 

dose response proximity assay (Wigle et al., 2009), 19 compounds produced a 

measurable IC50 in the 5-100 μM range. All active compounds from this screen contained 

a mono- or dialkylamine that presumably satisfies the mono- and dimethyl-lysine histone 

peptide preference of the MBT domains (Kireev et al., 2010). Subsequently, Herold and 

co-authors described the structure and pharmacophore based design of UNC669 (Figure 

4) which demonstrates a 5 μM Kd versus L3MBTL1 (Herold et al., 2011b). The 

conformationally rigid piperidino-pyrrolidine Kme mimic in UNC669 results in a ligand 

with 5-fold greater affinity for L3MBTL1 than the H4K20me1 peptide – a presumed 

endogenous binding partner. UNC669 demonstrated moderate to high selectivity as a 

ligand for L3MBTL1 versus a small panel of other Kme binders with the next highest 

affinity being for L3MBTL3 (Herold et al., 2011b). A subsequent structure-activity 

relationship (SAR) study of the UNC669 template revealed that pyrrolidine is an optimal 

size and shape for binding in the aromatic cage of L3MBTL1 that recognizes Kme and 

that an increase in ring size to piperidine was not tolerated (Herold et al., 2012). 

 

While these first reports of antagonists of Kme binding domains have described ligands 

of modest potency, the functional conservation of the pi-cation Kme recognition motif 
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across this large and structurally diverse domain family bodes well for improvements in 

affinity as further SAR is developed (Herold et al., 2011a).   

 

Selective inhibitors of protein lysine methyltransferases (PKMTs). 

Protein lysine methylation is increasingly recognized as an important type of post-

translational modification. This modification has been heavily studied in the context of 

epigenetic regulation of gene expression through histone lysine methylation (Bernstein et 

al., 2007; Gelato and Fischle, 2008; Jenuwein and Allis, 2001; Kouzarides, 2007; Martin 

and Zhang, 2005; Strahl and Allis, 2000), but numerous non-histone substrates suggest 

that the impact of lysine methylation is not limited to chromatin biology (Huang et al., 

2010; Huang et al., 2006; Huang et al., 2007; Rathert et al., 2008). Protein lysine 

methyltransferases (PKMTs, also known as histone methyltransferases (HMTs)) catalyze 

mono-, di-, and/or trimethylation of lysine residues of histone and non-histone proteins 

(Copeland et al., 2009; Kouzarides, 2007). Since the first PKMT was characterized over 

a decade ago (Rea et al., 2000), more than 50 PKMTs have been identified (Copeland et 

al., 2009; Kouzarides, 2007; Wu et al., 2010). Growing evidence suggests that PKMTs 

play critical roles in various human diseases including cancer (Bedford and Richard, 

2005; Bissinger et al., 2010; Cole, 2008; Copeland et al., 2009; Esteller, 2008; Fog et al., 

2007; Frye et al., 2010a; He et al., 2012; Martin and Zhang, 2005; Spannhoff et al., 

2009a; Spannhoff et al., 2009b; Yost et al., 2011). Selective inhibitors of PKMTs are 

valuable tools for dissecting biological functions of these proteins and assessing their 

potential as therapeutic targets. In this part of the review, we briefly discuss the selective 

PKMT inhibitors discovered to date (Figure 5).   
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The discovery of BIX01294, the first selective PKMT inhibitor by Jenuwein and 

colleagues (Kubicek et al., 2007) was a major milestone in the PKMT inhibitor field. 

BIX01294 has good in vitro potency against G9a and G9a-like protein (GLP) and is 

selective for G9a and GLP over SUV39H1 and SETDB1, and SETD7 (Chang et al., 

2009; Kubicek et al., 2007). BIX01294 is also active in cells. However, it has a poor 

separation of functional potency and cell toxicity (Chang et al., 2010; Vedadi et al., 2011; 

Yuan et al., 2012). Optimization of this quinazoline scaffold via structure-based design 

and synthesis by Jin and coworkers led to the discovery of UNC0638 (Vedadi et al., 

2011), a chemical probe of G9a and GLP, and several other potent and selective 

inhibitors of G9a and GLP (Liu et al., 2011; Liu et al., 2009; Liu et al., 2010). UNC0638 

has balanced high in vitro potency versus G9a/GLP and desirable physicochemical 

properties and is > 100-fold selective for G9a and GLP over a broad range of epigenetic 

and non-epigenetic targets (Vedadi et al., 2011). Importantly, UNC0638 has robust on-

target activities in cells and an excellent separation between functional potency and cell 

toxicity (Vedadi et al., 2011). Cheng and co-workers also discovered a potent G9a and 

GLP inhibitor E72 based on the quinazoline template via structure-based design and 

synthesis (Chang et al., 2010). E72 has high in vitro potency versus G9a and GLP and is 

inactive against SUV39H2 (Chang et al., 2010). E72 is also active in cells and shows 

reduced cell toxicity compared to BIX01294 (Chang et al., 2010). X-ray co-crystal 

structures of these G9a/GLP inhibitors in complex with GLP or G9a reveal that these 

quinazoline-based inhibitors occupy the substrate binding groove and do not occupy the 

cofactor binding site (Chang et al., 2010; Chang et al., 2009; Liu et al., 2009; Vedadi et 
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al., 2011). These findings were confirmed by mechanism of action studies, which reveal 

that UNC0638 and its analog are competitive with the peptide substrate and non-

competitive with the cofactor (Vedadi et al., 2011; Wigle et al., 2010). More recently, 

Schreiber and coworkers discovered a cofactor-competitive G9a inhibitor BRD9539 

(Yuan et al., 2012), which is structurally distinct from quinazoline-based G9a/GLP 

inhibitors. BRD9539 has moderate in vitro potency versus G9a and EZH2 and is selective 

over SUV39H1, NSD2, DNMT1, 16 other chromatin-modifying enzymes and 100 

kinases (Yuan et al., 2012). BRD4770, the methyl ester of BRD9539, is active in cells 

with a cellular potency similar to the in vitro potency of BRD9539 (Yuan et al., 2012).    

 

The discovery of EPZ004777, the first highly selective, cofactor-competitive PKMT 

inhibitor by Pollock and co-workers (Daigle et al., 2011) was also a significant 

advancement in the PKMT inhibitor discovery field. EPZ004777, a nucleoside-based 

inhibitor, is highly potent versus DOT1L (Ki = 0.3 nM) and > 1,000-fold selective for 

DOT1L over other PKMTs and PRMTs (protein arginine methyltransferases) tested 

(Daigle et al., 2011). In addition, EPZ004777 selectively kills off cells bearing mixed 

lineage leukemia (MLL) translocation and continuous infusion of EPZ004777 via a mini-

pump increases animal survival in a mouse MLL xenograft model (Daigle et al., 2011). 

Song and co-workers also discovered potent, selective, cofactor-competitive, nucleoside-

based inhibitors of DOT1L and obtained an X-ray co-crystal structure of DOT1L in 

complex with one of their inhibitors (Yao et al., 2011). Compound 1, the most potent and 

selective inhibitor in their series, was proposed to be capable of covalently modifying the 

enzyme (Yao et al., 2011). 
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In 2011, Ferguson and co-workers reported the discovery of a potent SMYD2 inhibitor 

AZ505 (IC50 = 120 nM), which is selective for SMYD2 over a panel of PKMTs including 

SMYD3, DOT1L, EZH2, GLP, G9a and SETD7 (Ferguson et al., 2011). The X-ray co-

crystal structure of AZ505 in complex with SMYD2 reveals that AZ505 occupies the 

peptide binding groove, which was confirmed by the findings from mechanism of action 

studies: AZ505 is competitive with the peptide substrate and uncompetitive with the 

cofactor (Ferguson et al., 2011). Most recently, an X-ray co-crystal structure of 

compound 2 in complex with SETD7 has been reported in the PDB (protein data bank) 

(PDB code: 4E47). Although the in vitro potency of this SETD7 inhibitor has not been 

reported, the X-ray co-crystal structure reveals that this inhibitor occupies the substrate-

binding groove and does not occupy the cofactor binding site.  

 

GSK-A was recently reported as the first selective, cofactor-competitive inhibitor of 

EZH2 by Diaz and coworkers (Diaz et al., 2012). GSK-A (Ki = 700 nM), which was 

identified via high throughput screening (HTS), is selective for EZH2 over a panel of 

PKMTs, PRMTs, and DNMTs, It is competitive with the cofactor and non-competitive 

with either the peptide or nucleosome substrate. GSK-A is cell permeable and reduces 

cellular levels of H3K27me3 with an IC50 of 8 μM. Most recently, Knutson and 

coworkers discovered EPZ005687, a highly potent, selective, and cofactor-competitive 

inhibitor of EZH2, via HTS and subsequent optimization (Knutson et al., 2012). 

EPZ005687 (Ki = 24 nM) is 50-fold selective for EZH2 over EZH1, > 500-fold selective 

over 15 other PKMTs and PRMTs, and at least 60-fold selective over a broad panel of 
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GPCRs and ion channels. Similar to GSK-A, EPZ005687 is competitive with the cofactor 

and non-competitive with the nucleosome substrate. It inhibits wild-type EZH2 and 6 

Y641 or A677 EZH2 mutants with similar in vitro potencies and reduces H3K27 

methylation in various lymphoma cells with high cellular potencies. Importantly, 

EPZ005687 selectively induces apoptotic cell killing in heterozygous Y641F or A677G 

mutant cells and has little effects on the proliferation of wild-type lymphoma cells.       

 

Artificial Transcription Factors as locus-specific epigenetic modulators.  

Locus-specific targeting of epigenetic domains in chromatin requires minimally two 

modules: a DNA-recognition domain, which has sequence selectivity, and an effector 

domain, which is engineered to modify chromatin (Beltran and Blancafort, 2010). Most 

engineered proteins were constructed using zinc finger (ZF) scaffolds, and more recently, 

transcription activator-like effectors (TALEs), which are bacterial proteins of the genus 

Xanthomonas, that are injected into infected plants (Mussolino and Cathomen, 2012). 

The DNA-binding specificity of a TALE is a tandem array of ~15.5-19.5 single repeats, 

each repeat containing ~34 conserved residues. The binding specificity is dictated by 

positions 12 and 13 of the repeats, known as repeat variable residues. Thereby, the TALE 

code is a simple 1:1 interaction, 1 repeat unit to one nucleotide (Deng et al., 2012; 

Moscou and Bogdanove, 2009). Recently, several laboratories have designed artificial 

TALES for gene regulation and genome editing using nuclease technology (Bogdanove 

and Voytas, 2011; Bultmann et al., 2012). The on and potential off targets of these 

emerging technologies are still under investigation. 
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Sequence specific Cys2-His2 Zinc fingers (ZFs) have been engineered by several 

approaches, including “helix grafting” (directed mutations in the α-helical recognition 

sequence), and by in vitro as well as in vivo selection experiments, both in bacteria and 

yeast (Beltran et al., 2006)). These selection experiments have overcome the context 

dependence of the assembly of the ZF units, generating proteins with potentially 

improved specificity for the target DNA. Each ZF module recognizes primarily three 

base pairs of DNA, and most studies have engineered polydactyl proteins consisting of 3 

or more ZF proteins. Thereby, 6ZF proteins will recognize an 18-base pair recognition 

site in the DNA with potentially unique specificity in the genome (Tan et al., 2003), 

although potential off-targets might also occur in the cell due to the binding of the 

engineered protein to closely related binding sites. ZF proteins have been linked to 

several activator or repressor domains, promoting specific activation or repression of the 

targeted gene by recruiting specific co-activator or co-repressors (Sera, 2009; 

Stolzenburg et al., 2010). However, such first generation of effector domains does not 

possess intrinsic catalytic activity to modify either the histones or the DNA. 

Consequently, these effectors are expected to have a transient effect in the target cell, and 

are not capable of inducing epigenetic memory (transmission of epigenetic modifications 

over the cell progeny). In contrast, the linkage of ZFs with epigenetic modifiers 

possessing enzymatic activity, it is expected to directly modify the histones or the DNA. 

Thus, some of these effectors are potentially able to promote hereditable changes in 

chromatin (Ashley G. Rivenbark, 2012).  
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Among all epigenetic marks, DNAme and H3K9me are recognized as being hereditable 

marks, or transmitted over the cell progeny. Several studies have demonstrated that 

linkage of a catalytic domain of bacterial methyltransferases with designer ZFs leads to 

targeted DNAme in plasmid-based assays or integrated reporters (Carvin et al., 2003; Li 

et al., 2007a; Minczuk et al., 2006; Smith and Ford, 2007; Smith et al., 2008). To avoid 

untargeted methylation, programmable DNA methyltransferases have been constructed, 

in which the expression of two independent ZF proteins can complement or restore the 

activity of a functional DNA methyltransferase enzyme (Meister et al., 2010; Nomura 

and Barbas, 2007). Interestingly, triple-helix forming oligonucleotides have been coupled 

with a DNA methyltransferase M.SssI to promote targeted methylation of the EpCAM 

oncogenic promoter (van der Gun et al., 2010). Our laboratory has recently reported the 

first endogenous targeted DNA methyltransferase activity in a cancer genome, by 

tethering 6ZF domains with the catalytic domain of human Dnmt3a, an enzyme that 

catalyzes the de novo DNAme (Figure 6). When linked with a 6ZF promoting homing to 

a tumor suppressor gene promoter, such as Maspin, the ZFs-Dnmt3a fusions promoted 

targeted DNAme, which was accompanied by an increased tumorigenic ability of the 

breast cancer cells in vitro. In contrast, in the context of an oncogene, such as Sox2, 6ZF 

linked to Dnmt3a promoted cancer cell growth arrest. Importantly, these studies 

suggested that the silencing initiated by the ZFs-Dnmt3a fusions was maintained over 

more than 50 cell generations. In fact, DNAme patterns were faithfully transmitted over 

cell generations even when after the ZF protein was not longer expressed in the tumor 

cells (Ashley G. Rivenbark, 2012). Overall, these studies suggested that ZFs-Dnmt3a 

constructs were able to stably reprogram the epigenetic state of the targeted promoters. In 
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addition to DNA methyltransferases, ZF proteins have been linked to histone 

methyltransferase domains, such as SUV39H1 and G9a, targeting H3K9me marks in the 

context of the VEGF-A gene. These chimeras were sufficient to target silencing of the 

endogenous gene (Snowden et al., 2002).  

 

Reactivation of epigenetically silenced genes has also been achieved with ZF proteins. 

Gene activation, however, appears to be fundamentally more challenging than targeted 

silencing due to the decreased accessibility of the targeted region. Reactivation of 

silenced and pro-apoptotic genes has been reported for Maspin (Beltran, 2011), Bax 

(Falke et al., 2003), and p53-dependent pathways using ZF library screenings (Blancafort 

et al., 2008). Highly methylated promoters, for example tumor suppressors, are associated 

with condensed chromatin, which could impede TFs to find their targets in chromatin. In 

the case of the maspin tumor suppressor, for example, the degree or extent of 

transactivation by ZF proteins is highly dependent on the targeted region of the promoter, 

and in the DNA methylation level of the cell line examined (Beltran et al., 2011b). We 

have characterized an activator ATF able to re-activate silenced maspin in breast and 

lung cancer lines having high degree of promoter methylation. When delivered in these 

cell lines, the ATF suppressed breast cancer growth and totally abolished metastatic 

colonization (Beltran, 2011; Beltran et al., 2011b; Lund et al., 2004)). Moreover, the 

effect of the ATF in re-activating endogenous maspin was highly synergistic with small 

molecule inhibitors of DNA methyltransferases and histone deacetylases (Beltran et al., 

2008). Similarly, in the context of an epigenetically silenced oncogene, such as Oct4, 

TALE activators designed against the promoter were able to reactivate Oct4 only in 
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presence of epigenetic inhibitors, such as 5-Aza-dC and TSA (Bultmann et al., 2012). 

These experiments indicated that compact chromatin represented a partial blockade for 

ZFs and TALE technologies, and generally TFs, to reach high levels of regulation of 

silenced genes. Future engineering of both, ZFs and TALEs, might benefit from linkage 

of the DNA binding domains with chromatin remodelers, which might help to unravel the 

silenced chromatin. The discovery of novel DNA demethylases able to erase the 5meC of 

DNA represents a powerful new engineering avenue.  

 

ATFs versus small molecule inhibitors. 

The “pros” and “cons” for the use of ATFs and small molecules for anti-cancer treatment 

are summarized in Table 1. The design and optimization of DNA-binding domains in 

ATF backbones opens the possibility to regulate single genes in the cancer genome. 

Nevertheless, the spectrum of targets regulated by the ATF highly depends on the choice 

and primary selectivity of the DNA-binding domains used for the construction of the 

proteins. Investigators can now take advantage of genome-wide approaches to map the 

ATF-binding events in the cell and to study the specificity of regulation by ChIP-seq and 

RNA-seq (or gene expression microarrays), respectively. Nevertheless, work done in our 

laboratories and others demonstrate that the genomic context of the host cell type, for 

example, target site selectivity and promoter context, are key factors defining the 

specificity of action of ZF proteins (Beltran, 2011; Beltran and Blancafort, 2010). As is 

often observed with siRNA technology, several ATF proteins need to be constructed to 

effectively regulate the desired gene (Beltran et al., 2007).  
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Genomic and functional studies have defined critical target genes deregulated in cancer 

cells relative to normal tissue, providing investigators with “ad hoc” information 

regarding which genes are the most important to correct, and in which subtypes of 

cancers. For example, investigators can selectively down-regulate specific oncogenes 

overexpressed in cancer tissues without altering the behavior of normal cells. In contrast, 

the inhibition of endogenous epigenetic enzymes using small molecules potentially yields 

toxicity or undesired pharmacology due to the lack of locus selectivity of these chemical-

based approaches.  Since both the biological consequence of chromatin regulator 

inhibition and the potential off-target profile of small molecules are not predictable, 

experimental data, not debate, will reveal the magnitude of this challenge. By analogy to 

the selectivity issues often debated for protein kinase inhibitors, we anticipate clinically 

useful levels of efficacy and selectivity to be obtainable in the epigenetics field with 

progress driven by thoughtful experimentation.  The potency of transcriptional regulation 

using ATFs is highly enhanced by using transactivator or repressor domains. In our 

hands, the degree of up-regulation of tumor suppressors genes is considerably stronger 

using ATFs as compared with small molecule inhibitors. This result could be explained 

by the effective recruitment of RNA polymerase II complex and associated factors by 

ATFs, which results in enhanced transactivation and strong anti-cancer effects (Lara et 

al., 2012). A linkage of multiple epigenetic effectors (e.g methyltransferase and HDAC 

functions) in the same ATF could improve the effect of the engineered protein. Similarly, 

small molecules targeting different epigenetic processes have been shown to be highly 

synergistic in up-regulating endogenous genes. 
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 Certainly the strongest known limitation of the ATF technology is effective delivery into 

the target tissue. Targeted delivery for gene therapy has been historically addressed with 

the use of tissue-specific viral vectors (e.g adeno- and adeno-associated vectors). In 

addition, targeted nanoparticles encapsulating a more stable and modified ATF mRNA 

have been used in animal models of metastatic ovarian cancer (Lara et al., 2012). These 

nanoparticles were able to accumulate with high doses in the tumor site and were able to 

inhibit tumor growth when administered i.v. In addition to delivering the ATF in the 

tumor compartment, another fundamental problem of the ATFs is the high cost associated 

with the bulk production of ATF-containing nanoparticles required for treatment. 

Moreover, the ultimate hope of these ATF approaches is the generation of more stable 

epigenetic treatments for aggressive cancers, which might increase the longevity of the 

therapeutic approach, while providing a window of opportunity to combat incurable and 

highly drug-resistant tumors. Chimeric nanoparticles containing multiple ATFs and other 

anti-cancer agents, could be envisioned in the future to enhance therapeutic outcome. 

 

Summary 

In conclusion, the Epigenomics era has provided a multi-layer view of fundamental 

processes disrupted in cancer cells, which include changes in DNA and histone-

methylation in many different loci. The development of small molecule inhibitors for 

specific methyltransferases and methyl-readers (bromodomains) has provided novel 

strategies to target the epigenetic processes that are disrupted in malignant cells. 

Sequence-specific, engineered proteins attached to chromatin remodeling enzymes have 

the pivotal advantage to target specific locus associated with malignant progression. 
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Combinatorial treatments of cancer cells with several distinct pharmacological 

approaches, for example small molecules and artificial chromatin remodeling enzymes, 

represent attractive approaches to stably reprogram the epigenetic landscape of cancer 

cells.  
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 Legends for Figures. 

Figure 1. Structure of a double stranded DNA duplex containing meCpG (PDB ID 

383D).   

Figure 2. Structure of a nucleosome, showing the core histones H3 in green, and the 

histone tail protruding out of the nucleosome, outlining H3K9me2 mark in yellow (PDB 

ID 1KX5), and superimposed with the H3K9 lysine methyltransferase (PDB ID 2RFI). 

Figure 3. A model outlining the cross-talk of some epigenetic modifications during 

replication and after the replication fork. 

Figure 4.  Structure of UNC669. See PDB 3P8H for structure of UNC669 bound to 

L3MBTL1. 

Figure 5.  Selective Inhibitors of PKMTs. 

Figure 6. Schematic structure of the catalytic domain of Dnmt3a (PDB ID 2QRV) linked 

to a 6ZF-DNA complex. 
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TABLE I  
Comparison between Artificial Transcription Factors (ATFs) and small molecule 
epigenetic inhibitors for anti-cancer intervention 
 

Features Artificial Transcription 
Factors (ATFs) 

Epigenetic molecules 

Genomic/functional (e.g cell 
type) specificity 

Design of sequence-specific 
DNA-binding domains can 
provide high selectivity for 
the target 
 
Selective targeting for cancer 
cells by regulation of genes 
differentially expressed in 
cancer cells 
 

Broad spectrum of 
cellular targets, some 
specificity depending 
on the compound 
  
Potentially high 
toxicity due to 
undesirable targeting 
of normal cells 

Transcriptional/regulatory 
potency 

Coupling the DNA-binding 
domain with 
transactivators/repressors can 
result in potent regulation 
 
Combinatorial delivery of 
effector functions, diversity 
of epigenetic domains 

 Can result in 
transcriptional 
regulation of targeted 
promoters 
 
Combinatorial delivery 
of small molecules 
results in potent 
synergisms 
 

Delivery in 
cells/tumors/tissues 

Viral/non-viral (targeted 
nanoparticles) 

Intravenous delivery, 
targeted nanoparticle 
delivery 

Probability of acquired 
resistance mechanisms 

Potentially diminished by 
using epigenetic effector 
domains (e.g 
methyltransferase enzymes) 
 

Drug resistance/disease 
recurrence is often 
observed during 
treatment  

Cost of synthesis/delivery Potentially very high cost Large spectrum of 
small molecules 
available for treatment 
or in clinical trials 
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